Home | History | Annotate | Download | only in base
      1 /*
      2  * libjingle
      3  * Copyright 2004 Google Inc.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions are met:
      7  *
      8  *  1. Redistributions of source code must retain the above copyright notice,
      9  *     this list of conditions and the following disclaimer.
     10  *  2. Redistributions in binary form must reproduce the above copyright notice,
     11  *     this list of conditions and the following disclaimer in the documentation
     12  *     and/or other materials provided with the distribution.
     13  *  3. The name of the author may not be used to endorse or promote products
     14  *     derived from this software without specific prior written permission.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
     19  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     20  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     21  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     22  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     23  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     24  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     25  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 
     28 #include "talk/base/crc32.h"
     29 #include "talk/base/gunit.h"
     30 #include "talk/base/helpers.h"
     31 #include "talk/base/logging.h"
     32 #include "talk/base/natserver.h"
     33 #include "talk/base/natsocketfactory.h"
     34 #include "talk/base/physicalsocketserver.h"
     35 #include "talk/base/scoped_ptr.h"
     36 #include "talk/base/socketaddress.h"
     37 #include "talk/base/ssladapter.h"
     38 #include "talk/base/stringutils.h"
     39 #include "talk/base/thread.h"
     40 #include "talk/base/virtualsocketserver.h"
     41 #include "talk/p2p/base/basicpacketsocketfactory.h"
     42 #include "talk/p2p/base/portproxy.h"
     43 #include "talk/p2p/base/relayport.h"
     44 #include "talk/p2p/base/stunport.h"
     45 #include "talk/p2p/base/tcpport.h"
     46 #include "talk/p2p/base/testrelayserver.h"
     47 #include "talk/p2p/base/teststunserver.h"
     48 #include "talk/p2p/base/testturnserver.h"
     49 #include "talk/p2p/base/transport.h"
     50 #include "talk/p2p/base/turnport.h"
     51 
     52 using talk_base::AsyncPacketSocket;
     53 using talk_base::ByteBuffer;
     54 using talk_base::NATType;
     55 using talk_base::NAT_OPEN_CONE;
     56 using talk_base::NAT_ADDR_RESTRICTED;
     57 using talk_base::NAT_PORT_RESTRICTED;
     58 using talk_base::NAT_SYMMETRIC;
     59 using talk_base::PacketSocketFactory;
     60 using talk_base::scoped_ptr;
     61 using talk_base::Socket;
     62 using talk_base::SocketAddress;
     63 using namespace cricket;
     64 
     65 static const int kTimeout = 1000;
     66 static const SocketAddress kLocalAddr1("192.168.1.2", 0);
     67 static const SocketAddress kLocalAddr2("192.168.1.3", 0);
     68 static const SocketAddress kNatAddr1("77.77.77.77", talk_base::NAT_SERVER_PORT);
     69 static const SocketAddress kNatAddr2("88.88.88.88", talk_base::NAT_SERVER_PORT);
     70 static const SocketAddress kStunAddr("99.99.99.1", STUN_SERVER_PORT);
     71 static const SocketAddress kRelayUdpIntAddr("99.99.99.2", 5000);
     72 static const SocketAddress kRelayUdpExtAddr("99.99.99.3", 5001);
     73 static const SocketAddress kRelayTcpIntAddr("99.99.99.2", 5002);
     74 static const SocketAddress kRelayTcpExtAddr("99.99.99.3", 5003);
     75 static const SocketAddress kRelaySslTcpIntAddr("99.99.99.2", 5004);
     76 static const SocketAddress kRelaySslTcpExtAddr("99.99.99.3", 5005);
     77 static const SocketAddress kTurnUdpIntAddr("99.99.99.4", STUN_SERVER_PORT);
     78 static const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0);
     79 static const RelayCredentials kRelayCredentials("test", "test");
     80 
     81 // TODO: Update these when RFC5245 is completely supported.
     82 // Magic value of 30 is from RFC3484, for IPv4 addresses.
     83 static const uint32 kDefaultPrflxPriority = ICE_TYPE_PREFERENCE_PRFLX << 24 |
     84              30 << 8 | (256 - ICE_CANDIDATE_COMPONENT_DEFAULT);
     85 static const int STUN_ERROR_BAD_REQUEST_AS_GICE =
     86     STUN_ERROR_BAD_REQUEST / 256 * 100 + STUN_ERROR_BAD_REQUEST % 256;
     87 static const int STUN_ERROR_UNAUTHORIZED_AS_GICE =
     88     STUN_ERROR_UNAUTHORIZED / 256 * 100 + STUN_ERROR_UNAUTHORIZED % 256;
     89 static const int STUN_ERROR_SERVER_ERROR_AS_GICE =
     90     STUN_ERROR_SERVER_ERROR / 256 * 100 + STUN_ERROR_SERVER_ERROR % 256;
     91 
     92 static const int kTiebreaker1 = 11111;
     93 static const int kTiebreaker2 = 22222;
     94 
     95 static Candidate GetCandidate(Port* port) {
     96   assert(port->Candidates().size() == 1);
     97   return port->Candidates()[0];
     98 }
     99 
    100 static SocketAddress GetAddress(Port* port) {
    101   return GetCandidate(port).address();
    102 }
    103 
    104 static IceMessage* CopyStunMessage(const IceMessage* src) {
    105   IceMessage* dst = new IceMessage();
    106   ByteBuffer buf;
    107   src->Write(&buf);
    108   dst->Read(&buf);
    109   return dst;
    110 }
    111 
    112 static bool WriteStunMessage(const StunMessage* msg, ByteBuffer* buf) {
    113   buf->Resize(0);  // clear out any existing buffer contents
    114   return msg->Write(buf);
    115 }
    116 
    117 // Stub port class for testing STUN generation and processing.
    118 class TestPort : public Port {
    119  public:
    120   TestPort(talk_base::Thread* thread, const std::string& type,
    121            talk_base::PacketSocketFactory* factory, talk_base::Network* network,
    122            const talk_base::IPAddress& ip, int min_port, int max_port,
    123            const std::string& username_fragment, const std::string& password)
    124       : Port(thread, type, factory, network, ip,
    125              min_port, max_port, username_fragment, password) {
    126   }
    127   ~TestPort() {}
    128 
    129   // Expose GetStunMessage so that we can test it.
    130   using cricket::Port::GetStunMessage;
    131 
    132   // The last StunMessage that was sent on this Port.
    133   // TODO: Make these const; requires changes to SendXXXXResponse.
    134   ByteBuffer* last_stun_buf() { return last_stun_buf_.get(); }
    135   IceMessage* last_stun_msg() { return last_stun_msg_.get(); }
    136   int last_stun_error_code() {
    137     int code = 0;
    138     if (last_stun_msg_) {
    139       const StunErrorCodeAttribute* error_attr = last_stun_msg_->GetErrorCode();
    140       if (error_attr) {
    141         code = error_attr->code();
    142       }
    143     }
    144     return code;
    145   }
    146 
    147   virtual void PrepareAddress() {
    148     talk_base::SocketAddress addr(ip(), min_port());
    149     AddAddress(addr, addr, talk_base::SocketAddress(), "udp", Type(),
    150                ICE_TYPE_PREFERENCE_HOST, true);
    151   }
    152 
    153   // Exposed for testing candidate building.
    154   void AddCandidateAddress(const talk_base::SocketAddress& addr) {
    155     AddAddress(addr, addr, talk_base::SocketAddress(), "udp", Type(),
    156                type_preference_, false);
    157   }
    158   void AddCandidateAddress(const talk_base::SocketAddress& addr,
    159                            const talk_base::SocketAddress& base_address,
    160                            const std::string& type,
    161                            int type_preference,
    162                            bool final) {
    163     AddAddress(addr, base_address, talk_base::SocketAddress(), "udp", type,
    164                type_preference, final);
    165   }
    166 
    167   virtual Connection* CreateConnection(const Candidate& remote_candidate,
    168                                        CandidateOrigin origin) {
    169     Connection* conn = new ProxyConnection(this, 0, remote_candidate);
    170     AddConnection(conn);
    171     // Set use-candidate attribute flag as this will add USE-CANDIDATE attribute
    172     // in STUN binding requests.
    173     conn->set_use_candidate_attr(true);
    174     return conn;
    175   }
    176   virtual int SendTo(
    177       const void* data, size_t size, const talk_base::SocketAddress& addr,
    178       const talk_base::PacketOptions& options, bool payload) {
    179     if (!payload) {
    180       IceMessage* msg = new IceMessage;
    181       ByteBuffer* buf = new ByteBuffer(static_cast<const char*>(data), size);
    182       ByteBuffer::ReadPosition pos(buf->GetReadPosition());
    183       if (!msg->Read(buf)) {
    184         delete msg;
    185         delete buf;
    186         return -1;
    187       }
    188       buf->SetReadPosition(pos);
    189       last_stun_buf_.reset(buf);
    190       last_stun_msg_.reset(msg);
    191     }
    192     return static_cast<int>(size);
    193   }
    194   virtual int SetOption(talk_base::Socket::Option opt, int value) {
    195     return 0;
    196   }
    197   virtual int GetOption(talk_base::Socket::Option opt, int* value) {
    198     return -1;
    199   }
    200   virtual int GetError() {
    201     return 0;
    202   }
    203   void Reset() {
    204     last_stun_buf_.reset();
    205     last_stun_msg_.reset();
    206   }
    207   void set_type_preference(int type_preference) {
    208     type_preference_ = type_preference;
    209   }
    210 
    211  private:
    212   talk_base::scoped_ptr<ByteBuffer> last_stun_buf_;
    213   talk_base::scoped_ptr<IceMessage> last_stun_msg_;
    214   int type_preference_;
    215 };
    216 
    217 class TestChannel : public sigslot::has_slots<> {
    218  public:
    219   // Takes ownership of |p1| (but not |p2|).
    220   TestChannel(Port* p1, Port* p2)
    221       : ice_mode_(ICEMODE_FULL), src_(p1), dst_(p2), complete_count_(0),
    222 	conn_(NULL), remote_request_(), nominated_(false) {
    223     src_->SignalPortComplete.connect(
    224         this, &TestChannel::OnPortComplete);
    225     src_->SignalUnknownAddress.connect(this, &TestChannel::OnUnknownAddress);
    226     src_->SignalDestroyed.connect(this, &TestChannel::OnSrcPortDestroyed);
    227   }
    228 
    229   int complete_count() { return complete_count_; }
    230   Connection* conn() { return conn_; }
    231   const SocketAddress& remote_address() { return remote_address_; }
    232   const std::string remote_fragment() { return remote_frag_; }
    233 
    234   void Start() {
    235     src_->PrepareAddress();
    236   }
    237   void CreateConnection() {
    238     conn_ = src_->CreateConnection(GetCandidate(dst_), Port::ORIGIN_MESSAGE);
    239     IceMode remote_ice_mode =
    240         (ice_mode_ == ICEMODE_FULL) ? ICEMODE_LITE : ICEMODE_FULL;
    241     conn_->set_remote_ice_mode(remote_ice_mode);
    242     conn_->set_use_candidate_attr(remote_ice_mode == ICEMODE_FULL);
    243     conn_->SignalStateChange.connect(
    244         this, &TestChannel::OnConnectionStateChange);
    245   }
    246   void OnConnectionStateChange(Connection* conn) {
    247     if (conn->write_state() == Connection::STATE_WRITABLE) {
    248       conn->set_use_candidate_attr(true);
    249       nominated_ = true;
    250     }
    251   }
    252   void AcceptConnection() {
    253     ASSERT_TRUE(remote_request_.get() != NULL);
    254     Candidate c = GetCandidate(dst_);
    255     c.set_address(remote_address_);
    256     conn_ = src_->CreateConnection(c, Port::ORIGIN_MESSAGE);
    257     src_->SendBindingResponse(remote_request_.get(), remote_address_);
    258     remote_request_.reset();
    259   }
    260   void Ping() {
    261     Ping(0);
    262   }
    263   void Ping(uint32 now) {
    264     conn_->Ping(now);
    265   }
    266   void Stop() {
    267     conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed);
    268     conn_->Destroy();
    269   }
    270 
    271   void OnPortComplete(Port* port) {
    272     complete_count_++;
    273   }
    274   void SetIceMode(IceMode ice_mode) {
    275     ice_mode_ = ice_mode;
    276   }
    277 
    278   void OnUnknownAddress(PortInterface* port, const SocketAddress& addr,
    279                         ProtocolType proto,
    280                         IceMessage* msg, const std::string& rf,
    281                         bool /*port_muxed*/) {
    282     ASSERT_EQ(src_.get(), port);
    283     if (!remote_address_.IsNil()) {
    284       ASSERT_EQ(remote_address_, addr);
    285     }
    286     // MI and PRIORITY attribute should be present in ping requests when port
    287     // is in ICEPROTO_RFC5245 mode.
