Home | History | Annotate | Download | only in base
      1 /*
      2  * libjingle
      3  * Copyright 2004--2005, Google Inc.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions are met:
      7  *
      8  *  1. Redistributions of source code must retain the above copyright notice,
      9  *     this list of conditions and the following disclaimer.
     10  *  2. Redistributions in binary form must reproduce the above copyright notice,
     11  *     this list of conditions and the following disclaimer in the documentation
     12  *     and/or other materials provided with the distribution.
     13  *  3. The name of the author may not be used to endorse or promote products
     14  *     derived from this software without specific prior written permission.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
     19  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     20  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     21  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     22  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     23  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     24  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     25  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 
     28 #include "talk/base/win32.h"
     29 
     30 #include <winsock2.h>
     31 #include <ws2tcpip.h>
     32 #include <algorithm>
     33 
     34 #include "talk/base/basictypes.h"
     35 #include "talk/base/byteorder.h"
     36 #include "talk/base/common.h"
     37 #include "talk/base/logging.h"
     38 
     39 namespace talk_base {
     40 
     41 // Helper function declarations for inet_ntop/inet_pton.
     42 static const char* inet_ntop_v4(const void* src, char* dst, socklen_t size);
     43 static const char* inet_ntop_v6(const void* src, char* dst, socklen_t size);
     44 static int inet_pton_v4(const char* src, void* dst);
     45 static int inet_pton_v6(const char* src, void* dst);
     46 
     47 // Implementation of inet_ntop (create a printable representation of an
     48 // ip address). XP doesn't have its own inet_ntop, and
     49 // WSAAddressToString requires both IPv6 to be  installed and for Winsock
     50 // to be initialized.
     51 const char* win32_inet_ntop(int af, const void *src,
     52                             char* dst, socklen_t size) {
     53   if (!src || !dst) {
     54     return NULL;
     55   }
     56   switch (af) {
     57     case AF_INET: {
     58       return inet_ntop_v4(src, dst, size);
     59     }
     60     case AF_INET6: {
     61       return inet_ntop_v6(src, dst, size);
     62     }
     63   }
     64   return NULL;
     65 }
     66 
     67 // As above, but for inet_pton. Implements inet_pton for v4 and v6.
     68 // Note that our inet_ntop will output normal 'dotted' v4 addresses only.
     69 int win32_inet_pton(int af, const char* src, void* dst) {
     70   if (!src || !dst) {
     71     return 0;
     72   }
     73   if (af == AF_INET) {
     74     return inet_pton_v4(src, dst);
     75   } else if (af == AF_INET6) {
     76     return inet_pton_v6(src, dst);
     77   }
     78   return -1;
     79 }
     80 
     81 // Helper function for inet_ntop for IPv4 addresses.
     82 // Outputs "dotted-quad" decimal notation.
     83 const char* inet_ntop_v4(const void* src, char* dst, socklen_t size) {
     84   if (size < INET_ADDRSTRLEN) {
     85     return NULL;
     86   }
     87   const struct in_addr* as_in_addr =
     88       reinterpret_cast<const struct in_addr*>(src);
     89   talk_base::sprintfn(dst, size, "%d.%d.%d.%d",
     90                       as_in_addr->S_un.S_un_b.s_b1,
     91                       as_in_addr->S_un.S_un_b.s_b2,
     92                       as_in_addr->S_un.S_un_b.s_b3,
     93                       as_in_addr->S_un.S_un_b.s_b4);
     94   return dst;
     95 }
     96 
     97 // Helper function for inet_ntop for IPv6 addresses.
     98 const char* inet_ntop_v6(const void* src, char* dst, socklen_t size) {
     99   if (size < INET6_ADDRSTRLEN) {
    100     return NULL;
    101   }
    102   const uint16* as_shorts =
    103       reinterpret_cast<const uint16*>(src);
    104   int runpos[8];
    105   int current = 1;
    106   int max = 1;
    107   int maxpos = -1;
    108   int run_array_size = ARRAY_SIZE(runpos);
    109   // Run over the address marking runs of 0s.
