Home | History | Annotate | Download | only in common
      1 /*
      2 ******************************************************************************
      3 *   Copyright (C) 1997-2009, International Business Machines
      4 *   Corporation and others.  All Rights Reserved.
      5 ******************************************************************************
      6 *   Date        Name        Description
      7 *   03/22/00    aliu        Adapted from original C++ ICU Hashtable.
      8 *   07/06/01    aliu        Modified to support int32_t keys on
      9 *                           platforms with sizeof(void*) < 32.
     10 ******************************************************************************
     11 */
     12 
     13 #include "uhash.h"
     14 #include "unicode/ustring.h"
     15 #include "cstring.h"
     16 #include "cmemory.h"
     17 #include "uassert.h"
     18 
     19 /* This hashtable is implemented as a double hash.  All elements are
     20  * stored in a single array with no secondary storage for collision
     21  * resolution (no linked list, etc.).  When there is a hash collision
     22  * (when two unequal keys have the same hashcode) we resolve this by
     23  * using a secondary hash.  The secondary hash is an increment
     24  * computed as a hash function (a different one) of the primary
     25  * hashcode.  This increment is added to the initial hash value to
     26  * obtain further slots assigned to the same hash code.  For this to
     27  * work, the length of the array and the increment must be relatively
     28  * prime.  The easiest way to achieve this is to have the length of
     29  * the array be prime, and the increment be any value from
     30  * 1..length-1.
     31  *
     32  * Hashcodes are 32-bit integers.  We make sure all hashcodes are
     33  * non-negative by masking off the top bit.  This has two effects: (1)
     34  * modulo arithmetic is simplified.  If we allowed negative hashcodes,
     35  * then when we computed hashcode % length, we could get a negative
     36  * result, which we would then have to adjust back into range.  It's
     37  * simpler to just make hashcodes non-negative. (2) It makes it easy
     38  * to check for empty vs. occupied slots in the table.  We just mark
     39  * empty or deleted slots with a negative hashcode.
     40  *
     41  * The central function is _uhash_find().  This function looks for a
     42  * slot matching the given key and hashcode.  If one is found, it
     43  * returns a pointer to that slot.  If the table is full, and no match
     44  * is found, it returns NULL -- in theory.  This would make the code
     45  * more complicated, since all callers of _uhash_find() would then
     46  * have to check for a NULL result.  To keep this from happening, we
     47  * don't allow the table to fill.  When there is only one
     48  * empty/deleted slot left, uhash_put() will refuse to increase the
     49  * count, and fail.  This simplifies the code.  In practice, one will
     50  * seldom encounter this using default UHashtables.  However, if a
     51  * hashtable is set to a U_FIXED resize policy, or if memory is
     52  * exhausted, then the table may fill.
     53  *
     54  * High and low water ratios control rehashing.  They establish levels
     55  * of fullness (from 0 to 1) outside of which the data array is
     56  * reallocated and repopulated.  Setting the low water ratio to zero
     57  * means the table will never shrink.  Setting the high water ratio to
     58  * one means the table will never grow.  The ratios should be
     59  * coordinated with the ratio between successive elements of the
     60  * PRIMES table, so that when the primeIndex is incremented or
     61  * decremented during rehashing, it brings the ratio of count / length
     62  * back into the desired range (between low and high water ratios).
     63  */
     64 
     65 /********************************************************************
     66  * PRIVATE Constants, Macros
     67  ********************************************************************/
     68 
     69 /* This is a list of non-consecutive primes chosen such that
     70  * PRIMES[i+1] ~ 2*PRIMES[i].  (Currently, the ratio ranges from 1.81
     71  * to 2.18; the inverse ratio ranges from 0.459 to 0.552.)  If this
     72  * ratio is changed, the low and high water ratios should also be
     73  * adjusted to suit.
     74  *
     75  * These prime numbers were also chosen so that they are the largest
     76  * prime number while being less than a power of two.
     77  */
     78 static const int32_t PRIMES[] = {
     79     13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749,
     80     65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593,
     81     16777213, 33554393, 67108859, 134217689, 268435399, 536870909,
     82     1073741789, 2147483647 /*, 4294967291 */
     83 };
     84 
     85 #define PRIMES_LENGTH (sizeof(PRIMES) / sizeof(PRIMES[0]))
     86 #define DEFAULT_PRIME_INDEX 3
     87 
     88 /* These ratios are tuned to the PRIMES array such that a resize
     89  * places the table back into the zone of non-resizing.  That is,
     90  * after a call to _uhash_rehash(), a subsequent call to
     91  * _uhash_rehash() should do nothing (should not churn).  This is only
     92  * a potential problem with U_GROW_AND_SHRINK.