    288     const cricket::StunUInt32Attribute* priority_attr =
    289         msg->GetUInt32(STUN_ATTR_PRIORITY);
    290     const cricket::StunByteStringAttribute* mi_attr =
    291         msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY);
    292     const cricket::StunUInt32Attribute* fingerprint_attr =
    293         msg->GetUInt32(STUN_ATTR_FINGERPRINT);
    294     if (src_->IceProtocol() == cricket::ICEPROTO_RFC5245) {
    295       EXPECT_TRUE(priority_attr != NULL);
    296       EXPECT_TRUE(mi_attr != NULL);
    297       EXPECT_TRUE(fingerprint_attr != NULL);
    298     } else {
    299       EXPECT_TRUE(priority_attr == NULL);
    300       EXPECT_TRUE(mi_attr == NULL);
    301       EXPECT_TRUE(fingerprint_attr == NULL);
    302     }
    303     remote_address_ = addr;
    304     remote_request_.reset(CopyStunMessage(msg));
    305     remote_frag_ = rf;
    306   }
    307 
    308   void OnDestroyed(Connection* conn) {
    309     ASSERT_EQ(conn_, conn);
    310     conn_ = NULL;
    311   }
    312 
    313   void OnSrcPortDestroyed(PortInterface* port) {
    314     Port* destroyed_src = src_.release();
    315     ASSERT_EQ(destroyed_src, port);
    316   }
    317 
    318   bool nominated() const { return nominated_; }
    319 
    320  private:
    321   IceMode ice_mode_;
    322   talk_base::scoped_ptr<Port> src_;
    323   Port* dst_;
    324 
    325   int complete_count_;
    326   Connection* conn_;
    327   SocketAddress remote_address_;
    328   talk_base::scoped_ptr<StunMessage> remote_request_;
    329   std::string remote_frag_;
    330   bool nominated_;
    331 };
    332 
    333 class PortTest : public testing::Test, public sigslot::has_slots<> {
    334  public:
    335   PortTest()
    336       : main_(talk_base::Thread::Current()),
    337         pss_(new talk_base::PhysicalSocketServer),
    338         ss_(new talk_base::VirtualSocketServer(pss_.get())),
    339         ss_scope_(ss_.get()),
    340         network_("unittest", "unittest", talk_base::IPAddress(INADDR_ANY), 32),
    341         socket_factory_(talk_base::Thread::Current()),
    342         nat_factory1_(ss_.get(), kNatAddr1),
    343         nat_factory2_(ss_.get(), kNatAddr2),
    344         nat_socket_factory1_(&nat_factory1_),
    345         nat_socket_factory2_(&nat_factory2_),
    346         stun_server_(main_, kStunAddr),
    347         turn_server_(main_, kTurnUdpIntAddr, kTurnUdpExtAddr),
    348         relay_server_(main_, kRelayUdpIntAddr, kRelayUdpExtAddr,
    349                       kRelayTcpIntAddr, kRelayTcpExtAddr,
    350                       kRelaySslTcpIntAddr, kRelaySslTcpExtAddr),
    351         username_(talk_base::CreateRandomString(ICE_UFRAG_LENGTH)),
    352         password_(talk_base::CreateRandomString(ICE_PWD_LENGTH)),
    353         ice_protocol_(cricket::ICEPROTO_GOOGLE),
    354         role_conflict_(false),
    355         destroyed_(false) {
    356     network_.AddIP(talk_base::IPAddress(INADDR_ANY));
    357   }
    358 
    359  protected:
    360   static void SetUpTestCase() {
    361     talk_base::InitializeSSL();
    362   }
    363 
    364   static void TearDownTestCase() {
    365     talk_base::CleanupSSL();
    366   }
    367 
    368 
    369   void TestLocalToLocal() {
    370     Port* port1 = CreateUdpPort(kLocalAddr1);
    371     Port* port2 = CreateUdpPort(kLocalAddr2);
    372     TestConnectivity("udp", port1, "udp", port2, true, true, true, true);
    373   }
    374   void TestLocalToStun(NATType ntype) {
    375     Port* port1 = CreateUdpPort(kLocalAddr1);
    376     nat_server2_.reset(CreateNatServer(kNatAddr2, ntype));
    377     Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
    378     TestConnectivity("udp", port1, StunName(ntype), port2,
    379                      ntype == NAT_OPEN_CONE, true,
    380                      ntype != NAT_SYMMETRIC, true);
    381   }
    382   void TestLocalToRelay(RelayType rtype, ProtocolType proto) {
    383     Port* port1 = CreateUdpPort(kLocalAddr1);
    384     Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP);
    385     TestConnectivity("udp", port1, RelayName(rtype, proto), port2,
    386                      rtype == RELAY_GTURN, true, true, true);
    387   }
    388   void TestStunToLocal(NATType ntype) {
    389     nat_server1_.reset(CreateNatServer(kNatAddr1, ntype));
    390     Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
    391     Port* port2 = CreateUdpPort(kLocalAddr2);
    392     TestConnectivity(StunName(ntype), port1, "udp", port2,
    393                      true, ntype != NAT_SYMMETRIC, true, true);
    394   }
    395   void TestStunToStun(NATType ntype1, NATType ntype2) {
    396     nat_server1_.reset(CreateNatServer(kNatAddr1, ntype1));
    397     Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
    398     nat_server2_.reset(CreateNatServer(kNatAddr2, ntype2));
    399     Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
    400     TestConnectivity(StunName(ntype1), port1, StunName(ntype2), port2,
    401                      ntype2 == NAT_OPEN_CONE,
    402                      ntype1 != NAT_SYMMETRIC, ntype2 != NAT_SYMMETRIC,
    403                      ntype1 + ntype2 < (NAT_PORT_RESTRICTED + NAT_SYMMETRIC));
    404   }
    405   void TestStunToRelay(NATType ntype, RelayType rtype, ProtocolType proto) {
    406     nat_server1_.reset(CreateNatServer(kNatAddr1, ntype));
    407     Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
    408     Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP);
    409     TestConnectivity(StunName(ntype), port1, RelayName(rtype, proto), port2,
    410                      rtype == RELAY_GTURN, ntype != NAT_SYMMETRIC, true, true);
    411   }
    412   void TestTcpToTcp() {
    413     Port* port1 = CreateTcpPort(kLocalAddr1);
    414     Port* port2 = CreateTcpPort(kLocalAddr2);
    415     TestConnectivity("tcp", port1, "tcp", port2, true, false, true, true);
    416   }
    417   void TestTcpToRelay(RelayType rtype, ProtocolType proto) {
    418     Port* port1 = CreateTcpPort(kLocalAddr1);
    419     Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_TCP);
    420     TestConnectivity("tcp", port1, RelayName(rtype, proto), port2,
    421                      rtype == RELAY_GTURN, false, true, true);
    422   }
    423   void TestSslTcpToRelay(RelayType rtype, ProtocolType proto) {
    424     Port* port1 = CreateTcpPort(kLocalAddr1);
    425     Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_SSLTCP);
    426     TestConnectivity("ssltcp", port1, RelayName(rtype, proto), port2,
    427                      rtype == RELAY_GTURN, false, true, true);
    428   }
    429 
    430   // helpers for above functions
    431   UDPPort* CreateUdpPort(const SocketAddress& addr) {
    432     return CreateUdpPort(addr, &socket_factory_);
    433   }
    434   UDPPort* CreateUdpPort(const SocketAddress& addr,
    435                          PacketSocketFactory* socket_factory) {
    436     UDPPort* port = UDPPort::Create(main_, socket_factory, &network_,
    437                                     addr.ipaddr(), 0, 0, username_, password_);
    438     port->SetIceProtocolType(ice_protocol_);
    439     return port;
    440   }
    441   TCPPort* CreateTcpPort(const SocketAddress& addr) {
    442     TCPPort* port = CreateTcpPort(addr, &socket_factory_);
    443     port->SetIceProtocolType(ice_protocol_);
    444     return port;
    445   }
    446   TCPPort* CreateTcpPort(const SocketAddress& addr,
    447                         PacketSocketFactory* socket_factory) {
    448     TCPPort* port = TCPPort::Create(main_, socket_factory, &network_,
    449                                     addr.ipaddr(), 0, 0, username_, password_,
    450                                     true);
    451     port->SetIceProtocolType(ice_protocol_);
    452     return port;
    453   }
    454   StunPort* CreateStunPort(const SocketAddress& addr,
    455                            talk_base::PacketSocketFactory* factory) {
    456     StunPort* port = StunPort::Create(main_, factory, &network_,
    457                                       addr.ipaddr(), 0, 0,
    458                                       username_, password_, kStunAddr);
    459     port->SetIceProtocolType(ice_protocol_);
    460     return port;
    461   }
    462   Port* CreateRelayPort(const SocketAddress& addr, RelayType rtype,
    463                         ProtocolType int_proto, ProtocolType ext_proto) {
    464     if (rtype == RELAY_TURN) {
    465       return CreateTurnPort(addr, &socket_factory_, int_proto, ext_proto);
    466     } else {
    467       return CreateGturnPort(addr, int_proto, ext_proto);
    468     }
    469   }
    470   TurnPort* CreateTurnPort(const SocketAddress& addr,
    471                            PacketSocketFactory* socket_factory,
    472                            ProtocolType int_proto, ProtocolType ext_proto) {
    473     return CreateTurnPort(addr, socket_factory,
    474                           int_proto, ext_proto, kTurnUdpIntAddr);
    475   }
    476   TurnPort* CreateTurnPort(const SocketAddress& addr,
    477                            PacketSocketFactory* socket_factory,
    478                            ProtocolType int_proto, ProtocolType ext_proto,
    479                            const talk_base::SocketAddress& server_addr) {
    480     TurnPort* port = TurnPort::Create(main_, socket_factory, &network_,
    481                                       addr.ipaddr(), 0, 0,
    482                                       username_, password_, ProtocolAddress(
    483                                           server_addr, PROTO_UDP),
    484                                       kRelayCredentials);
    485     port->SetIceProtocolType(ice_protocol_);
    486     return port;
    487   }
    488   RelayPort* CreateGturnPort(const SocketAddress& addr,
    489                              ProtocolType int_proto, ProtocolType ext_proto) {
    490     RelayPort* port = CreateGturnPort(addr);
    491     SocketAddress addrs[] =
    492         { kRelayUdpIntAddr, kRelayTcpIntAddr, kRelaySslTcpIntAddr };
    493     port->AddServerAddress(ProtocolAddress(addrs[int_proto], int_proto));
    494     return port;
    495   }
    496   RelayPort* CreateGturnPort(const SocketAddress& addr) {
    497     RelayPort* port = RelayPort::Create(main_, &socket_factory_, &network_,
    498                                         addr.ipaddr(), 0, 0,
    499                                         username_, password_);
    500     // TODO: Add an external address for ext_proto, so that the
    501     // other side can connect to this port using a non-UDP protocol.
    502     port->SetIceProtocolType(ice_protocol_);
    503     return port;
    504   }
    505   talk_base::NATServer* CreateNatServer(const SocketAddress& addr,
    506                                         talk_base::NATType type) {
    507     return new talk_base::NATServer(type, ss_.get(), addr, ss_.get(), addr);
    508   }
    509   static const char* StunName(NATType type) {
    510     switch (type) {
    511       case NAT_OPEN_CONE:       return "stun(open cone)";
    512       case NAT_ADDR_RESTRICTED: return "stun(addr restricted)";
    513       case NAT_PORT_RESTRICTED: return "stun(port restricted)";
    514       case NAT_SYMMETRIC:       return "stun(symmetric)";
    515       default:                  return "stun(?)";
    516     }
    517   }
    518   static const char* RelayName(RelayType type, ProtocolType proto) {
    519     if (type == RELAY_TURN) {
    520       switch (proto) {
    521         case PROTO_UDP:           return "turn(udp)";
    522         case PROTO_TCP:           return "turn(tcp)";
    523         case PROTO_SSLTCP:        return "turn(ssltcp)";
    524         default:                  return "turn(?)";
    525       }
    526     } else {
    527       switch (proto) {
    528         case PROTO_UDP:           return "gturn(udp)";
    529         case PROTO_TCP:           return "gturn(tcp)";
    530         case PROTO_SSLTCP:        return "gturn(ssltcp)";
    531         default:                  return "gturn(?)";
    532       }
    533     }
    534   }
    535 
    536   void TestCrossFamilyPorts(int type);
    537 
    538   // This does all the work and then deletes |port1| and |port2|.
    539   void TestConnectivity(const char* name1, Port* port1,
    540                         const char* name2, Port* port2,
    541                         bool accept, bool same_addr1,
    542                         bool same_addr2, bool possible);
    543 
    544   // This connects and disconnects the provided channels in the same sequence as
    545   // TestConnectivity with all options set to |true|.  It does not delete either
    546   // channel.
    547   void ConnectAndDisconnectChannels(TestChannel* ch1, TestChannel* ch2);
    548 
    549   void SetIceProtocolType(cricket::IceProtocolType protocol) {
    550     ice_protocol_ = protocol;
    551   }
    552 
    553   IceMessage* CreateStunMessage(int type) {
    554     IceMessage* msg = new IceMessage();
    555     msg->SetType(type);
    556     msg->SetTransactionID("TESTTESTTEST");
    557     return msg;
    558   }
    559   IceMessage* CreateStunMessageWithUsername(int type,
    560                                             const std::string& username) {
    561     IceMessage* msg = CreateStunMessage(type);
    562     msg->AddAttribute(
    563         new StunByteStringAttribute(STUN_ATTR_USERNAME, username));
    564     return msg;
    565   }
    566   TestPort* CreateTestPort(const talk_base::SocketAddress& addr,
    567                            const std::string& username,
    568                            const std::string& password) {
    569     TestPort* port =  new TestPort(main_, "test", &socket_factory_, &network_,
    570                                    addr.ipaddr(), 0, 0, username, password);
    571     port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict);
    572     return port;
    573   }
    574   TestPort* CreateTestPort(const talk_base::SocketAddress& addr,
    575                            const std::string& username,
    576                            const std::string& password,
    577                            cricket::IceProtocolType type,
    578                            cricket::IceRole role,
    579                            int tiebreaker) {
    580     TestPort* port = CreateTestPort(addr, username, password);
    581     port->SetIceProtocolType(type);
    582     port->SetIceRole(role);
    583     port->SetIceTiebreaker(tiebreaker);
    584     return port;
    585   }
    586 
    587   void OnRoleConflict(PortInterface* port) {
    588     role_conflict_ = true;
    589   }
    590   bool role_conflict() const { return role_conflict_; }
    591 
    592   void ConnectToSignalDestroyed(PortInterface* port) {
    593     port->SignalDestroyed.connect(this, &PortTest::OnDestroyed);
    594   }
    595 
    596   void OnDestroyed(PortInterface* port) {
    597     destroyed_ = true;
    598   }
    599   bool destroyed() const { return destroyed_; }
    600 
    601   talk_base::BasicPacketSocketFactory* nat_socket_factory1() {
    602     return &nat_socket_factory1_;
    603   }
    604 
    605  private:
    606   talk_base::Thread* main_;
    607   talk_base::scoped_ptr<talk_base::PhysicalSocketServer> pss_;
    608   talk_base::scoped_ptr<talk_base::VirtualSocketServer> ss_;
    609   talk_base::SocketServerScope ss_scope_;
    610   talk_base::Network network_;
    611   talk_base::BasicPacketSocketFactory socket_factory_;
    612   talk_base::scoped_ptr<talk_base::NATServer> nat_server1_;
    613   talk_base::scoped_ptr<talk_base::NATServer> nat_server2_;
    614   talk_base::NATSocketFactory nat_factory1_;
    615   talk_base::NATSocketFactory nat_factory2_;
    616   talk_base::BasicPacketSocketFactory nat_socket_factory1_;
    617   talk_base::BasicPacketSocketFactory nat_socket_factory2_;
    618   TestStunServer stun_server_;
    619   TestTurnServer turn_server_;
    620   TestRelayServer relay_server_;
    621   std::string username_;
    622   std::string password_;
    623   cricket::IceProtocolType ice_protocol_;
    624   bool role_conflict_;
    625   bool destroyed_;
    626 };
    627 
    628 void PortTest::TestConnectivity(const char* name1, Port* port1,
    629                                 const char* name2, Port* port2,
    630                                 bool accept, bool same_addr1,
    631                                 bool same_addr2, bool possible) {
    632   LOG(LS_INFO) << "Test: " << name1 << " to " << name2 << ": ";
    633   port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
    634   port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
    635 
    636   // Set up channels and ensure both ports will be deleted.
    637   TestChannel ch1(port1, port2);
    638   TestChannel ch2(port2, port1);
    639   EXPECT_EQ(0, ch1.complete_count());
    640   EXPECT_EQ(0, ch2.complete_count());
    641 
    642   // Acquire addresses.
