1 /* 2 * Copyright 2004 The WebRTC Project Authors. All rights reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #if defined(WEBRTC_POSIX) 12 #include <sys/types.h> 13 #include <sys/socket.h> 14 #include <netinet/in.h> 15 #ifdef OPENBSD 16 #include <netinet/in_systm.h> 17 #endif 18 #ifndef __native_client__ 19 #include <netinet/ip.h> 20 #endif 21 #include <arpa/inet.h> 22 #include <netdb.h> 23 #include <unistd.h> 24 #endif 25 26 #include <stdio.h> 27 28 #include "webrtc/base/ipaddress.h" 29 #include "webrtc/base/byteorder.h" 30 #include "webrtc/base/nethelpers.h" 31 #include "webrtc/base/logging.h" 32 #include "webrtc/base/win32.h" 33 34 namespace rtc { 35 36 // Prefixes used for categorizing IPv6 addresses. 37 static const in6_addr kV4MappedPrefix = {{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 38 0xFF, 0xFF, 0}}}; 39 static const in6_addr k6To4Prefix = {{{0x20, 0x02, 0}}}; 40 static const in6_addr kTeredoPrefix = {{{0x20, 0x01, 0x00, 0x00}}}; 41 static const in6_addr kV4CompatibilityPrefix = {{{0}}}; 42 static const in6_addr k6BonePrefix = {{{0x3f, 0xfe, 0}}}; 43 44 bool IPAddress::strip_sensitive_ = false; 45 46 static bool IsPrivateV4(uint32 ip); 47 static in_addr ExtractMappedAddress(const in6_addr& addr); 48 49 uint32 IPAddress::v4AddressAsHostOrderInteger() const { 50 if (family_ == AF_INET) { 51 return NetworkToHost32(u_.ip4.s_addr); 52 } else { 53 return 0; 54 } 55 } 56 57 size_t IPAddress::Size() const { 58 switch (family_) { 59 case AF_INET: 60 return sizeof(in_addr); 61 case AF_INET6: 62 return sizeof(in6_addr); 63 } 64 return 0; 65 } 66 67 68 bool IPAddress::operator==(const IPAddress &other) const { 69 if (family_ != other.family_) { 70 return false; 71 } 72 if (family_ == AF_INET) { 73 return memcmp(&u_.ip4, &other.u_.ip4, sizeof(u_.ip4)) == 0; 74 } 75 if (family_ == AF_INET6) { 76 return memcmp(&u_.ip6, &other.u_.ip6, sizeof(u_.ip6)) == 0; 77 } 78 return family_ == AF_UNSPEC; 79 } 80 81 bool IPAddress::operator!=(const IPAddress &other) const { 82 return !((*this) == other); 83 } 84 85 bool IPAddress::operator >(const IPAddress &other) const { 86 return (*this) != other && !((*this) < other); 87 } 88 89 bool IPAddress::operator <(const IPAddress &other) const { 90 // IPv4 is 'less than' IPv6 91 if (family_ != other.family_) { 92 if (family_ == AF_UNSPEC) { 93 return true; 94 } 95 if (family_ == AF_INET && other.family_ == AF_INET6) { 96 return true; 97 } 98 return false; 99 } 100 // Comparing addresses of the same family. 101 switch (family_) { 102 case AF_INET: { 103 return NetworkToHost32(u_.ip4.s_addr) < 104 NetworkToHost32(other.u_.ip4.s_addr); 105 } 106 case AF_INET6: { 107 return memcmp(&u_.ip6.s6_addr, &other.u_.ip6.s6_addr, 16) < 0; 108 } 109 } 110 // Catches AF_UNSPEC and invalid addresses. 