     93  */
     94 static const float RESIZE_POLICY_RATIO_TABLE[6] = {
     95     /* low, high water ratio */
     96     0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */
     97     0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */
     98     0.0F, 1.0F  /* U_FIXED: Never change size */
     99 };
    100 
    101 /*
    102   Invariants for hashcode values:
    103 
    104   * DELETED < 0
    105   * EMPTY < 0
    106   * Real hashes >= 0
    107 
    108   Hashcodes may not start out this way, but internally they are
    109   adjusted so that they are always positive.  We assume 32-bit
    110   hashcodes; adjust these constants for other hashcode sizes.
    111 */
    112 #define HASH_DELETED    ((int32_t) 0x80000000)
    113 #define HASH_EMPTY      ((int32_t) HASH_DELETED + 1)
    114 
    115 #define IS_EMPTY_OR_DELETED(x) ((x) < 0)
    116 
    117 /* This macro expects a UHashTok.pointer as its keypointer and
    118    valuepointer parameters */
    119 #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \
    120             if (hash->keyDeleter != NULL && keypointer != NULL) { \
    121                 (*hash->keyDeleter)(keypointer); \
    122             } \
    123             if (hash->valueDeleter != NULL && valuepointer != NULL) { \
    124                 (*hash->valueDeleter)(valuepointer); \
    125             }
    126 
    127 /*
    128  * Constants for hinting whether a key or value is an integer
    129  * or a pointer.  If a hint bit is zero, then the associated
    130  * token is assumed to be an integer.
    131  */
    132 #define HINT_KEY_POINTER   (1)
    133 #define HINT_VALUE_POINTER (2)
    134 
    135 /********************************************************************
    136  * PRIVATE Implementation
    137  ********************************************************************/
    138 
    139 static UHashTok
    140 _uhash_setElement(UHashtable *hash, UHashElement* e,
    141                   int32_t hashcode,
    142                   UHashTok key, UHashTok value, int8_t hint) {
    143 
    144     UHashTok oldValue = e->value;
    145     if (hash->keyDeleter != NULL && e->key.pointer != NULL &&
    146         e->key.pointer != key.pointer) { /* Avoid double deletion */
    147         (*hash->keyDeleter)(e->key.pointer);
    148     }
    149     if (hash->valueDeleter != NULL) {
    150         if (oldValue.pointer != NULL &&
    151             oldValue.pointer != value.pointer) { /* Avoid double deletion */
    152             (*hash->valueDeleter)(oldValue.pointer);
    153         }
    154         oldValue.pointer = NULL;
    155     }
    156     /* Compilers should copy the UHashTok union correctly, but even if
    157      * they do, memory heap tools (e.g. BoundsChecker) can get
    158      * confused when a pointer is cloaked in a union and then copied.
    159      * TO ALLEVIATE THIS, we use hints (based on what API the user is
    160      * calling) to copy pointers when we know the user thinks
    161      * something is a pointer. */
    162     if (hint & HINT_KEY_POINTER) {
    163         e->key.pointer = key.pointer;
    164     } else {
    165         e->key = key;
    166     }
    167     if (hint & HINT_VALUE_POINTER) {
    168         e->value.pointer = value.pointer;
    169     } else {
    170         e->value = value;
    171     }
    172     e->hashcode = hashcode;
    173     return oldValue;
    174 }
    175 
    176 /**
    177  * Assumes that the given element is not empty or deleted.
    178  */
    179 static UHashTok
    180 _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) {
    181     UHashTok empty;
    182     U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode));
    183     --hash->count;
    184     empty.pointer = NULL; empty.integer = 0;
    185     return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0);
    186 }
    187 
    188 static void
    189 _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
    190     U_ASSERT(hash != NULL);
    191     U_ASSERT(((int32_t)policy) >= 0);
    192     U_ASSERT(((int32_t)policy) < 3);
    193     hash->lowWaterRatio  = RESIZE_POLICY_RATIO_TABLE[policy * 2];
    194     hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1];
    195 }
    196 
    197 /**
    198  * Allocate internal data array of a size determined by the given
    199  * prime index.  If the index is out of range it is pinned into range.
    200  * If the allocation fails the status is set to
    201  * U_MEMORY_ALLOCATION_ERROR and all array storage is freed.  In
    202  * either case the previous array pointer is overwritten.
    203  *
    204  * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1.