    643   ch1.Start();
    644   ch2.Start();
    645   ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
    646   ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
    647 
    648   // Send a ping from src to dst. This may or may not make it.
    649   ch1.CreateConnection();
    650   ASSERT_TRUE(ch1.conn() != NULL);
    651   EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout);  // for TCP connect
    652   ch1.Ping();
    653   WAIT(!ch2.remote_address().IsNil(), kTimeout);
    654 
    655   if (accept) {
    656     // We are able to send a ping from src to dst. This is the case when
    657     // sending to UDP ports and cone NATs.
    658     EXPECT_TRUE(ch1.remote_address().IsNil());
    659     EXPECT_EQ(ch2.remote_fragment(), port1->username_fragment());
    660 
    661     // Ensure the ping came from the same address used for src.
    662     // This is the case unless the source NAT was symmetric.
    663     if (same_addr1) EXPECT_EQ(ch2.remote_address(), GetAddress(port1));
    664     EXPECT_TRUE(same_addr2);
    665 
    666     // Send a ping from dst to src.
    667     ch2.AcceptConnection();
    668     ASSERT_TRUE(ch2.conn() != NULL);
    669     ch2.Ping();
    670     EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(),
    671                    kTimeout);
    672   } else {
    673     // We can't send a ping from src to dst, so flip it around. This will happen
    674     // when the destination NAT is addr/port restricted or symmetric.
    675     EXPECT_TRUE(ch1.remote_address().IsNil());
    676     EXPECT_TRUE(ch2.remote_address().IsNil());
    677 
    678     // Send a ping from dst to src. Again, this may or may not make it.
    679     ch2.CreateConnection();
    680     ASSERT_TRUE(ch2.conn() != NULL);
    681     ch2.Ping();
    682     WAIT(ch2.conn()->write_state() == Connection::STATE_WRITABLE, kTimeout);
    683 
    684     if (same_addr1 && same_addr2) {
    685       // The new ping got back to the source.
    686       EXPECT_EQ(Connection::STATE_READABLE, ch1.conn()->read_state());
    687       EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
    688 
    689       // First connection may not be writable if the first ping did not get
    690       // through.  So we will have to do another.
    691       if (ch1.conn()->write_state() == Connection::STATE_WRITE_INIT) {
    692         ch1.Ping();
    693         EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
    694                        kTimeout);
    695       }
    696     } else if (!same_addr1 && possible) {
    697       // The new ping went to the candidate address, but that address was bad.
    698       // This will happen when the source NAT is symmetric.
    699       EXPECT_TRUE(ch1.remote_address().IsNil());
    700       EXPECT_TRUE(ch2.remote_address().IsNil());
    701 
    702       // However, since we have now sent a ping to the source IP, we should be
    703       // able to get a ping from it. This gives us the real source address.
    704       ch1.Ping();
    705       EXPECT_TRUE_WAIT(!ch2.remote_address().IsNil(), kTimeout);
    706       EXPECT_EQ(Connection::STATE_READ_INIT, ch2.conn()->read_state());
    707       EXPECT_TRUE(ch1.remote_address().IsNil());
    708 
    709       // Pick up the actual address and establish the connection.
    710       ch2.AcceptConnection();
    711       ASSERT_TRUE(ch2.conn() != NULL);
    712       ch2.Ping();
    713       EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(),
    714                      kTimeout);
    715     } else if (!same_addr2 && possible) {
    716       // The new ping came in, but from an unexpected address. This will happen
    717       // when the destination NAT is symmetric.
    718       EXPECT_FALSE(ch1.remote_address().IsNil());
    719       EXPECT_EQ(Connection::STATE_READ_INIT, ch1.conn()->read_state());
    720 
    721       // Update our address and complete the connection.
    722       ch1.AcceptConnection();
    723       ch1.Ping();
    724       EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
    725                      kTimeout);
    726     } else {  // (!possible)
    727       // There should be s no way for the pings to reach each other. Check it.
    728       EXPECT_TRUE(ch1.remote_address().IsNil());
    729       EXPECT_TRUE(ch2.remote_address().IsNil());
    730       ch1.Ping();
    731       WAIT(!ch2.remote_address().IsNil(), kTimeout);
    732       EXPECT_TRUE(ch1.remote_address().IsNil());
    733       EXPECT_TRUE(ch2.remote_address().IsNil());
    734     }
    735   }
    736 
    737   // Everything should be good, unless we know the situation is impossible.
    738   ASSERT_TRUE(ch1.conn() != NULL);
    739   ASSERT_TRUE(ch2.conn() != NULL);
    740   if (possible) {
    741     EXPECT_EQ(Connection::STATE_READABLE, ch1.conn()->read_state());
    742     EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
    743     EXPECT_EQ(Connection::STATE_READABLE, ch2.conn()->read_state());
    744     EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
    745   } else {
    746     EXPECT_NE(Connection::STATE_READABLE, ch1.conn()->read_state());
    747     EXPECT_NE(Connection::STATE_WRITABLE, ch1.conn()->write_state());
    748     EXPECT_NE(Connection::STATE_READABLE, ch2.conn()->read_state());
    749     EXPECT_NE(Connection::STATE_WRITABLE, ch2.conn()->write_state());
    750   }
    751 
    752   // Tear down and ensure that goes smoothly.
    753   ch1.Stop();
    754   ch2.Stop();
    755   EXPECT_TRUE_WAIT(ch1.conn() == NULL, kTimeout);
    756   EXPECT_TRUE_WAIT(ch2.conn() == NULL, kTimeout);
    757 }
    758 
    759 void PortTest::ConnectAndDisconnectChannels(TestChannel* ch1,
    760                                             TestChannel* ch2) {
    761   // Acquire addresses.
    762   ch1->Start();
    763   ch2->Start();
    764 
    765   // Send a ping from src to dst.
    766   ch1->CreateConnection();
    767   EXPECT_TRUE_WAIT(ch1->conn()->connected(), kTimeout);  // for TCP connect
    768   ch1->Ping();
    769   WAIT(!ch2->remote_address().IsNil(), kTimeout);
    770 
    771   // Send a ping from dst to src.
    772   ch2->AcceptConnection();
    773   ch2->Ping();
    774   EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2->conn()->write_state(),
    775                  kTimeout);
    776 
    777   // Destroy the connections.
    778   ch1->Stop();
    779   ch2->Stop();
    780 }
    781 
    782 class FakePacketSocketFactory : public talk_base::PacketSocketFactory {
    783  public:
    784   FakePacketSocketFactory()
    785       : next_udp_socket_(NULL),
    786         next_server_tcp_socket_(NULL),
    787         next_client_tcp_socket_(NULL) {
    788   }
    789   virtual ~FakePacketSocketFactory() { }
    790 
    791   virtual AsyncPacketSocket* CreateUdpSocket(
    792       const SocketAddress& address, int min_port, int max_port) {
    793     EXPECT_TRUE(next_udp_socket_ != NULL);
    794     AsyncPacketSocket* result = next_udp_socket_;
    795     next_udp_socket_ = NULL;
    796     return result;
    797   }
    798 
    799   virtual AsyncPacketSocket* CreateServerTcpSocket(
    800       const SocketAddress& local_address, int min_port, int max_port,
    801       int opts) {
    802     EXPECT_TRUE(next_server_tcp_socket_ != NULL);
    803     AsyncPacketSocket* result = next_server_tcp_socket_;
    804     next_server_tcp_socket_ = NULL;
    805     return result;
    806   }
    807 
    808   // TODO: |proxy_info| and |user_agent| should be set
    809   // per-factory and not when socket is created.
    810   virtual AsyncPacketSocket* CreateClientTcpSocket(
    811       const SocketAddress& local_address, const SocketAddress& remote_address,
    812       const talk_base::ProxyInfo& proxy_info,
    813       const std::string& user_agent, int opts) {
    814     EXPECT_TRUE(next_client_tcp_socket_ != NULL);
    815     AsyncPacketSocket* result = next_client_tcp_socket_;
    816     next_client_tcp_socket_ = NULL;
    817     return result;
    818   }
    819 
    820   void set_next_udp_socket(AsyncPacketSocket* next_udp_socket) {
    821     next_udp_socket_ = next_udp_socket;
    822   }
    823   void set_next_server_tcp_socket(AsyncPacketSocket* next_server_tcp_socket) {
    824     next_server_tcp_socket_ = next_server_tcp_socket;
    825   }
    826   void set_next_client_tcp_socket(AsyncPacketSocket* next_client_tcp_socket) {
    827     next_client_tcp_socket_ = next_client_tcp_socket;
    828   }
    829   talk_base::AsyncResolverInterface* CreateAsyncResolver() {
    830     return NULL;
    831   }
    832 
    833  private:
    834   AsyncPacketSocket* next_udp_socket_;
    835   AsyncPacketSocket* next_server_tcp_socket_;
    836   AsyncPacketSocket* next_client_tcp_socket_;
    837 };
    838 
    839 class FakeAsyncPacketSocket : public AsyncPacketSocket {
    840  public:
    841   // Returns current local address. Address may be set to NULL if the
    842   // socket is not bound yet (GetState() returns STATE_BINDING).
    843   virtual SocketAddress GetLocalAddress() const {
    844     return SocketAddress();
    845   }
    846 
    847   // Returns remote address. Returns zeroes if this is not a client TCP socket.
    848   virtual SocketAddress GetRemoteAddress() const {
    849     return SocketAddress();
    850   }
    851 
    852   // Send a packet.
    853   virtual int Send(const void *pv, size_t cb,
    854                    const talk_base::PacketOptions& options) {
    855     return static_cast<int>(cb);
    856   }
    857   virtual int SendTo(const void *pv, size_t cb, const SocketAddress& addr,
    858                      const talk_base::PacketOptions& options) {
    859     return static_cast<int>(cb);
    860   }
    861   virtual int Close() {
    862     return 0;
    863   }
    864 
    865   virtual State GetState() const { return state_; }
    866   virtual int GetOption(Socket::Option opt, int* value) { return 0; }
    867   virtual int SetOption(Socket::Option opt, int value) { return 0; }
    868   virtual int GetError() const { return 0; }
    869   virtual void SetError(int error) { }
    870 
    871   void set_state(State state) { state_ = state; }
    872 
    873  private:
    874   State state_;
    875 };
    876 
    877 // Local -> XXXX
    878 TEST_F(PortTest, TestLocalToLocal) {
    879   TestLocalToLocal();
    880 }
    881 
    882 TEST_F(PortTest, TestLocalToConeNat) {
    883   TestLocalToStun(NAT_OPEN_CONE);
    884 }
    885 
    886 TEST_F(PortTest, TestLocalToARNat) {
    887   TestLocalToStun(NAT_ADDR_RESTRICTED);
    888 }
    889 
    890 TEST_F(PortTest, TestLocalToPRNat) {
    891   TestLocalToStun(NAT_PORT_RESTRICTED);
    892 }
    893 
    894 TEST_F(PortTest, TestLocalToSymNat) {
    895   TestLocalToStun(NAT_SYMMETRIC);
    896 }
    897 
    898 // Flaky: https://code.google.com/p/webrtc/issues/detail?id=3316.
    899 TEST_F(PortTest, DISABLED_TestLocalToTurn) {
    900   TestLocalToRelay(RELAY_TURN, PROTO_UDP);
    901 }
    902 
    903 TEST_F(PortTest, TestLocalToGturn) {
    904   TestLocalToRelay(RELAY_GTURN, PROTO_UDP);
    905 }
    906 
    907 TEST_F(PortTest, TestLocalToTcpGturn) {
    908   TestLocalToRelay(RELAY_GTURN, PROTO_TCP);
    909 }
    910 
    911 TEST_F(PortTest, TestLocalToSslTcpGturn) {
    912   TestLocalToRelay(RELAY_GTURN, PROTO_SSLTCP);
    913 }
    914 
    915 // Cone NAT -> XXXX
    916 TEST_F(PortTest, TestConeNatToLocal) {
    917   TestStunToLocal(NAT_OPEN_CONE);
    918 }
    919 
    920 TEST_F(PortTest, TestConeNatToConeNat) {
    921   TestStunToStun(NAT_OPEN_CONE, NAT_OPEN_CONE);
    922 }
    923 
    924 TEST_F(PortTest, TestConeNatToARNat) {
    925   TestStunToStun(NAT_OPEN_CONE, NAT_ADDR_RESTRICTED);
    926 }
    927 
    928 TEST_F(PortTest, TestConeNatToPRNat) {
    929   TestStunToStun(NAT_OPEN_CONE, NAT_PORT_RESTRICTED);
    930 }
    931 
    932 TEST_F(PortTest, TestConeNatToSymNat) {
    933   TestStunToStun(NAT_OPEN_CONE, NAT_SYMMETRIC);
    934 }
    935 
    936 TEST_F(PortTest, TestConeNatToTurn) {
    937   TestStunToRelay(NAT_OPEN_CONE, RELAY_TURN, PROTO_UDP);
    938 }
    939 
    940 TEST_F(PortTest, TestConeNatToGturn) {
    941   TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_UDP);
    942 }
    943 
    944 TEST_F(PortTest, TestConeNatToTcpGturn) {
    945   TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_TCP);
    946 }
    947 
    948 // Address-restricted NAT -> XXXX
    949 TEST_F(PortTest, TestARNatToLocal) {
    950   TestStunToLocal(NAT_ADDR_RESTRICTED);
    951 }
    952 
    953 TEST_F(PortTest, TestARNatToConeNat) {
    954   TestStunToStun(NAT_ADDR_RESTRICTED, NAT_OPEN_CONE);
    955 }
    956 
    957 TEST_F(PortTest, TestARNatToARNat) {
    958   TestStunToStun(NAT_ADDR_RESTRICTED, NAT_ADDR_RESTRICTED);
    959 }
    960 
    961 TEST_F(PortTest, TestARNatToPRNat) {
    962   TestStunToStun(NAT_ADDR_RESTRICTED, NAT_PORT_RESTRICTED);
    963 }
    964 
    965 TEST_F(PortTest, TestARNatToSymNat) {
    966   TestStunToStun(NAT_ADDR_RESTRICTED, NAT_SYMMETRIC);
    967 }
    968 
    969 TEST_F(PortTest, TestARNatToTurn) {
    970   TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_TURN, PROTO_UDP);
    971 }
    972 
    973 TEST_F(PortTest, TestARNatToGturn) {
    974   TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_UDP);
    975 }
    976 
    977 TEST_F(PortTest, TestARNATNatToTcpGturn) {
    978   TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_TCP);
    979 }
    980 
    981 // Port-restricted NAT -> XXXX
    982 TEST_F(PortTest, TestPRNatToLocal) {
    983   TestStunToLocal(NAT_PORT_RESTRICTED);
    984 }
    985 
    986 TEST_F(PortTest, TestPRNatToConeNat) {
    987   TestStunToStun(NAT_PORT_RESTRICTED, NAT_OPEN_CONE);
    988 }
    989 
    990 TEST_F(PortTest, TestPRNatToARNat) {
    991   TestStunToStun(NAT_PORT_RESTRICTED, NAT_ADDR_RESTRICTED);
    992 }
    993 
    994 TEST_F(PortTest, TestPRNatToPRNat) {
    995   TestStunToStun(NAT_PORT_RESTRICTED, NAT_PORT_RESTRICTED);
    996 }
    997 
    998 TEST_F(PortTest, TestPRNatToSymNat) {
    999   // Will "fail"
   1000   TestStunToStun(NAT_PORT_RESTRICTED, NAT_SYMMETRIC);
   1001 }
   1002 
   1003 TEST_F(PortTest, TestPRNatToTurn) {
   1004   TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_TURN, PROTO_UDP);
   1005 }
   1006 
   1007 TEST_F(PortTest, TestPRNatToGturn) {
   1008   TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_UDP);
   1009 }
   1010 
   1011 TEST_F(PortTest, TestPRNatToTcpGturn) {
   1012   TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_TCP);
   1013 }
   1014 
   1015 // Symmetric NAT -> XXXX
   1016 TEST_F(PortTest, TestSymNatToLocal) {
   1017   TestStunToLocal(NAT_SYMMETRIC);
   1018 }
   1019 
   1020 TEST_F(PortTest, TestSymNatToConeNat) {
   1021   TestStunToStun(NAT_SYMMETRIC, NAT_OPEN_CONE);
   1022 }
   1023 
   1024 TEST_F(PortTest, TestSymNatToARNat) {
   1025   TestStunToStun(NAT_SYMMETRIC, NAT_ADDR_RESTRICTED);
   1026 }
   1027 
   1028 TEST_F(PortTest, TestSymNatToPRNat) {
   1029   // Will "fail"
   1030   TestStunToStun(NAT_SYMMETRIC, NAT_PORT_RESTRICTED);
   1031 }
   1032 
   1033 TEST_F(PortTest, TestSymNatToSymNat) {
   1034   // Will "fail"
   1035   TestStunToStun(NAT_SYMMETRIC, NAT_SYMMETRIC);
   1036 }
   1037 
   1038 TEST_F(PortTest, TestSymNatToTurn) {
   1039   TestStunToRelay(NAT_SYMMETRIC, RELAY_TURN, PROTO_UDP);
   1040 }
   1041 
   1042 TEST_F(PortTest, TestSymNatToGturn) {
   1043   TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_UDP);
   1044 }
   1045 
   1046 TEST_F(PortTest, TestSymNatToTcpGturn) {
   1047   TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_TCP);
   1048 }
   1049 
   1050 // Outbound TCP -> XXXX
   1051 TEST_F(PortTest, TestTcpToTcp) {
   1052   TestTcpToTcp();
   1053 }
   1054 
   1055 /* TODO: Enable these once testrelayserver can accept external TCP.