    110   for (int i = 0; i < run_array_size; ++i) {
    111     if (as_shorts[i] == 0) {
    112       runpos[i] = current;
    113       if (current > max) {
    114         maxpos = i;
    115         max = current;
    116       }
    117       ++current;
    118     } else {
    119       runpos[i] = -1;
    120       current =1;
    121     }
    122   }
    123 
    124   if (max > 1) {
    125     int tmpmax = maxpos;
    126     // Run back through, setting -1 for all but the longest run.
    127     for (int i = run_array_size - 1; i >= 0; i--) {
    128       if (i > tmpmax) {
    129         runpos[i] = -1;
    130       } else if (runpos[i] == -1) {
    131         // We're less than maxpos, we hit a -1, so the 'good' run is done.
    132         // Setting tmpmax -1 means all remaining positions get set to -1.
    133         tmpmax = -1;
    134       }
    135     }
    136   }
    137 
    138   char* cursor = dst;
    139   // Print IPv4 compatible and IPv4 mapped addresses using the IPv4 helper.
    140   // These addresses have an initial run of either eight zero-bytes followed
    141   // by 0xFFFF, or an initial run of ten zero-bytes.
    142   if (runpos[0] == 1 && (maxpos == 5 ||
    143                          (maxpos == 4 && as_shorts[5] == 0xFFFF))) {
    144     *cursor++ = ':';
    145     *cursor++ = ':';
    146     if (maxpos == 4) {
    147       cursor += talk_base::sprintfn(cursor, INET6_ADDRSTRLEN - 2, "ffff:");
    148     }
    149     const struct in_addr* as_v4 =
    150         reinterpret_cast<const struct in_addr*>(&(as_shorts[6]));
    151     inet_ntop_v4(as_v4, cursor,
    152                  static_cast<socklen_t>(INET6_ADDRSTRLEN - (cursor - dst)));
    153   } else {
    154     for (int i = 0; i < run_array_size; ++i) {
    155       if (runpos[i] == -1) {
    156         cursor += talk_base::sprintfn(cursor,
    157                                       INET6_ADDRSTRLEN - (cursor - dst),
    158                                       "%x", NetworkToHost16(as_shorts[i]));
    159         if (i != 7 && runpos[i + 1] != 1) {
    160           *cursor++ = ':';
    161         }
    162       } else if (runpos[i] == 1) {
    163         // Entered the run; print the colons and skip the run.
    164         *cursor++ = ':';
    165         *cursor++ = ':';
    166         i += (max - 1);
    167       }
    168     }
    169   }
    170   return dst;
    171 }
    172 
    173 // Helper function for inet_pton for IPv4 addresses.
    174 // |src| points to a character string containing an IPv4 network address in
    175 // dotted-decimal format, "ddd.ddd.ddd.ddd", where ddd is a decimal number
    176 // of up to three digits in the range 0 to 255.
    177 // The address is converted and copied to dst,
    178 // which must be sizeof(struct in_addr) (4) bytes (32 bits) long.
    179 int inet_pton_v4(const char* src, void* dst) {
    180   const int kIpv4AddressSize = 4;
    181   int found = 0;
    182   const char* src_pos = src;
    183   unsigned char result[kIpv4AddressSize] = {0};
    184 
    185   while (*src_pos != '\0') {
    186     // strtol won't treat whitespace characters in the begining as an error,
    187     // so check to ensure this is started with digit before passing to strtol.
    188     if (!isdigit(*src_pos)) {
    189       return 0;
    190     }
    191     char* end_pos;
    192     long value = strtol(src_pos, &end_pos, 10);
    193     if (value < 0 || value > 255 || src_pos == end_pos) {
    194       return 0;
    195     }
    196     ++found;
    197     if (found > kIpv4AddressSize) {
    198       return 0;
    199     }
    200     result[found - 1] = static_cast<unsigned char>(value);
    201     src_pos = end_pos;
    202     if (*src_pos == '.') {
    203       // There's more.