111 return false; 112 } 113 114 std::ostream& operator<<(std::ostream& os, const IPAddress& ip) { 115 os << ip.ToString(); 116 return os; 117 } 118 119 in6_addr IPAddress::ipv6_address() const { 120 return u_.ip6; 121 } 122 123 in_addr IPAddress::ipv4_address() const { 124 return u_.ip4; 125 } 126 127 std::string IPAddress::ToString() const { 128 if (family_ != AF_INET && family_ != AF_INET6) { 129 return std::string(); 130 } 131 char buf[INET6_ADDRSTRLEN] = {0}; 132 const void* src = &u_.ip4; 133 if (family_ == AF_INET6) { 134 src = &u_.ip6; 135 } 136 if (!rtc::inet_ntop(family_, src, buf, sizeof(buf))) { 137 return std::string(); 138 } 139 return std::string(buf); 140 } 141 142 std::string IPAddress::ToSensitiveString() const { 143 if (!strip_sensitive_) 144 return ToString(); 145 146 switch (family_) { 147 case AF_INET: { 148 std::string address = ToString(); 149 size_t find_pos = address.rfind('.'); 150 if (find_pos == std::string::npos) 151 return std::string(); 152 address.resize(find_pos); 153 address += ".x"; 154 return address; 155 } 156 case AF_INET6: { 157 // TODO(grunell): Return a string of format 1:2:3:x:x:x:x:x or such 158 // instead of zeroing out. 159 return TruncateIP(*this, 128 - 80).ToString(); 160 } 161 } 162 return std::string(); 163 } 164 165 IPAddress IPAddress::Normalized() const { 166 if (family_ != AF_INET6) { 167 return *this; 168 } 169 if (!IPIsV4Mapped(*this)) { 170 return *this; 171 } 172 in_addr addr = ExtractMappedAddress(u_.ip6); 173 return IPAddress(addr); 174 } 175 176 IPAddress IPAddress::AsIPv6Address() const { 177 if (family_ != AF_INET) { 178 return *this; 179 } 180 in6_addr v6addr = kV4MappedPrefix; 181 ::memcpy(&v6addr.s6_addr[12], &u_.ip4.s_addr, sizeof(u_.ip4.s_addr)); 182 return IPAddress(v6addr); 183 } 184 185 void IPAddress::set_strip_sensitive(bool enable) { 186 strip_sensitive_ = enable; 187 } 188 189 190 bool IsPrivateV4(uint32 ip_in_host_order) { 191 return ((ip_in_host_order >> 24) == 127) || 192 ((ip_in_host_order >> 24) == 10) || 193 ((ip_in_host_order >> 20) == ((172 << 4) | 1)) || 194 ((ip_in_host_order >> 16) == ((192 << 8) | 168)) || 195 ((ip_in_host_order >> 16) == ((169 << 8) | 254)); 196 } 197 198 in_addr ExtractMappedAddress(const in6_addr& in6) { 199 in_addr ipv4; 200 ::memcpy(&ipv4.s_addr, &in6.s6_addr[12], sizeof(ipv4.s_addr)); 201 return ipv4; 202 } 203 204 bool IPFromAddrInfo(struct addrinfo* info, IPAddress* out) { 205 if (!info || !info->ai_addr) { 206 return false; 207 } 208 if (info->ai_addr->sa_family == AF_INET) { 209 sockaddr_in* addr = reinterpret_cast<sockaddr_in*>(info->ai_addr); 210 *out = IPAddress(addr->sin_addr); 211 return true; 212 } else if (info->ai_addr->sa_family == AF_INET6) { 213 sockaddr_in6* addr = reinterpret_cast<sockaddr_in6*>(info->ai_addr); 214 *out = IPAddress(addr->sin6_addr); 215 return true; 216 } 217 return false; 218 } 219 220 bool IPFromString(const std::string& str, IPAddress* out) { 221 if (!out) { 222 return false; 223 } 224 in_addr addr; 225 if (rtc::inet_pton(AF_INET, str.c_str(), &addr) == 0) { 226 in6_addr addr6; 227 if (rtc::inet_pton(AF_INET6, str.c_str(), &addr6) == 