   1056 TEST_F(PortTest, TestTcpToTcpRelay) {
   1057   TestTcpToRelay(PROTO_TCP);
   1058 }
   1059 
   1060 TEST_F(PortTest, TestTcpToSslTcpRelay) {
   1061   TestTcpToRelay(PROTO_SSLTCP);
   1062 }
   1063 */
   1064 
   1065 // Outbound SSLTCP -> XXXX
   1066 /* TODO: Enable these once testrelayserver can accept external SSL.
   1067 TEST_F(PortTest, TestSslTcpToTcpRelay) {
   1068   TestSslTcpToRelay(PROTO_TCP);
   1069 }
   1070 
   1071 TEST_F(PortTest, TestSslTcpToSslTcpRelay) {
   1072   TestSslTcpToRelay(PROTO_SSLTCP);
   1073 }
   1074 */
   1075 
   1076 // This test case verifies standard ICE features in STUN messages. Currently it
   1077 // verifies Message Integrity attribute in STUN messages and username in STUN
   1078 // binding request will have colon (":") between remote and local username.
   1079 TEST_F(PortTest, TestLocalToLocalAsIce) {
   1080   SetIceProtocolType(cricket::ICEPROTO_RFC5245);
   1081   UDPPort* port1 = CreateUdpPort(kLocalAddr1);
   1082   port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
   1083   port1->SetIceTiebreaker(kTiebreaker1);
   1084   ASSERT_EQ(cricket::ICEPROTO_RFC5245, port1->IceProtocol());
   1085   UDPPort* port2 = CreateUdpPort(kLocalAddr2);
   1086   port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
   1087   port2->SetIceTiebreaker(kTiebreaker2);
   1088   ASSERT_EQ(cricket::ICEPROTO_RFC5245, port2->IceProtocol());
   1089   // Same parameters as TestLocalToLocal above.
   1090   TestConnectivity("udp", port1, "udp", port2, true, true, true, true);
   1091 }
   1092 
   1093 // This test is trying to validate a successful and failure scenario in a
   1094 // loopback test when protocol is RFC5245. For success IceTiebreaker, username
   1095 // should remain equal to the request generated by the port and role of port
   1096 // must be in controlling.
   1097 TEST_F(PortTest, TestLoopbackCallAsIce) {
   1098   talk_base::scoped_ptr<TestPort> lport(
   1099       CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
   1100   lport->SetIceProtocolType(ICEPROTO_RFC5245);
   1101   lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
   1102   lport->SetIceTiebreaker(kTiebreaker1);
   1103   lport->PrepareAddress();
   1104   ASSERT_FALSE(lport->Candidates().empty());
   1105   Connection* conn = lport->CreateConnection(lport->Candidates()[0],
   1106                                              Port::ORIGIN_MESSAGE);
   1107   conn->Ping(0);
   1108 
   1109   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
   1110   IceMessage* msg = lport->last_stun_msg();
   1111   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
   1112   conn->OnReadPacket(lport->last_stun_buf()->Data(),
   1113                      lport->last_stun_buf()->Length(),
   1114                      talk_base::PacketTime());
   1115   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
   1116   msg = lport->last_stun_msg();
   1117   EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
   1118 
   1119   // If the tiebreaker value is different from port, we expect a error
   1120   // response.
   1121   lport->Reset();
   1122   lport->AddCandidateAddress(kLocalAddr2);
   1123   // Creating a different connection as |conn| is in STATE_READABLE.
   1124   Connection* conn1 = lport->CreateConnection(lport->Candidates()[1],
   1125                                               Port::ORIGIN_MESSAGE);
   1126   conn1->Ping(0);
   1127 
   1128   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
   1129   msg = lport->last_stun_msg();
   1130   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
   1131   talk_base::scoped_ptr<IceMessage> modified_req(
   1132       CreateStunMessage(STUN_BINDING_REQUEST));
   1133   const StunByteStringAttribute* username_attr = msg->GetByteString(
   1134       STUN_ATTR_USERNAME);
   1135   modified_req->AddAttribute(new StunByteStringAttribute(
   1136       STUN_ATTR_USERNAME, username_attr->GetString()));
   1137   // To make sure we receive error response, adding tiebreaker less than
   1138   // what's present in request.
   1139   modified_req->AddAttribute(new StunUInt64Attribute(
   1140       STUN_ATTR_ICE_CONTROLLING, kTiebreaker1 - 1));
   1141   modified_req->AddMessageIntegrity("lpass");
   1142   modified_req->AddFingerprint();
   1143 
   1144   lport->Reset();
   1145   talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
   1146   WriteStunMessage(modified_req.get(), buf.get());
   1147   conn1->OnReadPacket(buf->Data(), buf->Length(), talk_base::PacketTime());
   1148   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
   1149   msg = lport->last_stun_msg();
   1150   EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
   1151 }
   1152 
   1153 // This test verifies role conflict signal is received when there is
   1154 // conflict in the role. In this case both ports are in controlling and
   1155 // |rport| has higher tiebreaker value than |lport|. Since |lport| has lower
   1156 // value of tiebreaker, when it receives ping request from |rport| it will
   1157 // send role conflict signal.
   1158 TEST_F(PortTest, TestIceRoleConflict) {
   1159   talk_base::scoped_ptr<TestPort> lport(
   1160       CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
   1161   lport->SetIceProtocolType(ICEPROTO_RFC5245);
   1162   lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
   1163   lport->SetIceTiebreaker(kTiebreaker1);
   1164   talk_base::scoped_ptr<TestPort> rport(
   1165       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1166   rport->SetIceProtocolType(ICEPROTO_RFC5245);
   1167   rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
   1168   rport->SetIceTiebreaker(kTiebreaker2);
   1169 
   1170   lport->PrepareAddress();
   1171   rport->PrepareAddress();
   1172   ASSERT_FALSE(lport->Candidates().empty());
   1173   ASSERT_FALSE(rport->Candidates().empty());
   1174   Connection* lconn = lport->CreateConnection(rport->Candidates()[0],
   1175                                               Port::ORIGIN_MESSAGE);
   1176   Connection* rconn = rport->CreateConnection(lport->Candidates()[0],
   1177                                               Port::ORIGIN_MESSAGE);
   1178   rconn->Ping(0);
   1179 
   1180   ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
   1181   IceMessage* msg = rport->last_stun_msg();
   1182   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
   1183   // Send rport binding request to lport.
   1184   lconn->OnReadPacket(rport->last_stun_buf()->Data(),
   1185                       rport->last_stun_buf()->Length(),
   1186                       talk_base::PacketTime());
   1187 
   1188   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
   1189   EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
   1190   EXPECT_TRUE(role_conflict());
   1191 }
   1192 
   1193 TEST_F(PortTest, TestTcpNoDelay) {
   1194   TCPPort* port1 = CreateTcpPort(kLocalAddr1);
   1195   int option_value = -1;
   1196   int success = port1->GetOption(talk_base::Socket::OPT_NODELAY,
   1197                                  &option_value);
   1198   ASSERT_EQ(0, success);  // GetOption() should complete successfully w/ 0
   1199   ASSERT_EQ(1, option_value);
   1200   delete port1;
   1201 }
   1202 
   1203 TEST_F(PortTest, TestDelayedBindingUdp) {
   1204   FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
   1205   FakePacketSocketFactory socket_factory;
   1206 
   1207   socket_factory.set_next_udp_socket(socket);
   1208   scoped_ptr<UDPPort> port(
   1209       CreateUdpPort(kLocalAddr1, &socket_factory));
   1210 
   1211   socket->set_state(AsyncPacketSocket::STATE_BINDING);
   1212   port->PrepareAddress();
   1213 
   1214   EXPECT_EQ(0U, port->Candidates().size());
   1215   socket->SignalAddressReady(socket, kLocalAddr2);
   1216 
   1217   EXPECT_EQ(1U, port->Candidates().size());
   1218 }
   1219 
   1220 TEST_F(PortTest, TestDelayedBindingTcp) {
   1221   FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
   1222   FakePacketSocketFactory socket_factory;
   1223 
   1224   socket_factory.set_next_server_tcp_socket(socket);
   1225   scoped_ptr<TCPPort> port(
   1226       CreateTcpPort(kLocalAddr1, &socket_factory));
   1227 
   1228   socket->set_state(AsyncPacketSocket::STATE_BINDING);
   1229   port->PrepareAddress();
   1230 
   1231   EXPECT_EQ(0U, port->Candidates().size());
   1232   socket->SignalAddressReady(socket, kLocalAddr2);
   1233 
   1234   EXPECT_EQ(1U, port->Candidates().size());
   1235 }
   1236 
   1237 void PortTest::TestCrossFamilyPorts(int type) {
   1238   FakePacketSocketFactory factory;
   1239   scoped_ptr<Port> ports[4];
   1240   SocketAddress addresses[4] = {SocketAddress("192.168.1.3", 0),
   1241                                 SocketAddress("192.168.1.4", 0),
   1242                                 SocketAddress("2001:db8::1", 0),
   1243                                 SocketAddress("2001:db8::2", 0)};
   1244   for (int i = 0; i < 4; i++) {
   1245     FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
   1246     if (type == SOCK_DGRAM) {
   1247       factory.set_next_udp_socket(socket);
   1248       ports[i].reset(CreateUdpPort(addresses[i], &factory));
   1249     } else if (type == SOCK_STREAM) {
   1250       factory.set_next_server_tcp_socket(socket);
   1251       ports[i].reset(CreateTcpPort(addresses[i], &factory));
   1252     }
   1253     socket->set_state(AsyncPacketSocket::STATE_BINDING);
   1254     socket->SignalAddressReady(socket, addresses[i]);
   1255     ports[i]->PrepareAddress();
   1256   }
   1257 
   1258   // IPv4 Port, connects to IPv6 candidate and then to IPv4 candidate.
   1259   if (type == SOCK_STREAM) {
   1260     FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
   1261     factory.set_next_client_tcp_socket(clientsocket);
   1262   }
   1263   Connection* c = ports[0]->CreateConnection(GetCandidate(ports[2].get()),
   1264                                              Port::ORIGIN_MESSAGE);
   1265   EXPECT_TRUE(NULL == c);
   1266   EXPECT_EQ(0U, ports[0]->connections().size());
   1267   c = ports[0]->CreateConnection(GetCandidate(ports[1].get()),
   1268                                  Port::ORIGIN_MESSAGE);
   1269   EXPECT_FALSE(NULL == c);
   1270   EXPECT_EQ(1U, ports[0]->connections().size());
   1271 
   1272   // IPv6 Port, connects to IPv4 candidate and to IPv6 candidate.
   1273   if (type == SOCK_STREAM) {
   1274     FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
   1275     factory.set_next_client_tcp_socket(clientsocket);
   1276   }
   1277   c = ports[2]->CreateConnection(GetCandidate(ports[0].get()),
   1278                                  Port::ORIGIN_MESSAGE);
   1279   EXPECT_TRUE(NULL == c);
   1280   EXPECT_EQ(0U, ports[2]->connections().size());
   1281   c = ports[2]->CreateConnection(GetCandidate(ports[3].get()),
   1282                                  Port::ORIGIN_MESSAGE);
   1283   EXPECT_FALSE(NULL == c);
   1284   EXPECT_EQ(1U, ports[2]->connections().size());
   1285 }
   1286 
   1287 TEST_F(PortTest, TestSkipCrossFamilyTcp) {
   1288   TestCrossFamilyPorts(SOCK_STREAM);
   1289 }
   1290 
   1291 TEST_F(PortTest, TestSkipCrossFamilyUdp) {
   1292   TestCrossFamilyPorts(SOCK_DGRAM);
   1293 }
   1294 
   1295 // This test verifies DSCP value set through SetOption interface can be
   1296 // get through DefaultDscpValue.