    205  */
    206 static void
    207 _uhash_allocate(UHashtable *hash,
    208                 int32_t primeIndex,
    209                 UErrorCode *status) {
    210 
    211     UHashElement *p, *limit;
    212     UHashTok emptytok;
    213 
    214     if (U_FAILURE(*status)) return;
    215 
    216     U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH);
    217 
    218     hash->primeIndex = primeIndex;
    219     hash->length = PRIMES[primeIndex];
    220 
    221     p = hash->elements = (UHashElement*)
    222         uprv_malloc(sizeof(UHashElement) * hash->length);
    223 
    224     if (hash->elements == NULL) {
    225         *status = U_MEMORY_ALLOCATION_ERROR;
    226         return;
    227     }
    228 
    229     emptytok.pointer = NULL; /* Only one of these two is needed */
    230     emptytok.integer = 0;    /* but we don't know which one. */
    231 
    232     limit = p + hash->length;
    233     while (p < limit) {
    234         p->key = emptytok;
    235         p->value = emptytok;
    236         p->hashcode = HASH_EMPTY;
    237         ++p;
    238     }
    239 
    240     hash->count = 0;
    241     hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
    242     hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
    243 }
    244 
    245 static UHashtable*
    246 _uhash_init(UHashtable *result,
    247               UHashFunction *keyHash,
    248               UKeyComparator *keyComp,
    249               UValueComparator *valueComp,
    250               int32_t primeIndex,
    251               UErrorCode *status)
    252 {
    253     if (U_FAILURE(*status)) return NULL;
    254     U_ASSERT(keyHash != NULL);
    255     U_ASSERT(keyComp != NULL);
    256 
    257     result->keyHasher       = keyHash;
    258     result->keyComparator   = keyComp;
    259     result->valueComparator = valueComp;
    260     result->keyDeleter      = NULL;
    261     result->valueDeleter    = NULL;
    262     result->allocated       = FALSE;
    263     _uhash_internalSetResizePolicy(result, U_GROW);
    264 
    265     _uhash_allocate(result, primeIndex, status);
    266 
    267     if (U_FAILURE(*status)) {
    268         return NULL;
    269     }
    270 
    271     return result;
    272 }
    273 
    274 static UHashtable*
    275 _uhash_create(UHashFunction *keyHash,
    276               UKeyComparator *keyComp,
    277               UValueComparator *valueComp,
    278               int32_t primeIndex,
    279               UErrorCode *status) {
    280     UHashtable *result;
    281 
    282     if (U_FAILURE(*status)) return NULL;
    283 
    284     result = (UHashtable*) uprv_malloc(sizeof(UHashtable));
    285     if (result == NULL) {
    286         *status = U_MEMORY_ALLOCATION_ERROR;
    287         return NULL;
    288     }
    289 
    290     _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status);
    291     result->allocated       = TRUE;
    292 
    293     if (U_FAILURE(*status)) {
    294         uprv_free(result);
    295         return NULL;
    296     }
    297 
    298     return result;
    299 }
    300 
    301 /**
    302  * Look for a key in the table, or if no such key exists, the first
    303  * empty slot matching the given hashcode.  Keys are compared using
    304  * the keyComparator function.
    305  *
    306  * First find the start position, which is the hashcode modulo
    307  * the length.  Test it to see if it is:
    308  *
    309  * a. identical:  First check the hash values for a quick check,
    310  *    then compare keys for equality using keyComparator.
    311  * b. deleted
    312  * c. empty
    313  *
    314  * Stop if it is identical or empty, otherwise continue by adding a
    315  * "jump" value (moduloing by the length again to keep it within
    316  * range) and retesting.  For efficiency, there need enough empty
    317  * values so that the searchs stop within a reasonable amount of time.
    318  * This can be changed by changing the high/low water marks.
    319  *
    320  * In theory, this function can return NULL, if it is full (no empty
    321  * or deleted slots) and if no matching key is found.  In practice, we
    322  * prevent this elsewhere (in uhash_put) by making sure the last slot
    323  * in the table is never filled.
    324  *
    325  * The size of the table should be prime for this algorithm to work;
    326  * otherwise we are not guaranteed that the jump value (the secondary
    327  * hash) is relatively prime to the table length.
    328  */
    329 static UHashElement*
    330 _uhash_find(const UHashtable *hash, UHashTok key,
    331             int32_t hashcode) {
    332 
    333     int32_t firstDeleted = -1;  /* assume invalid index */
    334     int32_t theIndex, startIndex;
    335     int32_t jump = 0; /* lazy evaluate */
    336     int32_t tableHash;
    337     UHashElement *elements = hash->elements;
    338 
    339     hashcode &= 0x7FFFFFFF; /* must be positive */
    340     startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length;
    341 
    342     do {
    343         tableHash = elements[theIndex].hashcode;
    344         if (tableHash == hashcode) {          /* quick check */
    345             if ((*hash->keyComparator)(key, elements[theIndex].key)) {
    346                 return &(elements[theIndex]);
    347             }
    348         } else if (!IS_EMPTY_OR_DELETED(tableHash)) {
    349             /* We have hit a slot which contains a key-value pair,
    350              * but for which the hash code does not match.  Keep
    351              * looking.