0) { 228 *out = IPAddress(); 229 return false; 230 } 231 *out = IPAddress(addr6); 232 } else { 233 *out = IPAddress(addr); 234 } 235 return true; 236 } 237 238 bool IPIsAny(const IPAddress& ip) { 239 switch (ip.family()) { 240 case AF_INET: 241 return ip == IPAddress(INADDR_ANY); 242 case AF_INET6: 243 return ip == IPAddress(in6addr_any); 244 case AF_UNSPEC: 245 return false; 246 } 247 return false; 248 } 249 250 bool IPIsLoopback(const IPAddress& ip) { 251 switch (ip.family()) { 252 case AF_INET: { 253 return ip == IPAddress(INADDR_LOOPBACK); 254 } 255 case AF_INET6: { 256 return ip == IPAddress(in6addr_loopback); 257 } 258 } 259 return false; 260 } 261 262 bool IPIsPrivate(const IPAddress& ip) { 263 switch (ip.family()) { 264 case AF_INET: { 265 return IsPrivateV4(ip.v4AddressAsHostOrderInteger()); 266 } 267 case AF_INET6: { 268 in6_addr v6 = ip.ipv6_address(); 269 return (v6.s6_addr[0] == 0xFE && v6.s6_addr[1] == 0x80) || 270 IPIsLoopback(ip); 271 } 272 } 273 return false; 274 } 275 276 bool IPIsUnspec(const IPAddress& ip) { 277 return ip.family() == AF_UNSPEC; 278 } 279 280 size_t HashIP(const IPAddress& ip) { 281 switch (ip.family()) { 282 case AF_INET: { 283 return ip.ipv4_address().s_addr; 284 } 285 case AF_INET6: { 286 in6_addr v6addr = ip.ipv6_address(); 287 const uint32* v6_as_ints = 288 reinterpret_cast<const uint32*>(&v6addr.s6_addr); 289 return v6_as_ints[0] ^ v6_as_ints[1] ^ v6_as_ints[2] ^ v6_as_ints[3]; 290 } 291 } 292 return 0; 293 } 294 295 IPAddress TruncateIP(const IPAddress& ip, int length) { 296 if (length < 0) { 297 return IPAddress(); 298 } 299 if (ip.family() == AF_INET) { 300 if (length > 31) { 301 return ip; 302 } 303 if (length == 0) { 304 return IPAddress(INADDR_ANY); 305 } 306 int mask = (0xFFFFFFFF << (32 - length)); 307 uint32 host_order_ip = NetworkToHost32(ip.ipv4_address().s_addr); 308 in_addr masked; 309 masked.s_addr = HostToNetwork32(host_order_ip & mask); 310 return IPAddress(masked); 311 } else if (ip.family() == AF_INET6) { 312 if (length > 127) { 313 return ip; 314 } 315 if (length == 0) { 316 return IPAddress(in6addr_any); 317 } 318 in6_addr v6addr = ip.ipv6_address(); 319 int position = length / 32; 320 int inner_length = 32 - (length - (position * 32)); 321 // Note: 64bit mask constant needed to allow possible 32-bit left shift. 322 uint32 inner_mask = 0xFFFFFFFFLL << inner_length; 323 uint32* v6_as_ints = 324 reinterpret_cast<uint32*>(&v6addr.s6_addr); 325 for (int i = 0; i < 4; ++i) { 326 if (i == position) { 327 uint32 host_order_inner = NetworkToHost32(v6_as_ints[i]); 328 v6_as_ints[i] = HostToNetwork32(host_order_inner & inner_mask); 329 } else if (i > position) { 330 v6_as_ints[i] = 0; 331 } 332 } 333 return IPAddress(v6addr); 334 } 335 return IPAddress(); 336 } 337 338 int CountIPMaskBits(IPAddress mask) { 339 uint32 word_to_count = 0; 340 int bits = 0; 341 switch (mask.family()) { 342 case AF_INET: { 343 word_to_count = NetworkToHost32(mask.ipv4_address().s_addr); 