    204       ++src_pos;
    205     } else if (*src_pos != '\0') {
    206       // If it's neither '.' nor '\0' then return fail.
    207       return 0;
    208     }
    209   }
    210   if (found != kIpv4AddressSize) {
    211     return 0;
    212   }
    213   memcpy(dst, result, sizeof(result));
    214   return 1;
    215 }
    216 
    217 // Helper function for inet_pton for IPv6 addresses.
    218 int inet_pton_v6(const char* src, void* dst) {
    219   // sscanf will pick any other invalid chars up, but it parses 0xnnnn as hex.
    220   // Check for literal x in the input string.
    221   const char* readcursor = src;
    222   char c = *readcursor++;
    223   while (c) {
    224     if (c == 'x') {
    225       return 0;
    226     }
    227     c = *readcursor++;
    228   }
    229   readcursor = src;
    230 
    231   struct in6_addr an_addr;
    232   memset(&an_addr, 0, sizeof(an_addr));
    233 
    234   uint16* addr_cursor = reinterpret_cast<uint16*>(&an_addr.s6_addr[0]);
    235   uint16* addr_end = reinterpret_cast<uint16*>(&an_addr.s6_addr[16]);
    236   bool seencompressed = false;
    237 
    238   // Addresses that start with "::" (i.e., a run of initial zeros) or
    239   // "::ffff:" can potentially be IPv4 mapped or compatibility addresses.
    240   // These have dotted-style IPv4 addresses on the end (e.g. "::192.168.7.1").
    241   if (*readcursor == ':' && *(readcursor+1) == ':' &&
    242       *(readcursor + 2) != 0) {
    243     // Check for periods, which we'll take as a sign of v4 addresses.
    244     const char* addrstart = readcursor + 2;
    245     if (talk_base::strchr(addrstart, ".")) {
    246       const char* colon = talk_base::strchr(addrstart, "::");
    247       if (colon) {
    248         uint16 a_short;
    249         int bytesread = 0;
    250         if (sscanf(addrstart, "%hx%n", &a_short, &bytesread) != 1 ||
    251             a_short != 0xFFFF || bytesread != 4) {
    252           // Colons + periods means has to be ::ffff:a.b.c.d. But it wasn't.
    253           return 0;
    254         } else {
    255           an_addr.s6_addr[10] = 0xFF;
    256           an_addr.s6_addr[11] = 0xFF;
    257           addrstart = colon + 1;
    258         }
    259       }
    260       struct in_addr v4;
    261       if (inet_pton_v4(addrstart, &v4.s_addr)) {
    262         memcpy(&an_addr.s6_addr[12], &v4, sizeof(v4));
    263         memcpy(dst, &an_addr, sizeof(an_addr));
    264         return 1;
    265       } else {
    266         // Invalid v4 address.
    267         return 0;
    268       }
    269     }
    270   }
    271 
    272   // For addresses without a trailing IPv4 component ('normal' IPv6 addresses).
    273   while (*readcursor != 0 && addr_cursor < addr_end) {
    274     if (*readcursor == ':') {
    275       if (*(readcursor + 1) == ':') {
    276         if (seencompressed) {
    277           // Can only have one compressed run of zeroes ("::") per address.
    278           return 0;
    279         }
    280         // Hit a compressed run. Count colons to figure out how much of the
    281         // address is skipped.
    282         readcursor += 2;
    283         const char* coloncounter = readcursor;
    284         int coloncount = 0;
    285         if (*coloncounter == 0) {
    286           // Special case - trailing ::.
    287           addr_cursor = addr_end;
    288         } else {
    289           while (*coloncounter) {
    290             if (*coloncounter == ':') {
    291               ++coloncount;
    292             }
    293             ++coloncounter;
    294           }
    295           // (coloncount + 1) is the number of shorts left in the address.