    352              */
    353         } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */
    354             break;
    355         } else if (firstDeleted < 0) { /* remember first deleted */
    356             firstDeleted = theIndex;
    357         }
    358         if (jump == 0) { /* lazy compute jump */
    359             /* The jump value must be relatively prime to the table
    360              * length.  As long as the length is prime, then any value
    361              * 1..length-1 will be relatively prime to it.
    362              */
    363             jump = (hashcode % (hash->length - 1)) + 1;
    364         }
    365         theIndex = (theIndex + jump) % hash->length;
    366     } while (theIndex != startIndex);
    367 
    368     if (firstDeleted >= 0) {
    369         theIndex = firstDeleted; /* reset if had deleted slot */
    370     } else if (tableHash != HASH_EMPTY) {
    371         /* We get to this point if the hashtable is full (no empty or
    372          * deleted slots), and we've failed to find a match.  THIS
    373          * WILL NEVER HAPPEN as long as uhash_put() makes sure that
    374          * count is always < length.
    375          */
    376         U_ASSERT(FALSE);
    377         return NULL; /* Never happens if uhash_put() behaves */
    378     }
    379     return &(elements[theIndex]);
    380 }
    381 
    382 /**
    383  * Attempt to grow or shrink the data arrays in order to make the
    384  * count fit between the high and low water marks.  hash_put() and
    385  * hash_remove() call this method when the count exceeds the high or
    386  * low water marks.  This method may do nothing, if memory allocation
    387  * fails, or if the count is already in range, or if the length is
    388  * already at the low or high limit.  In any case, upon return the
    389  * arrays will be valid.
    390  */
    391 static void
    392 _uhash_rehash(UHashtable *hash, UErrorCode *status) {
    393 
    394     UHashElement *old = hash->elements;
    395     int32_t oldLength = hash->length;
    396     int32_t newPrimeIndex = hash->primeIndex;
    397     int32_t i;
    398 
    399     if (hash->count > hash->highWaterMark) {
    400         if (++newPrimeIndex >= PRIMES_LENGTH) {
    401             return;
    402         }
    403     } else if (hash->count < hash->lowWaterMark) {
    404         if (--newPrimeIndex < 0) {
    405             return;
    406         }
    407     } else {
    408         return;
    409     }
    410 
    411     _uhash_allocate(hash, newPrimeIndex, status);
    412 
    413     if (U_FAILURE(*status)) {
    414         hash->elements = old;
    415         hash->length = oldLength;
    416         return;
    417     }
    418 
    419     for (i = oldLength - 1; i >= 0; --i) {
    420         if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) {
    421             UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode);
    422             U_ASSERT(e != NULL);
    423             U_ASSERT(e->hashcode == HASH_EMPTY);
    424             e->key = old[i].key;
    425             e->value = old[i].value;
    426             e->hashcode = old[i].hashcode;
    427             ++hash->count;
    428         }
    429     }
    430 
    431     uprv_free(old);
    432 }
    433 
    434 static UHashTok
    435 _uhash_remove(UHashtable *hash,
    436               UHashTok key) {
    437     /* First find the position of the key in the table.  If the object
    438      * has not been removed already, remove it.  If the user wanted
    439      * keys deleted, then delete it also.  We have to put a special
    440      * hashcode in that position that means that something has been
    441      * deleted, since when we do a find, we have to continue PAST any
    442      * deleted values.
    443      */
    444     UHashTok result;
    445     UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key));
    446     U_ASSERT(e != NULL);
    447     result.pointer = NULL;
    448     result.integer = 0;
    449     if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
    450         result = _uhash_internalRemoveElement(hash, e);
    451         if (hash->count < hash->lowWaterMark) {
    452             UErrorCode status = U_ZERO_ERROR;
    453             _uhash_rehash(hash, &status);
    454         }
    455     }
    456     return result;
    457 }
    458 
    459 static UHashTok
    460 _uhash_put(UHashtable *hash,
    461            UHashTok key,
    462            UHashTok value,
    463            int8_t hint,
    464            UErrorCode *status) {
    465 
    466     /* Put finds the position in the table for the new value.  If the
    467      * key is already in the table, it is deleted, if there is a
    468      * non-NULL keyDeleter.  Then the key, the hash and the value are
    469      * all put at the position in their respective arrays.