   1297 TEST_F(PortTest, TestDefaultDscpValue) {
   1298   int dscp;
   1299   talk_base::scoped_ptr<UDPPort> udpport(CreateUdpPort(kLocalAddr1));
   1300   EXPECT_EQ(0, udpport->SetOption(talk_base::Socket::OPT_DSCP,
   1301                                   talk_base::DSCP_CS6));
   1302   EXPECT_EQ(0, udpport->GetOption(talk_base::Socket::OPT_DSCP, &dscp));
   1303   talk_base::scoped_ptr<TCPPort> tcpport(CreateTcpPort(kLocalAddr1));
   1304   EXPECT_EQ(0, tcpport->SetOption(talk_base::Socket::OPT_DSCP,
   1305                                  talk_base::DSCP_AF31));
   1306   EXPECT_EQ(0, tcpport->GetOption(talk_base::Socket::OPT_DSCP, &dscp));
   1307   EXPECT_EQ(talk_base::DSCP_AF31, dscp);
   1308   talk_base::scoped_ptr<StunPort> stunport(
   1309       CreateStunPort(kLocalAddr1, nat_socket_factory1()));
   1310   EXPECT_EQ(0, stunport->SetOption(talk_base::Socket::OPT_DSCP,
   1311                                   talk_base::DSCP_AF41));
   1312   EXPECT_EQ(0, stunport->GetOption(talk_base::Socket::OPT_DSCP, &dscp));
   1313   EXPECT_EQ(talk_base::DSCP_AF41, dscp);
   1314   talk_base::scoped_ptr<TurnPort> turnport1(CreateTurnPort(
   1315       kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
   1316   // Socket is created in PrepareAddress.
   1317   turnport1->PrepareAddress();
   1318   EXPECT_EQ(0, turnport1->SetOption(talk_base::Socket::OPT_DSCP,
   1319                                   talk_base::DSCP_CS7));
   1320   EXPECT_EQ(0, turnport1->GetOption(talk_base::Socket::OPT_DSCP, &dscp));
   1321   EXPECT_EQ(talk_base::DSCP_CS7, dscp);
   1322   // This will verify correct value returned without the socket.
   1323   talk_base::scoped_ptr<TurnPort> turnport2(CreateTurnPort(
   1324       kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
   1325   EXPECT_EQ(0, turnport2->SetOption(talk_base::Socket::OPT_DSCP,
   1326                                   talk_base::DSCP_CS6));
   1327   EXPECT_EQ(0, turnport2->GetOption(talk_base::Socket::OPT_DSCP, &dscp));
   1328   EXPECT_EQ(talk_base::DSCP_CS6, dscp);
   1329 }
   1330 
   1331 // Test sending STUN messages in GICE format.
   1332 TEST_F(PortTest, TestSendStunMessageAsGice) {
   1333   talk_base::scoped_ptr<TestPort> lport(
   1334       CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
   1335   talk_base::scoped_ptr<TestPort> rport(
   1336       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1337   lport->SetIceProtocolType(ICEPROTO_GOOGLE);
   1338   rport->SetIceProtocolType(ICEPROTO_GOOGLE);
   1339 
   1340   // Send a fake ping from lport to rport.
   1341   lport->PrepareAddress();
   1342   rport->PrepareAddress();
   1343   ASSERT_FALSE(rport->Candidates().empty());
   1344   Connection* conn = lport->CreateConnection(rport->Candidates()[0],
   1345       Port::ORIGIN_MESSAGE);
   1346   rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
   1347   conn->Ping(0);
   1348 
   1349   // Check that it's a proper BINDING-REQUEST.
   1350   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
   1351   IceMessage* msg = lport->last_stun_msg();
   1352   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
   1353   EXPECT_FALSE(msg->IsLegacy());
   1354   const StunByteStringAttribute* username_attr = msg->GetByteString(
   1355       STUN_ATTR_USERNAME);
   1356   ASSERT_TRUE(username_attr != NULL);
   1357   EXPECT_EQ("rfraglfrag", username_attr->GetString());
   1358   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
   1359   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
   1360   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
   1361 
   1362   // Save a copy of the BINDING-REQUEST for use below.
   1363   talk_base::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
   1364 
   1365   // Respond with a BINDING-RESPONSE.
   1366   rport->SendBindingResponse(request.get(), lport->Candidates()[0].address());
   1367   msg = rport->last_stun_msg();
   1368   ASSERT_TRUE(msg != NULL);
   1369   EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
   1370   EXPECT_FALSE(msg->IsLegacy());
   1371   username_attr = msg->GetByteString(STUN_ATTR_USERNAME);
   1372   ASSERT_TRUE(username_attr != NULL);  // GICE has a username in the response.
   1373   EXPECT_EQ("rfraglfrag", username_attr->GetString());
   1374   const StunAddressAttribute* addr_attr = msg->GetAddress(
   1375       STUN_ATTR_MAPPED_ADDRESS);
   1376   ASSERT_TRUE(addr_attr != NULL);
   1377   EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress());
   1378   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_XOR_MAPPED_ADDRESS) == NULL);
   1379   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
   1380   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
   1381   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
   1382 
   1383   // Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life,
   1384   // but we can do it here.
   1385   rport->SendBindingErrorResponse(request.get(),
   1386                                   rport->Candidates()[0].address(),
   1387                                   STUN_ERROR_SERVER_ERROR,
   1388                                   STUN_ERROR_REASON_SERVER_ERROR);
   1389   msg = rport->last_stun_msg();
   1390   ASSERT_TRUE(msg != NULL);
   1391   EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
   1392   EXPECT_FALSE(msg->IsLegacy());
   1393   username_attr = msg->GetByteString(STUN_ATTR_USERNAME);
   1394   ASSERT_TRUE(username_attr != NULL);  // GICE has a username in the response.
   1395   EXPECT_EQ("rfraglfrag", username_attr->GetString());
   1396   const StunErrorCodeAttribute* error_attr = msg->GetErrorCode();
   1397   ASSERT_TRUE(error_attr != NULL);
   1398   // The GICE wire format for error codes is incorrect.
   1399   EXPECT_EQ(STUN_ERROR_SERVER_ERROR_AS_GICE, error_attr->code());
   1400   EXPECT_EQ(STUN_ERROR_SERVER_ERROR / 256, error_attr->eclass());
   1401   EXPECT_EQ(STUN_ERROR_SERVER_ERROR % 256, error_attr->number());
   1402   EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason());
   1403   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
   1404   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
   1405   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
   1406 }
   1407 
   1408 // Test sending STUN messages in ICE format.
   1409 TEST_F(PortTest, TestSendStunMessageAsIce) {
   1410   talk_base::scoped_ptr<TestPort> lport(
   1411       CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
   1412   talk_base::scoped_ptr<TestPort> rport(
   1413       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1414   lport->SetIceProtocolType(ICEPROTO_RFC5245);
   1415   lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
   1416   lport->SetIceTiebreaker(kTiebreaker1);
   1417   rport->SetIceProtocolType(ICEPROTO_RFC5245);
   1418   rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
   1419   rport->SetIceTiebreaker(kTiebreaker2);
   1420 
   1421   // Send a fake ping from lport to rport.
   1422   lport->PrepareAddress();
   1423   rport->PrepareAddress();
   1424   ASSERT_FALSE(rport->Candidates().empty());
   1425   Connection* lconn = lport->CreateConnection(
   1426       rport->Candidates()[0], Port::ORIGIN_MESSAGE);
   1427   Connection* rconn = rport->CreateConnection(
   1428       lport->Candidates()[0], Port::ORIGIN_MESSAGE);
   1429   lconn->Ping(0);
   1430 
   1431   // Check that it's a proper BINDING-REQUEST.
   1432   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
   1433   IceMessage* msg = lport->last_stun_msg();
   1434   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
   1435   EXPECT_FALSE(msg->IsLegacy());
   1436   const StunByteStringAttribute* username_attr =
   1437       msg->GetByteString(STUN_ATTR_USERNAME);
   1438   ASSERT_TRUE(username_attr != NULL);
   1439   const StunUInt32Attribute* priority_attr = msg->GetUInt32(STUN_ATTR_PRIORITY);
   1440   ASSERT_TRUE(priority_attr != NULL);
   1441   EXPECT_EQ(kDefaultPrflxPriority, priority_attr->value());
   1442   EXPECT_EQ("rfrag:lfrag", username_attr->GetString());
   1443   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
   1444   EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
   1445       lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length(),
   1446       "rpass"));
   1447   const StunUInt64Attribute* ice_controlling_attr =
   1448       msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
   1449   ASSERT_TRUE(ice_controlling_attr != NULL);
   1450   EXPECT_EQ(lport->IceTiebreaker(), ice_controlling_attr->value());
   1451   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
   1452   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
   1453   EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
   1454   EXPECT_TRUE(StunMessage::ValidateFingerprint(
   1455       lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
   1456 
   1457   // Request should not include ping count.
   1458   ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
   1459 
   1460   // Save a copy of the BINDING-REQUEST for use below.
   1461   talk_base::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
   1462 
   1463   // Respond with a BINDING-RESPONSE.
   1464   rport->SendBindingResponse(request.get(), lport->Candidates()[0].address());
   1465   msg = rport->last_stun_msg();
   1466   ASSERT_TRUE(msg != NULL);
   1467   EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
   1468 
   1469 
   1470   EXPECT_FALSE(msg->IsLegacy());
   1471   const StunAddressAttribute* addr_attr = msg->GetAddress(
   1472       STUN_ATTR_XOR_MAPPED_ADDRESS);
   1473   ASSERT_TRUE(addr_attr != NULL);
   1474   EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress());
   1475   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
   1476   EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
   1477       rport->last_stun_buf()->Data(), rport->last_stun_buf()->Length(),
   1478       "rpass"));
   1479   EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
   1480   EXPECT_TRUE(StunMessage::ValidateFingerprint(
   1481       lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
   1482   // No USERNAME or PRIORITY in ICE responses.
   1483   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
   1484   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
   1485   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MAPPED_ADDRESS) == NULL);
   1486   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLING) == NULL);
   1487   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
   1488   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
   1489 
   1490   // Response should not include ping count.
   1491   ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
   1492 
   1493   // Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life,
   1494   // but we can do it here.
   1495   rport->SendBindingErrorResponse(request.get(),
   1496                                   lport->Candidates()[0].address(),
   1497                                   STUN_ERROR_SERVER_ERROR,
   1498                                   STUN_ERROR_REASON_SERVER_ERROR);
   1499   msg = rport->last_stun_msg();
   1500   ASSERT_TRUE(msg != NULL);
   1501   EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
   1502   EXPECT_FALSE(msg->IsLegacy());
   1503   const StunErrorCodeAttribute* error_attr = msg->GetErrorCode();
   1504   ASSERT_TRUE(error_attr != NULL);
   1505   EXPECT_EQ(STUN_ERROR_SERVER_ERROR, error_attr->code());
   1506   EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason());
   1507   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
   1508   EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
   1509       rport->last_stun_buf()->Data(), rport->last_stun_buf()->Length(),
   1510       "rpass"));
   1511   EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
   1512   EXPECT_TRUE(StunMessage::ValidateFingerprint(
   1513       lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
   1514   // No USERNAME with ICE.
   1515   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
   1516   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
   1517 
   1518   // Testing STUN binding requests from rport --> lport, having ICE_CONTROLLED
   1519   // and (incremented) RETRANSMIT_COUNT attributes.
   1520   rport->Reset();
   1521   rport->set_send_retransmit_count_attribute(true);
   1522   rconn->Ping(0);
   1523   rconn->Ping(0);
   1524   rconn->Ping(0);
   1525   ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
   1526   msg = rport->last_stun_msg();
   1527   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
   1528   const StunUInt64Attribute* ice_controlled_attr =
   1529       msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED);
   1530   ASSERT_TRUE(ice_controlled_attr != NULL);
   1531   EXPECT_EQ(rport->IceTiebreaker(), ice_controlled_attr->value());
   1532   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
   1533 
   1534   // Request should include ping count.
   1535   const StunUInt32Attribute* retransmit_attr =
   1536       msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
   1537   ASSERT_TRUE(retransmit_attr != NULL);
   1538   EXPECT_EQ(2U, retransmit_attr->value());
   1539 
   1540   // Respond with a BINDING-RESPONSE.
   1541   request.reset(CopyStunMessage(msg));
   1542   lport->SendBindingResponse(request.get(), rport->Candidates()[0].address());
   1543   msg = lport->last_stun_msg();
   1544 
   1545   // Response should include same ping count.
   1546   retransmit_attr = msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
   1547   ASSERT_TRUE(retransmit_attr != NULL);
   1548   EXPECT_EQ(2U, retransmit_attr->value());
   1549 }
   1550 
   1551 TEST_F(PortTest, TestUseCandidateAttribute) {
   1552   talk_base::scoped_ptr<TestPort> lport(
   1553       CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
   1554   talk_base::scoped_ptr<TestPort> rport(
   1555       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1556   lport->SetIceProtocolType(ICEPROTO_RFC5245);
   1557   lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
   1558   lport->SetIceTiebreaker(kTiebreaker1);
   1559   rport->SetIceProtocolType(ICEPROTO_RFC5245);
   1560   rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
   1561   rport->SetIceTiebreaker(kTiebreaker2);
   1562 
   1563   // Send a fake ping from lport to rport.
   1564   lport->PrepareAddress();
   1565   rport->PrepareAddress();
   1566   ASSERT_FALSE(rport->Candidates().empty());
   1567   Connection* lconn = lport->CreateConnection(
   1568       rport->Candidates()[0], Port::ORIGIN_MESSAGE);
   1569   lconn->Ping(0);
   1570   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
   1571   IceMessage* msg = lport->last_stun_msg();
   1572   const StunUInt64Attribute* ice_controlling_attr =
   1573       msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
   1574   ASSERT_TRUE(ice_controlling_attr != NULL);
   1575   const StunByteStringAttribute* use_candidate_attr = msg->GetByteString(
   1576       STUN_ATTR_USE_CANDIDATE);
   1577   ASSERT_TRUE(use_candidate_attr != NULL);
   1578 }
   1579 
   1580 // Test handling STUN messages in GICE format.
   1581 TEST_F(PortTest, TestHandleStunMessageAsGice) {
   1582   // Our port will act as the "remote" port.
   1583   talk_base::scoped_ptr<TestPort> port(
   1584       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1585   port->SetIceProtocolType(ICEPROTO_GOOGLE);
   1586 
   1587   talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
   1588   talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
   1589   talk_base::SocketAddress addr(kLocalAddr1);
   1590   std::string username;
   1591 
   1592   // BINDING-REQUEST from local to remote with valid GICE username and no M-I.
