Home | History | Annotate | Download | only in resampler
      1 /*
      2  *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <math.h>
     12 
     13 #include "testing/gmock/include/gmock/gmock.h"
     14 #include "testing/gtest/include/gtest/gtest.h"
     15 #include "webrtc/common_audio/include/audio_util.h"
     16 #include "webrtc/common_audio/resampler/push_sinc_resampler.h"
     17 #include "webrtc/common_audio/resampler/sinusoidal_linear_chirp_source.h"
     18 #include "webrtc/system_wrappers/interface/scoped_ptr.h"
     19 #include "webrtc/system_wrappers/interface/tick_util.h"
     20 #include "webrtc/typedefs.h"
     21 
     22 namespace webrtc {
     23 
     24 typedef std::tr1::tuple<int, int, double, double> PushSincResamplerTestData;
     25 class PushSincResamplerTest
     26     : public testing::TestWithParam<PushSincResamplerTestData> {
     27  public:
     28   PushSincResamplerTest()
     29       : input_rate_(std::tr1::get<0>(GetParam())),
     30         output_rate_(std::tr1::get<1>(GetParam())),
     31         rms_error_(std::tr1::get<2>(GetParam())),
     32         low_freq_error_(std::tr1::get<3>(GetParam())) {
     33   }
     34 
     35   virtual ~PushSincResamplerTest() {}
     36 
     37  protected:
     38   void ResampleBenchmarkTest(bool int_format);
     39   void ResampleTest(bool int_format);
     40 
     41   int input_rate_;
     42   int output_rate_;
     43   double rms_error_;
     44   double low_freq_error_;
     45 };
     46 
     47 class ZeroSource : public SincResamplerCallback {
     48  public:
     49   void Run(int frames, float* destination) {
     50     memset(destination, 0, sizeof(float) * frames);
     51   }
     52 };
     53 
     54 void PushSincResamplerTest::ResampleBenchmarkTest(bool int_format) {
     55   const int input_samples = input_rate_ / 100;
     56   const int output_samples = output_rate_ / 100;
     57   const int kResampleIterations = 500000;
     58 
     59   // Source for data to be resampled.
     60   ZeroSource resampler_source;
     61 
     62   scoped_ptr<float[]> resampled_destination(new float[output_samples]);
     63   scoped_ptr<float[]> source(new float[input_samples]);
     64   scoped_ptr<int16_t[]> source_int(new int16_t[input_samples]);
     65   scoped_ptr<int16_t[]> destination_int(new int16_t[output_samples]);
     66 
     67   resampler_source.Run(input_samples, source.get());
     68   for (int i = 0; i < input_samples; ++i) {
     69     source_int[i] = static_cast<int16_t>(floor(32767 * source[i] + 0.5));
     70   }
     71 
     72   printf("Benchmarking %d iterations of %d Hz -> %d Hz:\n",
     73          kResampleIterations, input_rate_, output_rate_);
     74   const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
     75   SincResampler sinc_resampler(io_ratio, SincResampler::kDefaultRequestSize,
     76                                &resampler_source);
     77   TickTime start = TickTime::Now();
     78   for (int i = 0; i < kResampleIterations; ++i) {
     79     sinc_resampler.Resample(output_samples, resampled_destination.get());
     80   }
     81   double total_time_sinc_us = (TickTime::Now() - start).Microseconds();
     82   printf("SincResampler took %.2f us per frame.\n",
     83          total_time_sinc_us / kResampleIterations);
     84 
     85   PushSincResampler resampler(input_samples, output_samples);
     86   start = TickTime::Now();
     87   if (int_format) {
     88     for (int i = 0; i < kResampleIterations; ++i) {
     89       EXPECT_EQ(output_samples,
     90                 resampler.Resample(source_int.get(),
     91                                    input_samples,
     92                                    destination_int.get(),
     93                                    output_samples));
     94     }
     95   } else {
     96     for (int i = 0; i < kResampleIterations; ++i) {
     97       EXPECT_EQ(output_samples,
     98                 resampler.Resample(source.get(),
     99                                    input_samples,
    100                                    resampled_destination.get(),
    101                                    output_samples));
    102     }
    103   }
    104   double total_time_us = (TickTime::Now() - start).Microseconds();
    105   printf("PushSincResampler took %.2f us per frame; which is a %.1f%% overhead "
    106          "on SincResampler.\n\n", total_time_us / kResampleIterations,
    107          (total_time_us - total_time_sinc_us) / total_time_sinc_us * 100);
    108 }
    109 
    110 // Disabled because it takes too long to run routinely. Use for performance
    111 // benchmarking when needed.
    112 TEST_P(PushSincResamplerTest, DISABLED_BenchmarkInt) {
    113   ResampleBenchmarkTest(true);
    114 }
    115 
    116 TEST_P(PushSincResamplerTest, DISABLED_BenchmarkFloat) {
    117   ResampleBenchmarkTest(false);
    118 }
    119 
    120 // Tests resampling using a given input and output sample rate.