    470      */
    471     int32_t hashcode;
    472     UHashElement* e;
    473     UHashTok emptytok;
    474 
    475     if (U_FAILURE(*status)) {
    476         goto err;
    477     }
    478     U_ASSERT(hash != NULL);
    479     /* Cannot always check pointer here or iSeries sees NULL every time. */
    480     if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) {
    481         /* Disallow storage of NULL values, since NULL is returned by
    482          * get() to indicate an absent key.  Storing NULL == removing.
    483          */
    484         return _uhash_remove(hash, key);
    485     }
    486     if (hash->count > hash->highWaterMark) {
    487         _uhash_rehash(hash, status);
    488         if (U_FAILURE(*status)) {
    489             goto err;
    490         }
    491     }
    492 
    493     hashcode = (*hash->keyHasher)(key);
    494     e = _uhash_find(hash, key, hashcode);
    495     U_ASSERT(e != NULL);
    496 
    497     if (IS_EMPTY_OR_DELETED(e->hashcode)) {
    498         /* Important: We must never actually fill the table up.  If we
    499          * do so, then _uhash_find() will return NULL, and we'll have
    500          * to check for NULL after every call to _uhash_find().  To
    501          * avoid this we make sure there is always at least one empty
    502          * or deleted slot in the table.  This only is a problem if we
    503          * are out of memory and rehash isn't working.
    504          */
    505         ++hash->count;
    506         if (hash->count == hash->length) {
    507             /* Don't allow count to reach length */
    508             --hash->count;
    509             *status = U_MEMORY_ALLOCATION_ERROR;
    510             goto err;
    511         }
    512     }
    513 
    514     /* We must in all cases handle storage properly.  If there was an
    515      * old key, then it must be deleted (if the deleter != NULL).
    516      * Make hashcodes stored in table positive.
    517      */
    518     return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint);
    519 
    520  err:
    521     /* If the deleters are non-NULL, this method adopts its key and/or
    522      * value arguments, and we must be sure to delete the key and/or
    523      * value in all cases, even upon failure.
    524      */
    525     HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer);
    526     emptytok.pointer = NULL; emptytok.integer = 0;
    527     return emptytok;
    528 }
    529 
    530 
    531 /********************************************************************
    532  * PUBLIC API
    533  ********************************************************************/
    534 
    535 U_CAPI UHashtable* U_EXPORT2
    536 uhash_open(UHashFunction *keyHash,
    537            UKeyComparator *keyComp,
    538            UValueComparator *valueComp,
    539            UErrorCode *status) {
    540 
    541     return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
    542 }
    543 
    544 U_CAPI UHashtable* U_EXPORT2
    545 uhash_openSize(UHashFunction *keyHash,
    546                UKeyComparator *keyComp,
    547                UValueComparator *valueComp,
    548                int32_t size,
    549                UErrorCode *status) {
    550 
    551     /* Find the smallest index i for which PRIMES[i] >= size. */
    552     int32_t i = 0;
    553     while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
    554         ++i;
    555     }
    556 
    557     return _uhash_create(keyHash, keyComp, valueComp, i, status);
    558 }
    559 
    560 U_CAPI UHashtable* U_EXPORT2
    561 uhash_init(UHashtable *fillinResult,
    562            UHashFunction *keyHash,
    563            UKeyComparator *keyComp,
    564            UValueComparator *valueComp,
    565            UErrorCode *status) {
    566 
    567     return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
    568 }
    569 
    570 U_CAPI void U_EXPORT2
    571 uhash_close(UHashtable *hash) {
    572     if (hash == NULL) {
    573         return;
    574     }
    575     if (hash->elements != NULL) {
    576         if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) {
    577             int32_t pos=-1;
    578             UHashElement *e;
    579             while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) {
    580                 HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer);
    581             }
    582         }
    583         uprv_free(hash->elements);
    584         hash->elements = NULL;
    585     }
    586     if (hash->allocated) {
    587         uprv_free(hash);
    588     }
    589 }
    590 
    591 U_CAPI UHashFunction *U_EXPORT2
    592 uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) {
    593     UHashFunction *result = hash->keyHasher;
    594     hash->keyHasher = fn;
    595     return result;
    596 }
    597 
    598 U_CAPI UKeyComparator *U_EXPORT2
    599 uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) {
    600     UKeyComparator *result = hash->keyComparator;
    601     hash->keyComparator = fn;
    602     return result;
    603 }
    604 U_CAPI UValueComparator *U_EXPORT2
    605 uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){
    606     UValueComparator *result = hash->valueComparator;
    607     hash->valueComparator = fn;
    608     return result;
    609 }
    610 
    611 U_CAPI UObjectDeleter *U_EXPORT2
    612 uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) {
    613     UObjectDeleter *result = hash->keyDeleter;
    614     hash->keyDeleter = fn;
    615     return result;
    616 }
    617 
    618 U_CAPI UObjectDeleter *U_EXPORT2
    619 uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) {