   1593   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1594                                              "rfraglfrag"));
   1595   WriteStunMessage(in_msg.get(), buf.get());
   1596   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1597                                    out_msg.accept(), &username));
   1598   EXPECT_TRUE(out_msg.get() != NULL);  // Succeeds, since this is GICE.
   1599   EXPECT_EQ("lfrag", username);
   1600 
   1601   // Add M-I; should be ignored and rest of message parsed normally.
   1602   in_msg->AddMessageIntegrity("password");
   1603   WriteStunMessage(in_msg.get(), buf.get());
   1604   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1605                                    out_msg.accept(), &username));
   1606   EXPECT_TRUE(out_msg.get() != NULL);
   1607   EXPECT_EQ("lfrag", username);
   1608 
   1609   // BINDING-RESPONSE with username, as done in GICE. Should succeed.
   1610   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_RESPONSE,
   1611                                              "rfraglfrag"));
   1612   in_msg->AddAttribute(
   1613       new StunAddressAttribute(STUN_ATTR_MAPPED_ADDRESS, kLocalAddr2));
   1614   WriteStunMessage(in_msg.get(), buf.get());
   1615   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1616                                    out_msg.accept(), &username));
   1617   EXPECT_TRUE(out_msg.get() != NULL);
   1618   EXPECT_EQ("", username);
   1619 
   1620   // BINDING-RESPONSE without username. Should be tolerated as well.
   1621   in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
   1622   in_msg->AddAttribute(
   1623       new StunAddressAttribute(STUN_ATTR_MAPPED_ADDRESS, kLocalAddr2));
   1624   WriteStunMessage(in_msg.get(), buf.get());
   1625   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1626                                    out_msg.accept(), &username));
   1627   EXPECT_TRUE(out_msg.get() != NULL);
   1628   EXPECT_EQ("", username);
   1629 
   1630   // BINDING-ERROR-RESPONSE with username and error code.
   1631   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_ERROR_RESPONSE,
   1632                                              "rfraglfrag"));
   1633   in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
   1634       STUN_ERROR_SERVER_ERROR_AS_GICE, STUN_ERROR_REASON_SERVER_ERROR));
   1635   WriteStunMessage(in_msg.get(), buf.get());
   1636   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1637                                    out_msg.accept(), &username));
   1638   ASSERT_TRUE(out_msg.get() != NULL);
   1639   EXPECT_EQ("", username);
   1640   ASSERT_TRUE(out_msg->GetErrorCode() != NULL);
   1641   // GetStunMessage doesn't unmunge the GICE error code (happens downstream).
   1642   EXPECT_EQ(STUN_ERROR_SERVER_ERROR_AS_GICE, out_msg->GetErrorCode()->code());
   1643   EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR),
   1644       out_msg->GetErrorCode()->reason());
   1645 }
   1646 
   1647 // Test handling STUN messages in ICE format.
   1648 TEST_F(PortTest, TestHandleStunMessageAsIce) {
   1649   // Our port will act as the "remote" port.
   1650   talk_base::scoped_ptr<TestPort> port(
   1651       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1652   port->SetIceProtocolType(ICEPROTO_RFC5245);
   1653 
   1654   talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
   1655   talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
   1656   talk_base::SocketAddress addr(kLocalAddr1);
   1657   std::string username;
   1658 
   1659   // BINDING-REQUEST from local to remote with valid ICE username,
   1660   // MESSAGE-INTEGRITY, and FINGERPRINT.
   1661   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1662                                              "rfrag:lfrag"));
   1663   in_msg->AddMessageIntegrity("rpass");
   1664   in_msg->AddFingerprint();
   1665   WriteStunMessage(in_msg.get(), buf.get());
   1666   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1667                                    out_msg.accept(), &username));
   1668   EXPECT_TRUE(out_msg.get() != NULL);
   1669   EXPECT_EQ("lfrag", username);
   1670 
   1671   // BINDING-RESPONSE without username, with MESSAGE-INTEGRITY and FINGERPRINT.
   1672   in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
   1673   in_msg->AddAttribute(
   1674       new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
   1675   in_msg->AddMessageIntegrity("rpass");
   1676   in_msg->AddFingerprint();
   1677   WriteStunMessage(in_msg.get(), buf.get());
   1678   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1679                                    out_msg.accept(), &username));
   1680   EXPECT_TRUE(out_msg.get() != NULL);
   1681   EXPECT_EQ("", username);
   1682 
   1683   // BINDING-ERROR-RESPONSE without username, with error, M-I, and FINGERPRINT.
   1684   in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE));
   1685   in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
   1686       STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR));
   1687   in_msg->AddFingerprint();
   1688   WriteStunMessage(in_msg.get(), buf.get());
   1689   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1690                                    out_msg.accept(), &username));
   1691   EXPECT_TRUE(out_msg.get() != NULL);
   1692   EXPECT_EQ("", username);
   1693   ASSERT_TRUE(out_msg->GetErrorCode() != NULL);
   1694   EXPECT_EQ(STUN_ERROR_SERVER_ERROR, out_msg->GetErrorCode()->code());
   1695   EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR),
   1696       out_msg->GetErrorCode()->reason());
   1697 }
   1698 
   1699 // This test verifies port can handle ICE messages in Hybrid mode and switches
   1700 // ICEPROTO_RFC5245 mode after successfully handling the message.
   1701 TEST_F(PortTest, TestHandleStunMessageAsIceInHybridMode) {
   1702   // Our port will act as the "remote" port.
   1703   talk_base::scoped_ptr<TestPort> port(
   1704       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1705   port->SetIceProtocolType(ICEPROTO_HYBRID);
   1706 
   1707   talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
   1708   talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
   1709   talk_base::SocketAddress addr(kLocalAddr1);
   1710   std::string username;
   1711 
   1712   // BINDING-REQUEST from local to remote with valid ICE username,
   1713   // MESSAGE-INTEGRITY, and FINGERPRINT.
   1714   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1715                                              "rfrag:lfrag"));
   1716   in_msg->AddMessageIntegrity("rpass");
   1717   in_msg->AddFingerprint();
   1718   WriteStunMessage(in_msg.get(), buf.get());
   1719   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1720                                    out_msg.accept(), &username));
   1721   EXPECT_TRUE(out_msg.get() != NULL);
   1722   EXPECT_EQ("lfrag", username);
   1723   EXPECT_EQ(ICEPROTO_RFC5245, port->IceProtocol());
   1724 }
   1725 
   1726 // This test verifies port can handle GICE messages in Hybrid mode and switches
   1727 // ICEPROTO_GOOGLE mode after successfully handling the message.
   1728 TEST_F(PortTest, TestHandleStunMessageAsGiceInHybridMode) {
   1729   // Our port will act as the "remote" port.
   1730   talk_base::scoped_ptr<TestPort> port(
   1731       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1732   port->SetIceProtocolType(ICEPROTO_HYBRID);
   1733 
   1734   talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
   1735   talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
   1736   talk_base::SocketAddress addr(kLocalAddr1);
   1737   std::string username;
   1738 
   1739   // BINDING-REQUEST from local to remote with valid GICE username and no M-I.
   1740   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1741                                              "rfraglfrag"));
   1742   WriteStunMessage(in_msg.get(), buf.get());
   1743   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1744                                    out_msg.accept(), &username));
   1745   EXPECT_TRUE(out_msg.get() != NULL);  // Succeeds, since this is GICE.
   1746   EXPECT_EQ("lfrag", username);
   1747   EXPECT_EQ(ICEPROTO_GOOGLE, port->IceProtocol());
   1748 }
   1749 
   1750 // Verify port is not switched out of RFC5245 mode if GICE message is received
   1751 // in that mode.
   1752 TEST_F(PortTest, TestHandleStunMessageAsGiceInIceMode) {
   1753   // Our port will act as the "remote" port.
   1754   talk_base::scoped_ptr<TestPort> port(
   1755       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1756   port->SetIceProtocolType(ICEPROTO_RFC5245);
   1757 
   1758   talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
   1759   talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
   1760   talk_base::SocketAddress addr(kLocalAddr1);
   1761   std::string username;
   1762 
   1763   // BINDING-REQUEST from local to remote with valid GICE username and no M-I.
   1764   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1765                                              "rfraglfrag"));
   1766   WriteStunMessage(in_msg.get(), buf.get());
   1767   // Should fail as there is no MI and fingerprint.
   1768   EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1769                                     out_msg.accept(), &username));
   1770   EXPECT_EQ(ICEPROTO_RFC5245, port->IceProtocol());
   1771 }
   1772 
   1773 
   1774 // Tests handling of GICE binding requests with missing or incorrect usernames.
   1775 TEST_F(PortTest, TestHandleStunMessageAsGiceBadUsername) {
   1776   talk_base::scoped_ptr<TestPort> port(
   1777       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1778   port->SetIceProtocolType(ICEPROTO_GOOGLE);
   1779 
   1780   talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
   1781   talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
   1782   talk_base::SocketAddress addr(kLocalAddr1);
   1783   std::string username;
   1784 
   1785   // BINDING-REQUEST with no username.
   1786   in_msg.reset(CreateStunMessage(STUN_BINDING_REQUEST));
   1787   WriteStunMessage(in_msg.get(), buf.get());
   1788   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1789                                    out_msg.accept(), &username));
   1790   EXPECT_TRUE(out_msg.get() == NULL);
   1791   EXPECT_EQ("", username);
   1792   EXPECT_EQ(STUN_ERROR_BAD_REQUEST_AS_GICE, port->last_stun_error_code());
   1793 
   1794   // BINDING-REQUEST with empty username.
   1795   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, ""));
   1796   WriteStunMessage(in_msg.get(), buf.get());
   1797   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1798                                    out_msg.accept(), &username));
   1799   EXPECT_TRUE(out_msg.get() == NULL);
   1800   EXPECT_EQ("", username);
   1801   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
   1802 
   1803   // BINDING-REQUEST with too-short username.
   1804   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "lfra"));
   1805   WriteStunMessage(in_msg.get(), buf.get());
   1806   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1807                                    out_msg.accept(), &username));
   1808   EXPECT_TRUE(out_msg.get() == NULL);
   1809   EXPECT_EQ("", username);
   1810   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
   1811 
   1812   // BINDING-REQUEST with reversed username.
   1813   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1814                                              "lfragrfrag"));
   1815   WriteStunMessage(in_msg.get(), buf.get());
   1816   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1817                                    out_msg.accept(), &username));
   1818   EXPECT_TRUE(out_msg.get() == NULL);
   1819   EXPECT_EQ("", username);
   1820   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
   1821 
   1822   // BINDING-REQUEST with garbage username.
   1823   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1824                                              "abcdefgh"));
   1825   WriteStunMessage(in_msg.get(), buf.get());
   1826   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1827                                    out_msg.accept(), &username));
   1828   EXPECT_TRUE(out_msg.get() == NULL);
   1829   EXPECT_EQ("", username);
   1830   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
   1831 }
   1832 
   1833 // Tests handling of ICE binding requests with missing or incorrect usernames.
   1834 TEST_F(PortTest, TestHandleStunMessageAsIceBadUsername) {
   1835   talk_base::scoped_ptr<TestPort> port(
   1836       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1837   port->SetIceProtocolType(ICEPROTO_RFC5245);
   1838 
   1839   talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
   1840   talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
   1841   talk_base::SocketAddress addr(kLocalAddr1);
   1842   std::string username;
   1843 
   1844   // BINDING-REQUEST with no username.
   1845   in_msg.reset(CreateStunMessage(STUN_BINDING_REQUEST));
   1846   in_msg->AddMessageIntegrity("rpass");
   1847   in_msg->AddFingerprint();
   1848   WriteStunMessage(in_msg.get(), buf.get());
   1849   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1850                                    out_msg.accept(), &username));
   1851   EXPECT_TRUE(out_msg.get() == NULL);
   1852   EXPECT_EQ("", username);
   1853   EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
   1854 
   1855   // BINDING-REQUEST with empty username.
   1856   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, ""));
   1857   in_msg->AddMessageIntegrity("rpass");
   1858   in_msg->AddFingerprint();
   1859   WriteStunMessage(in_msg.get(), buf.get());
   1860   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1861                                    out_msg.accept(), &username));
   1862   EXPECT_TRUE(out_msg.get() == NULL);
   1863   EXPECT_EQ("", username);
   1864   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
   1865 
   1866   // BINDING-REQUEST with too-short username.
   1867   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfra"));
   1868   in_msg->AddMessageIntegrity("rpass");
   1869   in_msg->AddFingerprint();
   1870   WriteStunMessage(in_msg.get(), buf.get());
   1871   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1872                                    out_msg.accept(), &username));
   1873   EXPECT_TRUE(out_msg.get() == NULL);
   1874   EXPECT_EQ("", username);
   1875   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
   1876 
   1877   // BINDING-REQUEST with reversed username.
   1878   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1879                                             "lfrag:rfrag"));
   1880   in_msg->AddMessageIntegrity("rpass");
   1881   in_msg->AddFingerprint();
   1882   WriteStunMessage(in_msg.get(), buf.get());
   1883   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1884                                    out_msg.accept(), &username));
   1885   EXPECT_TRUE(out_msg.get() == NULL);
   1886   EXPECT_EQ("", username);
   1887   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
   1888 
   1889   // BINDING-REQUEST with garbage username.
   1890   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1891                                              "abcd:efgh"));
   1892   in_msg->AddMessageIntegrity("rpass");
   1893   in_msg->AddFingerprint();
   1894   WriteStunMessage(in_msg.get(), buf.get());
   1895   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1896                                    out_msg.accept(), &username));
   1897   EXPECT_TRUE(out_msg.get() == NULL);
   1898   EXPECT_EQ("", username);
   1899   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
   1900 }
   1901 
   1902 // Test handling STUN messages (as ICE) with missing or malformed M-I.
   1903 TEST_F(PortTest, TestHandleStunMessageAsIceBadMessageIntegrity) {
   1904   // Our port will act as the "remote" port.
   1905   talk_base::scoped_ptr<TestPort> port(
   1906       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1907   port->SetIceProtocolType(ICEPROTO_RFC5245);
   1908 
   1909   talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
   1910   talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
   1911   talk_base::SocketAddress addr(kLocalAddr1);
   1912   std::string username;
   1913 
   1914   // BINDING-REQUEST from local to remote with valid ICE username and
   1915   // FINGERPRINT, but no MESSAGE-INTEGRITY.
   1916   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1917                                              "rfrag:lfrag"));
   1918   in_msg->AddFingerprint();
   1919   WriteStunMessage(in_msg.get(), buf.get());
   1920   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1921                                    out_msg.accept(), &username));
   1922   EXPECT_TRUE(out_msg.get() == NULL);
   1923   EXPECT_EQ("", username);
   1924   EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
   1925 
   1926   // BINDING-REQUEST from local to remote with valid ICE username and
   1927   // FINGERPRINT, but invalid MESSAGE-INTEGRITY.