    296           addr_cursor = addr_end - (coloncount + 1);
    297           seencompressed = true;
    298         }
    299       } else {
    300         ++readcursor;
    301       }
    302     } else {
    303       uint16 word;
    304       int bytesread = 0;
    305       if (sscanf(readcursor, "%hx%n", &word, &bytesread) != 1) {
    306         return 0;
    307       } else {
    308         *addr_cursor = HostToNetwork16(word);
    309         ++addr_cursor;
    310         readcursor += bytesread;
    311         if (*readcursor != ':' && *readcursor != '\0') {
    312           return 0;
    313         }
    314       }
    315     }
    316   }
    317 
    318   if (*readcursor != '\0' || addr_cursor < addr_end) {
    319     // Catches addresses too short or too long.
    320     return 0;
    321   }
    322   memcpy(dst, &an_addr, sizeof(an_addr));
    323   return 1;
    324 }
    325 
    326 //
    327 // Unix time is in seconds relative to 1/1/1970.  So we compute the windows
    328 // FILETIME of that time/date, then we add/subtract in appropriate units to
    329 // convert to/from unix time.
    330 // The units of FILETIME are 100ns intervals, so by multiplying by or dividing
    331 // by 10000000, we can convert to/from seconds.
    332 //
    333 // FileTime = UnixTime*10000000 + FileTime(1970)
    334 // UnixTime = (FileTime-FileTime(1970))/10000000
    335 //
    336 
    337 void FileTimeToUnixTime(const FILETIME& ft, time_t* ut) {
    338   ASSERT(NULL != ut);
    339 
    340   // FILETIME has an earlier date base than time_t (1/1/1970), so subtract off
    341   // the difference.
    342   SYSTEMTIME base_st;
    343   memset(&base_st, 0, sizeof(base_st));
    344   base_st.wDay = 1;
    345   base_st.wMonth = 1;
    346   base_st.wYear = 1970;
    347 
    348   FILETIME base_ft;
    349   SystemTimeToFileTime(&base_st, &base_ft);
    350 
    351   ULARGE_INTEGER base_ul, current_ul;
    352   memcpy(&base_ul, &base_ft, sizeof(FILETIME));
    353   memcpy(&current_ul, &ft, sizeof(FILETIME));
    354 
    355   // Divide by big number to convert to seconds, then subtract out the 1970
    356   // base date value.
    357   const ULONGLONG RATIO = 10000000;
    358   *ut = static_cast<time_t>((current_ul.QuadPart - base_ul.QuadPart) / RATIO);
    359 }
    360 
    361 void UnixTimeToFileTime(const time_t& ut, FILETIME* ft) {
    362   ASSERT(NULL != ft);
    363 
    364   // FILETIME has an earlier date base than time_t (1/1/1970), so add in
    365   // the difference.
    366   SYSTEMTIME base_st;
    367   memset(&base_st, 0, sizeof(base_st));
    368   base_st.wDay = 1;
    369   base_st.wMonth = 1;
    370   base_st.wYear = 1970;
    371 
    372   FILETIME base_ft;
    373   SystemTimeToFileTime(&base_st, &base_ft);
    374 
    375   ULARGE_INTEGER base_ul;
    376   memcpy(&base_ul, &base_ft, sizeof(FILETIME));
    377 
    378   // Multiply by big number to convert to 100ns units, then add in the 1970
    379   // base date value.
    380   const ULONGLONG RATIO = 10000000;
    381   ULARGE_INTEGER current_ul;
    382   current_ul.QuadPart = base_ul.QuadPart + static_cast<int64>(ut) * RATIO;
    383   memcpy(ft, &current_ul, sizeof(FILETIME));
    384 }
    385 
    386 bool Utf8ToWindowsFilename(const std::string& utf8, std::wstring* filename) {
    387   // TODO: Integrate into fileutils.h
    388   // TODO: Handle wide and non-wide cases via TCHAR?