    620     UObjectDeleter *result = hash->valueDeleter;
    621     hash->valueDeleter = fn;
    622     return result;
    623 }
    624 
    625 U_CAPI void U_EXPORT2
    626 uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
    627     UErrorCode status = U_ZERO_ERROR;
    628     _uhash_internalSetResizePolicy(hash, policy);
    629     hash->lowWaterMark  = (int32_t)(hash->length * hash->lowWaterRatio);
    630     hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
    631     _uhash_rehash(hash, &status);
    632 }
    633 
    634 U_CAPI int32_t U_EXPORT2
    635 uhash_count(const UHashtable *hash) {
    636     return hash->count;
    637 }
    638 
    639 U_CAPI void* U_EXPORT2
    640 uhash_get(const UHashtable *hash,
    641           const void* key) {
    642     UHashTok keyholder;
    643     keyholder.pointer = (void*) key;
    644     return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
    645 }
    646 
    647 U_CAPI void* U_EXPORT2
    648 uhash_iget(const UHashtable *hash,
    649            int32_t key) {
    650     UHashTok keyholder;
    651     keyholder.integer = key;
    652     return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
    653 }
    654 
    655 U_CAPI int32_t U_EXPORT2
    656 uhash_geti(const UHashtable *hash,
    657            const void* key) {
    658     UHashTok keyholder;
    659     keyholder.pointer = (void*) key;
    660     return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
    661 }
    662 
    663 U_CAPI int32_t U_EXPORT2
    664 uhash_igeti(const UHashtable *hash,
    665            int32_t key) {
    666     UHashTok keyholder;
    667     keyholder.integer = key;
    668     return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
    669 }
    670 
    671 U_CAPI void* U_EXPORT2
    672 uhash_put(UHashtable *hash,
    673           void* key,
    674           void* value,
    675           UErrorCode *status) {
    676     UHashTok keyholder, valueholder;
    677     keyholder.pointer = key;
    678     valueholder.pointer = value;
    679     return _uhash_put(hash, keyholder, valueholder,
    680                       HINT_KEY_POINTER | HINT_VALUE_POINTER,
    681                       status).pointer;
    682 }
    683 
    684 U_CAPI void* U_EXPORT2
    685 uhash_iput(UHashtable *hash,
    686            int32_t key,
    687            void* value,
    688            UErrorCode *status) {
    689     UHashTok keyholder, valueholder;
    690     keyholder.integer = key;
    691     valueholder.pointer = value;
    692     return _uhash_put(hash, keyholder, valueholder,
    693                       HINT_VALUE_POINTER,
    694                       status).pointer;
    695 }
    696 
    697 U_CAPI int32_t U_EXPORT2
    698 uhash_puti(UHashtable *hash,
    699            void* key,
    700            int32_t value,
    701            UErrorCode *status) {
    702     UHashTok keyholder, valueholder;
    703     keyholder.pointer = key;
    704     valueholder.integer = value;
    705     return _uhash_put(hash, keyholder, valueholder,
    706                       HINT_KEY_POINTER,
    707                       status).integer;
    708 }
    709 
    710 
    711 U_CAPI int32_t U_EXPORT2
    712 uhash_iputi(UHashtable *hash,
    713            int32_t key,
    714            int32_t value,
    715            UErrorCode *status) {
    716     UHashTok keyholder, valueholder;
    717     keyholder.integer = key;
    718     valueholder.integer = value;
    719     return _uhash_put(hash, keyholder, valueholder,
    720                       0, /* neither is a ptr */
    721                       status).integer;
    722 }
    723 
    724 U_CAPI void* U_EXPORT2
    725 uhash_remove(UHashtable *hash,
    726              const void* key) {
    727     UHashTok keyholder;
    728     keyholder.pointer = (void*) key;
    729     return _uhash_remove(hash, keyholder).pointer;
    730 }
    731 
    732 U_CAPI void* U_EXPORT2
    733 uhash_iremove(UHashtable *hash,
    734               int32_t key) {
    735     UHashTok keyholder;
    736     keyholder.integer = key;
    737     return _uhash_remove(hash, keyholder).pointer;
    738 }
    739 
    740 U_CAPI int32_t U_EXPORT2
    741 uhash_removei(UHashtable *hash,
    742               const void* key) {
    743     UHashTok keyholder;
    744     keyholder.pointer = (void*) key;
    745     return _uhash_remove(hash, keyholder).integer;
    746 }
    747 
    748 U_CAPI int32_t U_EXPORT2
    749 uhash_iremovei(UHashtable *hash,
    750                int32_t key) {
    751     UHashTok keyholder;
    752     keyholder.integer = key;
    753     return _uhash_remove(hash, keyholder).integer;
    754 }
    755 
    756 U_CAPI void U_EXPORT2
    757 uhash_removeAll(UHashtable *hash) {
    758     int32_t pos = -1;
    759     const UHashElement *e;
    760     U_ASSERT(hash != NULL);
    761     if (hash->count != 0) {
    762         while ((e = uhash_nextElement(hash, &pos)) != NULL) {
    763             uhash_removeElement(hash, e);
    764         }
    765     }
    766     U_ASSERT(hash->count == 0);
    767 }
    768 
    769 U_CAPI const UHashElement* U_EXPORT2
    770 uhash_find(const UHashtable *hash, const void* key) {
    771     UHashTok keyholder;
    772     const UHashElement *e;
    773     keyholder.pointer = (void*) key;
    774     e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
    775     return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e;
    776 }
    777 
    778 U_CAPI const UHashElement* U_EXPORT2
    779 uhash_nextElement(const UHashtable *hash, int32_t *pos) {
    780     /* Walk through the array until we find an element that is not
    781      * EMPTY and not DELETED.