   1928   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1929                                              "rfrag:lfrag"));
   1930   in_msg->AddMessageIntegrity("invalid");
   1931   in_msg->AddFingerprint();
   1932   WriteStunMessage(in_msg.get(), buf.get());
   1933   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1934                                    out_msg.accept(), &username));
   1935   EXPECT_TRUE(out_msg.get() == NULL);
   1936   EXPECT_EQ("", username);
   1937   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
   1938 
   1939   // TODO: BINDING-RESPONSES and BINDING-ERROR-RESPONSES are checked
   1940   // by the Connection, not the Port, since they require the remote username.
   1941   // Change this test to pass in data via Connection::OnReadPacket instead.
   1942 }
   1943 
   1944 // Test handling STUN messages (as ICE) with missing or malformed FINGERPRINT.
   1945 TEST_F(PortTest, TestHandleStunMessageAsIceBadFingerprint) {
   1946   // Our port will act as the "remote" port.
   1947   talk_base::scoped_ptr<TestPort> port(
   1948       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   1949   port->SetIceProtocolType(ICEPROTO_RFC5245);
   1950 
   1951   talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
   1952   talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
   1953   talk_base::SocketAddress addr(kLocalAddr1);
   1954   std::string username;
   1955 
   1956   // BINDING-REQUEST from local to remote with valid ICE username and
   1957   // MESSAGE-INTEGRITY, but no FINGERPRINT; GetStunMessage should fail.
   1958   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
   1959                                              "rfrag:lfrag"));
   1960   in_msg->AddMessageIntegrity("rpass");
   1961   WriteStunMessage(in_msg.get(), buf.get());
   1962   EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1963                                     out_msg.accept(), &username));
   1964   EXPECT_EQ(0, port->last_stun_error_code());
   1965 
   1966   // Now, add a fingerprint, but munge the message so it's not valid.
   1967   in_msg->AddFingerprint();
   1968   in_msg->SetTransactionID("TESTTESTBADD");
   1969   WriteStunMessage(in_msg.get(), buf.get());
   1970   EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1971                                     out_msg.accept(), &username));
   1972   EXPECT_EQ(0, port->last_stun_error_code());
   1973 
   1974   // Valid BINDING-RESPONSE, except no FINGERPRINT.
   1975   in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
   1976   in_msg->AddAttribute(
   1977       new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
   1978   in_msg->AddMessageIntegrity("rpass");
   1979   WriteStunMessage(in_msg.get(), buf.get());
   1980   EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1981                                     out_msg.accept(), &username));
   1982   EXPECT_EQ(0, port->last_stun_error_code());
   1983 
   1984   // Now, add a fingerprint, but munge the message so it's not valid.
   1985   in_msg->AddFingerprint();
   1986   in_msg->SetTransactionID("TESTTESTBADD");
   1987   WriteStunMessage(in_msg.get(), buf.get());
   1988   EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1989                                     out_msg.accept(), &username));
   1990   EXPECT_EQ(0, port->last_stun_error_code());
   1991 
   1992   // Valid BINDING-ERROR-RESPONSE, except no FINGERPRINT.
   1993   in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE));
   1994   in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
   1995       STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR));
   1996   in_msg->AddMessageIntegrity("rpass");
   1997   WriteStunMessage(in_msg.get(), buf.get());
   1998   EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   1999                                     out_msg.accept(), &username));
   2000   EXPECT_EQ(0, port->last_stun_error_code());
   2001 
   2002   // Now, add a fingerprint, but munge the message so it's not valid.
   2003   in_msg->AddFingerprint();
   2004   in_msg->SetTransactionID("TESTTESTBADD");
   2005   WriteStunMessage(in_msg.get(), buf.get());
   2006   EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
   2007                                     out_msg.accept(), &username));
   2008   EXPECT_EQ(0, port->last_stun_error_code());
   2009 }
   2010 
   2011 // Test handling of STUN binding indication messages (as ICE). STUN binding
   2012 // indications are allowed only to the connection which is in read mode.
   2013 TEST_F(PortTest, TestHandleStunBindingIndication) {
   2014   talk_base::scoped_ptr<TestPort> lport(
   2015       CreateTestPort(kLocalAddr2, "lfrag", "lpass"));
   2016   lport->SetIceProtocolType(ICEPROTO_RFC5245);
   2017   lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
   2018   lport->SetIceTiebreaker(kTiebreaker1);
   2019 
   2020   // Verifying encoding and decoding STUN indication message.
   2021   talk_base::scoped_ptr<IceMessage> in_msg, out_msg;
   2022   talk_base::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
   2023   talk_base::SocketAddress addr(kLocalAddr1);
   2024   std::string username;
   2025 
   2026   in_msg.reset(CreateStunMessage(STUN_BINDING_INDICATION));
   2027   in_msg->AddFingerprint();
   2028   WriteStunMessage(in_msg.get(), buf.get());
   2029   EXPECT_TRUE(lport->GetStunMessage(buf->Data(), buf->Length(), addr,
   2030                                     out_msg.accept(), &username));
   2031   EXPECT_TRUE(out_msg.get() != NULL);
   2032   EXPECT_EQ(out_msg->type(), STUN_BINDING_INDICATION);
   2033   EXPECT_EQ("", username);
   2034 
   2035   // Verify connection can handle STUN indication and updates
   2036   // last_ping_received.
   2037   talk_base::scoped_ptr<TestPort> rport(
   2038       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   2039   rport->SetIceProtocolType(ICEPROTO_RFC5245);
   2040   rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
   2041   rport->SetIceTiebreaker(kTiebreaker2);
   2042 
   2043   lport->PrepareAddress();
   2044   rport->PrepareAddress();
   2045   ASSERT_FALSE(lport->Candidates().empty());
   2046   ASSERT_FALSE(rport->Candidates().empty());
   2047 
   2048   Connection* lconn = lport->CreateConnection(rport->Candidates()[0],
   2049                                               Port::ORIGIN_MESSAGE);
   2050   Connection* rconn = rport->CreateConnection(lport->Candidates()[0],
   2051                                               Port::ORIGIN_MESSAGE);
   2052   rconn->Ping(0);
   2053 
   2054   ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
   2055   IceMessage* msg = rport->last_stun_msg();
   2056   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
   2057   // Send rport binding request to lport.
   2058   lconn->OnReadPacket(rport->last_stun_buf()->Data(),
   2059                       rport->last_stun_buf()->Length(),
   2060                       talk_base::PacketTime());
   2061   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
   2062   EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
   2063   uint32 last_ping_received1 = lconn->last_ping_received();
   2064 
   2065   // Adding a delay of 100ms.
   2066   talk_base::Thread::Current()->ProcessMessages(100);
   2067   // Pinging lconn using stun indication message.
   2068   lconn->OnReadPacket(buf->Data(), buf->Length(), talk_base::PacketTime());
   2069   uint32 last_ping_received2 = lconn->last_ping_received();
   2070   EXPECT_GT(last_ping_received2, last_ping_received1);
   2071 }
   2072 
   2073 TEST_F(PortTest, TestComputeCandidatePriority) {
   2074   talk_base::scoped_ptr<TestPort> port(
   2075       CreateTestPort(kLocalAddr1, "name", "pass"));
   2076   port->set_type_preference(90);
   2077   port->set_component(177);
   2078   port->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
   2079   port->AddCandidateAddress(SocketAddress("2001:db8::1234", 1234));
   2080   port->AddCandidateAddress(SocketAddress("fc12:3456::1234", 1234));
   2081   port->AddCandidateAddress(SocketAddress("::ffff:192.168.1.4", 1234));
   2082   port->AddCandidateAddress(SocketAddress("::192.168.1.4", 1234));
   2083   port->AddCandidateAddress(SocketAddress("2002::1234:5678", 1234));
   2084   port->AddCandidateAddress(SocketAddress("2001::1234:5678", 1234));
   2085   port->AddCandidateAddress(SocketAddress("fecf::1234:5678", 1234));
   2086   port->AddCandidateAddress(SocketAddress("3ffe::1234:5678", 1234));
   2087   // These should all be:
   2088   // (90 << 24) | ([rfc3484 pref value] << 8) | (256 - 177)
   2089   uint32 expected_priority_v4 = 1509957199U;
   2090   uint32 expected_priority_v6 = 1509959759U;
   2091   uint32 expected_priority_ula = 1509962319U;
   2092   uint32 expected_priority_v4mapped = expected_priority_v4;
   2093   uint32 expected_priority_v4compat = 1509949775U;
   2094   uint32 expected_priority_6to4 = 1509954639U;
   2095   uint32 expected_priority_teredo = 1509952079U;
   2096   uint32 expected_priority_sitelocal = 1509949775U;
   2097   uint32 expected_priority_6bone = 1509949775U;
   2098   ASSERT_EQ(expected_priority_v4, port->Candidates()[0].priority());
   2099   ASSERT_EQ(expected_priority_v6, port->Candidates()[1].priority());
   2100   ASSERT_EQ(expected_priority_ula, port->Candidates()[2].priority());
   2101   ASSERT_EQ(expected_priority_v4mapped, port->Candidates()[3].priority());
   2102   ASSERT_EQ(expected_priority_v4compat, port->Candidates()[4].priority());
   2103   ASSERT_EQ(expected_priority_6to4, port->Candidates()[5].priority());
   2104   ASSERT_EQ(expected_priority_teredo, port->Candidates()[6].priority());
   2105   ASSERT_EQ(expected_priority_sitelocal, port->Candidates()[7].priority());
   2106   ASSERT_EQ(expected_priority_6bone, port->Candidates()[8].priority());
   2107 }
   2108 
   2109 TEST_F(PortTest, TestPortProxyProperties) {
   2110   talk_base::scoped_ptr<TestPort> port(
   2111       CreateTestPort(kLocalAddr1, "name", "pass"));
   2112   port->SetIceRole(cricket::ICEROLE_CONTROLLING);
   2113   port->SetIceTiebreaker(kTiebreaker1);
   2114 
   2115   // Create a proxy port.
   2116   talk_base::scoped_ptr<PortProxy> proxy(new PortProxy());
   2117   proxy->set_impl(port.get());
   2118   EXPECT_EQ(port->Type(), proxy->Type());
   2119   EXPECT_EQ(port->Network(), proxy->Network());
   2120   EXPECT_EQ(port->GetIceRole(), proxy->GetIceRole());
   2121   EXPECT_EQ(port->IceTiebreaker(), proxy->IceTiebreaker());
   2122 }
   2123 
   2124 // In the case of shared socket, one port may be shared by local and stun.
   2125 // Test that candidates with different types will have different foundation.
   2126 TEST_F(PortTest, TestFoundation) {
   2127   talk_base::scoped_ptr<TestPort> testport(
   2128       CreateTestPort(kLocalAddr1, "name", "pass"));
   2129   testport->AddCandidateAddress(kLocalAddr1, kLocalAddr1,
   2130                                 LOCAL_PORT_TYPE,
   2131                                 cricket::ICE_TYPE_PREFERENCE_HOST, false);
   2132   testport->AddCandidateAddress(kLocalAddr2, kLocalAddr1,
   2133                                 STUN_PORT_TYPE,
   2134                                 cricket::ICE_TYPE_PREFERENCE_SRFLX, true);
   2135   EXPECT_NE(testport->Candidates()[0].foundation(),
   2136             testport->Candidates()[1].foundation());
   2137 }
   2138 
   2139 // This test verifies the foundation of different types of ICE candidates.
   2140 TEST_F(PortTest, TestCandidateFoundation) {
   2141   talk_base::scoped_ptr<talk_base::NATServer> nat_server(
   2142       CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
   2143   talk_base::scoped_ptr<UDPPort> udpport1(CreateUdpPort(kLocalAddr1));
   2144   udpport1->PrepareAddress();
   2145   talk_base::scoped_ptr<UDPPort> udpport2(CreateUdpPort(kLocalAddr1));
   2146   udpport2->PrepareAddress();
   2147   EXPECT_EQ(udpport1->Candidates()[0].foundation(),
   2148             udpport2->Candidates()[0].foundation());
   2149   talk_base::scoped_ptr<TCPPort> tcpport1(CreateTcpPort(kLocalAddr1));
   2150   tcpport1->PrepareAddress();
   2151   talk_base::scoped_ptr<TCPPort> tcpport2(CreateTcpPort(kLocalAddr1));
   2152   tcpport2->PrepareAddress();
   2153   EXPECT_EQ(tcpport1->Candidates()[0].foundation(),
   2154             tcpport2->Candidates()[0].foundation());
   2155   talk_base::scoped_ptr<Port> stunport(
   2156       CreateStunPort(kLocalAddr1, nat_socket_factory1()));
   2157   stunport->PrepareAddress();
   2158   ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout);
   2159   EXPECT_NE(tcpport1->Candidates()[0].foundation(),
   2160             stunport->Candidates()[0].foundation());
   2161   EXPECT_NE(tcpport2->Candidates()[0].foundation(),
   2162             stunport->Candidates()[0].foundation());
   2163   EXPECT_NE(udpport1->Candidates()[0].foundation(),
   2164             stunport->Candidates()[0].foundation());
   2165   EXPECT_NE(udpport2->Candidates()[0].foundation(),
   2166             stunport->Candidates()[0].foundation());
   2167   // Verify GTURN candidate foundation.
   2168   talk_base::scoped_ptr<RelayPort> relayport(
   2169       CreateGturnPort(kLocalAddr1));
   2170   relayport->AddServerAddress(
   2171       cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP));
   2172   relayport->PrepareAddress();
   2173   ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout);
   2174   EXPECT_NE(udpport1->Candidates()[0].foundation(),
   2175             relayport->Candidates()[0].foundation());
   2176   EXPECT_NE(udpport2->Candidates()[0].foundation(),
   2177             relayport->Candidates()[0].foundation());
   2178   // Verifying TURN candidate foundation.
   2179   talk_base::scoped_ptr<Port> turnport1(CreateTurnPort(
   2180       kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
   2181   turnport1->PrepareAddress();
   2182   ASSERT_EQ_WAIT(1U, turnport1->Candidates().size(), kTimeout);
   2183   EXPECT_NE(udpport1->Candidates()[0].foundation(),
   2184             turnport1->Candidates()[0].foundation());
   2185   EXPECT_NE(udpport2->Candidates()[0].foundation(),
   2186             turnport1->Candidates()[0].foundation());
   2187   EXPECT_NE(stunport->Candidates()[0].foundation(),
   2188             turnport1->Candidates()[0].foundation());
   2189   talk_base::scoped_ptr<Port> turnport2(CreateTurnPort(
   2190       kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
   2191   turnport2->PrepareAddress();
   2192   ASSERT_EQ_WAIT(1U, turnport2->Candidates().size(), kTimeout);
   2193   EXPECT_EQ(turnport1->Candidates()[0].foundation(),
   2194             turnport2->Candidates()[0].foundation());
   2195 
   2196   // Running a second turn server, to get different base IP address.