344 break; 345 } 346 case AF_INET6: { 347 in6_addr v6addr = mask.ipv6_address(); 348 const uint32* v6_as_ints = 349 reinterpret_cast<const uint32*>(&v6addr.s6_addr); 350 int i = 0; 351 for (; i < 4; ++i) { 352 if (v6_as_ints[i] != 0xFFFFFFFF) { 353 break; 354 } 355 } 356 if (i < 4) { 357 word_to_count = NetworkToHost32(v6_as_ints[i]); 358 } 359 bits = (i * 32); 360 break; 361 } 362 default: { 363 return 0; 364 } 365 } 366 if (word_to_count == 0) { 367 return bits; 368 } 369 370 // Public domain bit-twiddling hack from: 371 // http://graphics.stanford.edu/~seander/bithacks.html 372 // Counts the trailing 0s in the word. 373 unsigned int zeroes = 32; 374 word_to_count &= -static_cast<int32>(word_to_count); 375 if (word_to_count) zeroes--; 376 if (word_to_count & 0x0000FFFF) zeroes -= 16; 377 if (word_to_count & 0x00FF00FF) zeroes -= 8; 378 if (word_to_count & 0x0F0F0F0F) zeroes -= 4; 379 if (word_to_count & 0x33333333) zeroes -= 2; 380 if (word_to_count & 0x55555555) zeroes -= 1; 381 382 return bits + (32 - zeroes); 383 } 384 385 bool IPIsHelper(const IPAddress& ip, const in6_addr& tomatch, int length) { 386 // Helper method for checking IP prefix matches (but only on whole byte 387 // lengths). Length is in bits. 388 in6_addr addr = ip.ipv6_address(); 389 return ::memcmp(&addr, &tomatch, (length >> 3)) == 0; 390 } 391 392 bool IPIs6Bone(const IPAddress& ip) { 393 return IPIsHelper(ip, k6BonePrefix, 16); 394 } 395 396 bool IPIs6To4(const IPAddress& ip) { 397 return IPIsHelper(ip, k6To4Prefix, 16); 398 } 399 400 bool IPIsSiteLocal(const IPAddress& ip) { 401 // Can't use the helper because the prefix is 10 bits. 402 in6_addr addr = ip.ipv6_address(); 403 return addr.s6_addr[0] == 0xFE && (addr.s6_addr[1] & 0xC0) == 0xC0; 404 } 405 406 bool IPIsULA(const IPAddress& ip) { 407 // Can't use the helper because the prefix is 7 bits. 408 in6_addr addr = ip.ipv6_address(); 409 return (addr.s6_addr[0] & 0xFE) == 0xFC; 410 } 411 412 bool IPIsTeredo(const IPAddress& ip) { 413 return IPIsHelper(ip, kTeredoPrefix, 32); 414 } 415 416 bool IPIsV4Compatibility(const IPAddress& ip) { 417 return IPIsHelper(ip, kV4CompatibilityPrefix, 96); 418 } 419 420 bool IPIsV4Mapped(const IPAddress& ip) { 421 return IPIsHelper(ip, kV4MappedPrefix, 96); 422 } 423 424 int IPAddressPrecedence(const IPAddress& ip) { 425 // Precedence values from RFC 3484-bis. Prefers native v4 over 6to4/Teredo. 426 if (ip.family() == AF_INET) { 427 return 30; 428 } else if (ip.family() == AF_INET6) { 429 if (IPIsLoopback(ip)) { 430 return 60; 431 } else if (IPIsULA(ip)) { 432 return 50; 433 } else if (IPIsV4Mapped(ip)) { 434 return 30; 435 } else if (IPIs6To4(ip)) { 436 return 20; 437 } else if (IPIsTeredo(ip)) { 438 return 10; 439 } else if (IPIsV4Compatibility(ip) || IPIsSiteLocal(ip) || IPIs6Bone(ip)) { 440 return 1; 441 } else { 442 // A 'normal' IPv6 address. 443 return 40; 444 } 445 } 446 return 0; 447 } 448 449 } // Namespace talk base 450