    782      */
    783     int32_t i;
    784     U_ASSERT(hash != NULL);
    785     for (i = *pos + 1; i < hash->length; ++i) {
    786         if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) {
    787             *pos = i;
    788             return &(hash->elements[i]);
    789         }
    790     }
    791 
    792     /* No more elements */
    793     return NULL;
    794 }
    795 
    796 U_CAPI void* U_EXPORT2
    797 uhash_removeElement(UHashtable *hash, const UHashElement* e) {
    798     U_ASSERT(hash != NULL);
    799     U_ASSERT(e != NULL);
    800     if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
    801         UHashElement *nce = (UHashElement *)e;
    802         return _uhash_internalRemoveElement(hash, nce).pointer;
    803     }
    804     return NULL;
    805 }
    806 
    807 /********************************************************************
    808  * UHashTok convenience
    809  ********************************************************************/
    810 
    811 /**
    812  * Return a UHashTok for an integer.
    813  */
    814 /*U_CAPI UHashTok U_EXPORT2
    815 uhash_toki(int32_t i) {
    816     UHashTok tok;
    817     tok.integer = i;
    818     return tok;
    819 }*/
    820 
    821 /**
    822  * Return a UHashTok for a pointer.
    823  */
    824 /*U_CAPI UHashTok U_EXPORT2
    825 uhash_tokp(void* p) {
    826     UHashTok tok;
    827     tok.pointer = p;
    828     return tok;
    829 }*/
    830 
    831 /********************************************************************
    832  * PUBLIC Key Hash Functions
    833  ********************************************************************/
    834 
    835 /*
    836   Compute the hash by iterating sparsely over about 32 (up to 63)
    837   characters spaced evenly through the string.  For each character,
    838   multiply the previous hash value by a prime number and add the new
    839   character in, like a linear congruential random number generator,
    840   producing a pseudorandom deterministic value well distributed over
    841   the output range. [LIU]
    842 */
    843 
    844 #define STRING_HASH(TYPE, STR, STRLEN, DEREF) \
    845     int32_t hash = 0;                         \
    846     const TYPE *p = (const TYPE*) STR;        \
    847     if (p != NULL) {                          \
    848         int32_t len = (int32_t)(STRLEN);      \
    849         int32_t inc = ((len - 32) / 32) + 1;  \
    850         const TYPE *limit = p + len;          \
    851         while (p<limit) {                     \
    852             hash = (hash * 37) + DEREF;       \
    853             p += inc;                         \
    854         }                                     \
    855     }                                         \
    856     return hash
    857 
    858 U_CAPI int32_t U_EXPORT2
    859 uhash_hashUChars(const UHashTok key) {
    860     STRING_HASH(UChar, key.pointer, u_strlen(p), *p);
    861 }
    862 
    863 /* Used by UnicodeString to compute its hashcode - Not public API. */
    864 U_CAPI int32_t U_EXPORT2
    865 uhash_hashUCharsN(const UChar *str, int32_t length) {
    866     STRING_HASH(UChar, str, length, *p);
    867 }
    868 
    869 U_CAPI int32_t U_EXPORT2
    870 uhash_hashChars(const UHashTok key) {
    871     STRING_HASH(uint8_t, key.pointer, uprv_strlen((char*)p), *p);
    872 }
    873 
    874 U_CAPI int32_t U_EXPORT2
    875 uhash_hashIChars(const UHashTok key) {
    876     STRING_HASH(uint8_t, key.pointer, uprv_strlen((char*)p), uprv_tolower(*p));
    877 }
    878 
    879 U_CAPI UBool U_EXPORT2
    880 uhash_equals(const UHashtable* hash1, const UHashtable* hash2){
    881 
    882     int32_t count1, count2, pos, i;
    883 
    884     if(hash1==hash2){
    885         return TRUE;
    886     }
    887 
    888     /*
    889      * Make sure that we are comparing 2 valid hashes of the same type
    890      * with valid comparison functions.