   2197   SocketAddress kTurnUdpIntAddr2("99.99.98.4", STUN_SERVER_PORT);
   2198   SocketAddress kTurnUdpExtAddr2("99.99.98.5", 0);
   2199   TestTurnServer turn_server2(
   2200       talk_base::Thread::Current(), kTurnUdpIntAddr2, kTurnUdpExtAddr2);
   2201   talk_base::scoped_ptr<Port> turnport3(CreateTurnPort(
   2202       kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP,
   2203       kTurnUdpIntAddr2));
   2204   turnport3->PrepareAddress();
   2205   ASSERT_EQ_WAIT(1U, turnport3->Candidates().size(), kTimeout);
   2206   EXPECT_NE(turnport3->Candidates()[0].foundation(),
   2207             turnport2->Candidates()[0].foundation());
   2208 }
   2209 
   2210 // This test verifies the related addresses of different types of
   2211 // ICE candiates.
   2212 TEST_F(PortTest, TestCandidateRelatedAddress) {
   2213   talk_base::scoped_ptr<talk_base::NATServer> nat_server(
   2214       CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
   2215   talk_base::scoped_ptr<UDPPort> udpport(CreateUdpPort(kLocalAddr1));
   2216   udpport->PrepareAddress();
   2217   // For UDPPort, related address will be empty.
   2218   EXPECT_TRUE(udpport->Candidates()[0].related_address().IsNil());
   2219   // Testing related address for stun candidates.
   2220   // For stun candidate related address must be equal to the base
   2221   // socket address.
   2222   talk_base::scoped_ptr<StunPort> stunport(
   2223       CreateStunPort(kLocalAddr1, nat_socket_factory1()));
   2224   stunport->PrepareAddress();
   2225   ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout);
   2226   // Check STUN candidate address.
   2227   EXPECT_EQ(stunport->Candidates()[0].address().ipaddr(),
   2228             kNatAddr1.ipaddr());
   2229   // Check STUN candidate related address.
   2230   EXPECT_EQ(stunport->Candidates()[0].related_address(),
   2231             stunport->GetLocalAddress());
   2232   // Verifying the related address for the GTURN candidates.
   2233   // NOTE: In case of GTURN related address will be equal to the mapped
   2234   // address, but address(mapped) will not be XOR.
   2235   talk_base::scoped_ptr<RelayPort> relayport(
   2236       CreateGturnPort(kLocalAddr1));
   2237   relayport->AddServerAddress(
   2238       cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP));
   2239   relayport->PrepareAddress();
   2240   ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout);
   2241   // For Gturn related address is set to "0.0.0.0:0"
   2242   EXPECT_EQ(talk_base::SocketAddress(),
   2243             relayport->Candidates()[0].related_address());
   2244   // Verifying the related address for TURN candidate.
   2245   // For TURN related address must be equal to the mapped address.
   2246   talk_base::scoped_ptr<Port> turnport(CreateTurnPort(
   2247       kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
   2248   turnport->PrepareAddress();
   2249   ASSERT_EQ_WAIT(1U, turnport->Candidates().size(), kTimeout);
   2250   EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
   2251             turnport->Candidates()[0].address().ipaddr());
   2252   EXPECT_EQ(kNatAddr1.ipaddr(),
   2253             turnport->Candidates()[0].related_address().ipaddr());
   2254 }
   2255 
   2256 // Test priority value overflow handling when preference is set to 3.
   2257 TEST_F(PortTest, TestCandidatePreference) {
   2258   cricket::Candidate cand1;
   2259   cand1.set_preference(3);
   2260   cricket::Candidate cand2;
   2261   cand2.set_preference(1);
   2262   EXPECT_TRUE(cand1.preference() > cand2.preference());
   2263 }
   2264 
   2265 // Test the Connection priority is calculated correctly.
   2266 TEST_F(PortTest, TestConnectionPriority) {
   2267   talk_base::scoped_ptr<TestPort> lport(
   2268       CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
   2269   lport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_HOST);
   2270   talk_base::scoped_ptr<TestPort> rport(
   2271       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
   2272   rport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_RELAY);
   2273   lport->set_component(123);
   2274   lport->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
   2275   rport->set_component(23);
   2276   rport->AddCandidateAddress(SocketAddress("10.1.1.100", 1234));
   2277 
   2278   EXPECT_EQ(0x7E001E85U, lport->Candidates()[0].priority());
   2279   EXPECT_EQ(0x2001EE9U, rport->Candidates()[0].priority());
   2280 
   2281   // RFC 5245
   2282   // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)
   2283   lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
   2284   rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
   2285   Connection* lconn = lport->CreateConnection(
   2286       rport->Candidates()[0], Port::ORIGIN_MESSAGE);
   2287 #if defined(WIN32)
   2288   EXPECT_EQ(0x2001EE9FC003D0BU, lconn->priority());
   2289 #else
   2290   EXPECT_EQ(0x2001EE9FC003D0BLLU, lconn->priority());
   2291 #endif
   2292 
   2293   lport->SetIceRole(cricket::ICEROLE_CONTROLLED);
   2294   rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
   2295   Connection* rconn = rport->CreateConnection(
   2296       lport->Candidates()[0], Port::ORIGIN_MESSAGE);
   2297 #if defined(WIN32)
   2298   EXPECT_EQ(0x2001EE9FC003D0AU, rconn->priority());
   2299 #else
   2300   EXPECT_EQ(0x2001EE9FC003D0ALLU, rconn->priority());
   2301 #endif
   2302 }
   2303 
   2304 TEST_F(PortTest, TestWritableState) {
   2305   UDPPort* port1 = CreateUdpPort(kLocalAddr1);
   2306   UDPPort* port2 = CreateUdpPort(kLocalAddr2);
   2307 
   2308   // Set up channels.
   2309   TestChannel ch1(port1, port2);
   2310   TestChannel ch2(port2, port1);
   2311 
   2312   // Acquire addresses.
   2313   ch1.Start();
   2314   ch2.Start();
   2315   ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
   2316   ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
   2317 
   2318   // Send a ping from src to dst.
   2319   ch1.CreateConnection();
   2320   ASSERT_TRUE(ch1.conn() != NULL);
   2321   EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
   2322   EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout);  // for TCP connect
   2323   ch1.Ping();
   2324   WAIT(!ch2.remote_address().IsNil(), kTimeout);
   2325 
   2326   // Data should be unsendable until the connection is accepted.
   2327   char data[] = "abcd";
   2328   int data_size = ARRAY_SIZE(data);
   2329   talk_base::PacketOptions options;
   2330   EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size, options));
   2331 
   2332   // Accept the connection to return the binding response, transition to
   2333   // writable, and allow data to be sent.
   2334   ch2.AcceptConnection();
   2335   EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
   2336                  kTimeout);
   2337   EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
   2338 
   2339   // Ask the connection to update state as if enough time has passed to lose
   2340   // full writability and 5 pings went unresponded to. We'll accomplish the
   2341   // latter by sending pings but not pumping messages.
   2342   for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
   2343     ch1.Ping(i);
   2344   }
   2345   uint32 unreliable_timeout_delay = CONNECTION_WRITE_CONNECT_TIMEOUT + 500u;
   2346   ch1.conn()->UpdateState(unreliable_timeout_delay);
   2347   EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state());
   2348 
   2349   // Data should be able to be sent in this state.
   2350   EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
   2351 
   2352   // And now allow the other side to process the pings and send binding
   2353   // responses.
   2354   EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
   2355                  kTimeout);
   2356 
   2357   // Wait long enough for a full timeout (past however long we've already
   2358   // waited).
   2359   for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
   2360     ch1.Ping(unreliable_timeout_delay + i);
   2361   }
   2362   ch1.conn()->UpdateState(unreliable_timeout_delay + CONNECTION_WRITE_TIMEOUT +
   2363                           500u);
   2364   EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
   2365 
   2366   // Now that the connection has completely timed out, data send should fail.
   2367   EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size, options));
   2368 
   2369   ch1.Stop();
   2370   ch2.Stop();
   2371 }
   2372 
   2373 TEST_F(PortTest, TestTimeoutForNeverWritable) {
   2374   UDPPort* port1 = CreateUdpPort(kLocalAddr1);
   2375   UDPPort* port2 = CreateUdpPort(kLocalAddr2);
   2376 
   2377   // Set up channels.
   2378   TestChannel ch1(port1, port2);
   2379   TestChannel ch2(port2, port1);
   2380 
   2381   // Acquire addresses.
   2382   ch1.Start();
   2383   ch2.Start();
   2384 
   2385   ch1.CreateConnection();
   2386   ASSERT_TRUE(ch1.conn() != NULL);
   2387   EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
   2388 
   2389   // Attempt to go directly to write timeout.
   2390   for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
   2391     ch1.Ping(i);
   2392   }
   2393   ch1.conn()->UpdateState(CONNECTION_WRITE_TIMEOUT + 500u);
   2394   EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
   2395 }
   2396 
   2397 // This test verifies the connection setup between ICEMODE_FULL
   2398 // and ICEMODE_LITE.
   2399 // In this test |ch1| behaves like FULL mode client and we have created
   2400 // port which responds to the ping message just like LITE client.
   2401 TEST_F(PortTest, TestIceLiteConnectivity) {
   2402   TestPort* ice_full_port = CreateTestPort(
   2403       kLocalAddr1, "lfrag", "lpass", cricket::ICEPROTO_RFC5245,
   2404       cricket::ICEROLE_CONTROLLING, kTiebreaker1);
   2405 
   2406   talk_base::scoped_ptr<TestPort> ice_lite_port(CreateTestPort(
   2407       kLocalAddr2, "rfrag", "rpass", cricket::ICEPROTO_RFC5245,
   2408       cricket::ICEROLE_CONTROLLED, kTiebreaker2));
   2409   // Setup TestChannel. This behaves like FULL mode client.
   2410   TestChannel ch1(ice_full_port, ice_lite_port.get());
   2411   ch1.SetIceMode(ICEMODE_FULL);
   2412 
   2413   // Start gathering candidates.
   2414   ch1.Start();
   2415   ice_lite_port->PrepareAddress();
   2416 
   2417   ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
   2418   ASSERT_FALSE(ice_lite_port->Candidates().empty());
   2419 
   2420   ch1.CreateConnection();
   2421   ASSERT_TRUE(ch1.conn() != NULL);
   2422   EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
   2423 
   2424   // Send ping from full mode client.
   2425   // This ping must not have USE_CANDIDATE_ATTR.
   2426   ch1.Ping();
   2427 
   2428   // Verify stun ping is without USE_CANDIDATE_ATTR. Getting message directly
   2429   // from port.
   2430   ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000);
   2431   IceMessage* msg = ice_full_port->last_stun_msg();
   2432   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
   2433 
   2434   // Respond with a BINDING-RESPONSE from litemode client.
   2435   // NOTE: Ideally we should't create connection at this stage from lite
   2436   // port, as it should be done only after receiving ping with USE_CANDIDATE.
   2437   // But we need a connection to send a response message.
   2438   ice_lite_port->CreateConnection(
   2439       ice_full_port->Candidates()[0], cricket::Port::ORIGIN_MESSAGE);
   2440   talk_base::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
   2441   ice_lite_port->SendBindingResponse(
   2442       request.get(), ice_full_port->Candidates()[0].address());
   2443 
   2444   // Feeding the respone message from litemode to the full mode connection.
   2445   ch1.conn()->OnReadPacket(ice_lite_port->last_stun_buf()->Data(),
   2446                            ice_lite_port->last_stun_buf()->Length(),
   2447                            talk_base::PacketTime());
   2448   // Verifying full mode connection becomes writable from the response.
   2449   EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
   2450                  kTimeout);
   2451   EXPECT_TRUE_WAIT(ch1.nominated(), kTimeout);
   2452 
   2453   // Clear existing stun messsages. Otherwise we will process old stun
   2454   // message right after we send ping.
   2455   ice_full_port->Reset();
   2456   // Send ping. This must have USE_CANDIDATE_ATTR.
   2457   ch1.Ping();
   2458   ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000);
   2459   msg = ice_full_port->last_stun_msg();
   2460   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
   2461   ch1.Stop();
   2462 }
   2463 
   2464 // This test case verifies that the CONTROLLING port does not time out.
   2465 TEST_F(PortTest, TestControllingNoTimeout) {
   2466   SetIceProtocolType(cricket::ICEPROTO_RFC5245);
   2467   UDPPort* port1 = CreateUdpPort(kLocalAddr1);
   2468   ConnectToSignalDestroyed(port1);
   2469   port1->set_timeout_delay(10);  // milliseconds
   2470   port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
   2471   port1->SetIceTiebreaker(kTiebreaker1);
   2472 
   2473   UDPPort* port2 = CreateUdpPort(kLocalAddr2);
   2474   port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
   2475   port2->SetIceTiebreaker(kTiebreaker2);
   2476 
   2477   // Set up channels and ensure both ports will be deleted.
   2478   TestChannel ch1(port1, port2);
   2479   TestChannel ch2(port2, port1);
   2480 
   2481   // Simulate a connection that succeeds, and then is destroyed.
   2482   ConnectAndDisconnectChannels(&ch1, &ch2);
   2483 
   2484   // After the connection is destroyed, the port should not be destroyed.
   2485   talk_base::Thread::Current()->ProcessMessages(kTimeout);
   2486   EXPECT_FALSE(destroyed());
   2487 }
   2488 
   2489 // This test case verifies that the CONTROLLED port does time out, but only
   2490 // after connectivity is lost.
   2491 TEST_F(PortTest, TestControlledTimeout) {
   2492   SetIceProtocolType(cricket::ICEPROTO_RFC5245);
   2493   UDPPort* port1 = CreateUdpPort(kLocalAddr1);
   2494   port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
   2495   port1->SetIceTiebreaker(kTiebreaker1);
   2496 
   2497   UDPPort* port2 = CreateUdpPort(kLocalAddr2);
   2498   ConnectToSignalDestroyed(port2);
   2499   port2->set_timeout_delay(10);  // milliseconds
   2500   port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
   2501   port2->SetIceTiebreaker(kTiebreaker2);
   2502 
   2503   // The connection must not be destroyed before a connection is attempted.
   2504   EXPECT_FALSE(destroyed());
   2505 
   2506   port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
   2507   port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
   2508 
   2509   // Set up channels and ensure both ports will be deleted.
   2510   TestChannel ch1(port1, port2);
   2511   TestChannel ch2(port2, port1);
   2512 
   2513   // Simulate a connection that succeeds, and then is destroyed.
   2514   ConnectAndDisconnectChannels(&ch1, &ch2);
   2515 
   2516   // The controlled port should be destroyed after 10 milliseconds.
   2517   EXPECT_TRUE_WAIT(destroyed(), kTimeout);
   2518 }
   2519