    389   // TODO: Skip \\?\ processing if the length is not > MAX_PATH?
    390   // TODO: Write unittests
    391 
    392   // Convert to Utf16
    393   int wlen = ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(),
    394                                    static_cast<int>(utf8.length() + 1), NULL,
    395                                    0);
    396   if (0 == wlen) {
    397     return false;
    398   }
    399   wchar_t* wfilename = STACK_ARRAY(wchar_t, wlen);
    400   if (0 == ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(),
    401                                  static_cast<int>(utf8.length() + 1),
    402                                  wfilename, wlen)) {
    403     return false;
    404   }
    405   // Replace forward slashes with backslashes
    406   std::replace(wfilename, wfilename + wlen, L'/', L'\\');
    407   // Convert to complete filename
    408   DWORD full_len = ::GetFullPathName(wfilename, 0, NULL, NULL);
    409   if (0 == full_len) {
    410     return false;
    411   }
    412   wchar_t* filepart = NULL;
    413   wchar_t* full_filename = STACK_ARRAY(wchar_t, full_len + 6);
    414   wchar_t* start = full_filename + 6;
    415   if (0 == ::GetFullPathName(wfilename, full_len, start, &filepart)) {
    416     return false;
    417   }
    418   // Add long-path prefix
    419   const wchar_t kLongPathPrefix[] = L"\\\\?\\UNC";
    420   if ((start[0] != L'\\') || (start[1] != L'\\')) {
    421     // Non-unc path:     <pathname>
    422     //      Becomes: \\?\<pathname>
    423     start -= 4;
    424     ASSERT(start >= full_filename);
    425     memcpy(start, kLongPathPrefix, 4 * sizeof(wchar_t));
    426   } else if (start[2] != L'?') {
    427     // Unc path:       \\<server>\<pathname>
    428     //  Becomes: \\?\UNC\<server>\<pathname>
    429     start -= 6;
    430     ASSERT(start >= full_filename);
    431     memcpy(start, kLongPathPrefix, 7 * sizeof(wchar_t));
    432   } else {
    433     // Already in long-path form.
    434   }
    435   filename->assign(start);
    436   return true;
    437 }
    438 
    439 bool GetOsVersion(int* major, int* minor, int* build) {
    440   OSVERSIONINFO info = {0};
    441   info.dwOSVersionInfoSize = sizeof(info);
    442   if (GetVersionEx(&info)) {
    443     if (major) *major = info.dwMajorVersion;
    444     if (minor) *minor = info.dwMinorVersion;
    445     if (build) *build = info.dwBuildNumber;
    446     return true;
    447   }
    448   return false;
    449 }
    450 
    451 bool GetCurrentProcessIntegrityLevel(int* level) {
    452   bool ret = false;
    453   HANDLE process = ::GetCurrentProcess(), token;
    454   if (OpenProcessToken(process, TOKEN_QUERY | TOKEN_QUERY_SOURCE, &token)) {
    455     DWORD size;
    456     if (!GetTokenInformation(token, TokenIntegrityLevel, NULL, 0, &size) &&
    457         GetLastError() == ERROR_INSUFFICIENT_BUFFER) {
    458 
    459       char* buf = STACK_ARRAY(char, size);
    460       TOKEN_MANDATORY_LABEL* til =
    461           reinterpret_cast<TOKEN_MANDATORY_LABEL*>(buf);
    462       if (GetTokenInformation(token, TokenIntegrityLevel, til, size, &size)) {
    463 
    464         DWORD count = *GetSidSubAuthorityCount(til->Label.Sid);
    465         *level = *GetSidSubAuthority(til->Label.Sid, count - 1);
    466         ret = true;
    467       }
    468     }
    469     CloseHandle(token);
    470   }
    471   return ret;
    472 }
    473 }  // namespace talk_base
    474