    891      * Without valid comparison functions, a binary comparison
    892      * of the hash values will yield random results on machines
    893      * with 64-bit pointers and 32-bit integer hashes.
    894      * A valueComparator is normally optional.
    895      */
    896     if (hash1==NULL || hash2==NULL ||
    897         hash1->keyComparator != hash2->keyComparator ||
    898         hash1->valueComparator != hash2->valueComparator ||
    899         hash1->valueComparator == NULL)
    900     {
    901         /*
    902         Normally we would return an error here about incompatible hash tables,
    903         but we return FALSE instead.
    904         */
    905         return FALSE;
    906     }
    907 
    908     count1 = uhash_count(hash1);
    909     count2 = uhash_count(hash2);
    910     if(count1!=count2){
    911         return FALSE;
    912     }
    913 
    914     pos=-1;
    915     for(i=0; i<count1; i++){
    916         const UHashElement* elem1 = uhash_nextElement(hash1, &pos);
    917         const UHashTok key1 = elem1->key;
    918         const UHashTok val1 = elem1->value;
    919         /* here the keys are not compared, instead the key form hash1 is used to fetch
    920          * value from hash2. If the hashes are equal then then both hashes should
    921          * contain equal values for the same key!
    922          */
    923         const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1));
    924         const UHashTok val2 = elem2->value;
    925         if(hash1->valueComparator(val1, val2)==FALSE){
    926             return FALSE;
    927         }
    928     }
    929     return TRUE;
    930 }
    931 
    932 /********************************************************************
    933  * PUBLIC Comparator Functions
    934  ********************************************************************/
    935 
    936 U_CAPI UBool U_EXPORT2
    937 uhash_compareUChars(const UHashTok key1, const UHashTok key2) {
    938     const UChar *p1 = (const UChar*) key1.pointer;
    939     const UChar *p2 = (const UChar*) key2.pointer;
    940     if (p1 == p2) {
    941         return TRUE;
    942     }
    943     if (p1 == NULL || p2 == NULL) {
    944         return FALSE;
    945     }
    946     while (*p1 != 0 && *p1 == *p2) {
    947         ++p1;
    948         ++p2;
    949     }
    950     return (UBool)(*p1 == *p2);
    951 }
    952 
    953 U_CAPI UBool U_EXPORT2
    954 uhash_compareChars(const UHashTok key1, const UHashTok key2) {
    955     const char *p1 = (const char*) key1.pointer;
    956     const char *p2 = (const char*) key2.pointer;
    957     if (p1 == p2) {
    958         return TRUE;
    959     }
    960     if (p1 == NULL || p2 == NULL) {
    961         return FALSE;
    962     }
    963     while (*p1 != 0 && *p1 == *p2) {
    964         ++p1;
    965         ++p2;
    966     }
    967     return (UBool)(*p1 == *p2);
    968 }
    969 
    970 U_CAPI UBool U_EXPORT2
    971 uhash_compareIChars(const UHashTok key1, const UHashTok key2) {
    972     const char *p1 = (const char*) key1.pointer;
    973     const char *p2 = (const char*) key2.pointer;
    974     if (p1 == p2) {
    975         return TRUE;
    976     }
    977     if (p1 == NULL || p2 == NULL) {
    978         return FALSE;
    979     }
    980     while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) {
    981         ++p1;
    982         ++p2;
    983     }
    984     return (UBool)(*p1 == *p2);
    985 }
    986 
    987 /********************************************************************
    988  * PUBLIC int32_t Support Functions
    989  ********************************************************************/
    990 
    991 U_CAPI int32_t U_EXPORT2
    992 uhash_hashLong(const UHashTok key) {
    993     return key.integer;
    994 }
    995 
    996 U_CAPI UBool U_EXPORT2
    997 uhash_compareLong(const UHashTok key1, const UHashTok key2) {
    998     return (UBool)(key1.integer == key2.integer);
    999 }
   1000 
   1001 /********************************************************************
   1002  * PUBLIC Deleter Functions
   1003  ********************************************************************/
   1004 
   1005 U_CAPI void U_EXPORT2
   1006 uhash_freeBlock(void *obj) {
   1007     uprv_free(obj);
   1008 }
   1009 
   1010