    121 void PushSincResamplerTest::ResampleTest(bool int_format) {
    122   // Make comparisons using one second of data.
    123   static const double kTestDurationSecs = 1;
    124   // 10 ms blocks.
    125   const int kNumBlocks = kTestDurationSecs * 100;
    126   const int input_block_size = input_rate_ / 100;
    127   const int output_block_size = output_rate_ / 100;
    128   const int input_samples = kTestDurationSecs * input_rate_;
    129   const int output_samples = kTestDurationSecs * output_rate_;
    130 
    131   // Nyquist frequency for the input sampling rate.
    132   const double input_nyquist_freq = 0.5 * input_rate_;
    133 
    134   // Source for data to be resampled.
    135   SinusoidalLinearChirpSource resampler_source(
    136       input_rate_, input_samples, input_nyquist_freq, 0);
    137 
    138   PushSincResampler resampler(input_block_size, output_block_size);
    139 
    140   // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
    141   // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
    142   scoped_ptr<float[]> resampled_destination(new float[output_samples]);
    143   scoped_ptr<float[]> pure_destination(new float[output_samples]);
    144   scoped_ptr<float[]> source(new float[input_samples]);
    145   scoped_ptr<int16_t[]> source_int(new int16_t[input_block_size]);
    146   scoped_ptr<int16_t[]> destination_int(new int16_t[output_block_size]);
    147 
    148   // The sinc resampler has an implicit delay of approximately half the kernel
    149   // size at the input sample rate. By moving to a push model, this delay
    150   // becomes explicit and is managed by zero-stuffing in PushSincResampler. We
    151   // deal with it in the test by delaying the "pure" source to match. It must be
    152   // checked before the first call to Resample(), because ChunkSize() will
    153   // change afterwards.
    154   const int output_delay_samples = output_block_size -
    155       resampler.get_resampler_for_testing()->ChunkSize();
    156 
    157   // Generate resampled signal.
    158   // With the PushSincResampler, we produce the signal block-by-10ms-block
    159   // rather than in a single pass, to exercise how it will be used in WebRTC.
    160   resampler_source.Run(input_samples, source.get());
    161   if (int_format) {
    162     for (int i = 0; i < kNumBlocks; ++i) {
    163       ScaleAndRoundToInt16(
    164           &source[i * input_block_size], input_block_size, source_int.get());
    165       EXPECT_EQ(output_block_size,
    166                 resampler.Resample(source_int.get(),
    167                                    input_block_size,
    168                                    destination_int.get(),
    169                                    output_block_size));
    170       ScaleToFloat(destination_int.get(),
    171                    output_block_size,
    172                    &resampled_destination[i * output_block_size]);
    173     }
    174   } else {
    175     for (int i = 0; i < kNumBlocks; ++i) {
    176       EXPECT_EQ(
    177           output_block_size,
    178           resampler.Resample(&source[i * input_block_size],
    179                              input_block_size,
    180                              &resampled_destination[i * output_block_size],
    181                              output_block_size));
    182     }
    183   }
    184 
    185   // Generate pure signal.
    186   SinusoidalLinearChirpSource pure_source(
    187       output_rate_, output_samples, input_nyquist_freq, output_delay_samples);
    188   pure_source.Run(output_samples, pure_destination.get());
    189 
    190   // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
    191   // we refer to as low and high.
    192   static const double kLowFrequencyNyquistRange = 0.7;
    193   static const double kHighFrequencyNyquistRange = 0.9;
    194 
    195   // Calculate Root-Mean-Square-Error and maximum error for the resampling.
    196   double sum_of_squares = 0;
    197   double low_freq_max_error = 0;
    198   double high_freq_max_error = 0;
    199   int minimum_rate = std::min(input_rate_, output_rate_);
    200   double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
    201   double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;
    202 
    203   for (int i = 0; i < output_samples; ++i) {
    204     double error = fabs(resampled_destination[i] - pure_destination[i]);
    205 
    206     if (pure_source.Frequency(i) < low_frequency_range) {
    207       if (error > low_freq_max_error)
    208         low_freq_max_error = error;
    209     } else if (pure_source.Frequency(i) < high_frequency_range) {
    210       if (error > high_freq_max_error)
    211         high_freq_max_error = error;
    212     }
    213     // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
    214 
    215     sum_of_squares += error * error;
    216   }
    217 
    218   double rms_error = sqrt(sum_of_squares / output_samples);
    219 
    220   // Convert each error to dbFS.
    221   #define DBFS(x) 20 * log10(x)
    222   rms_error = DBFS(rms_error);
    223   // In order to keep the thresholds in this test identical to SincResamplerTest
    224   // we must account for the quantization error introduced by truncating from
    225   // float to int. This happens twice (once at input and once at output) and we
    226   // allow for the maximum possible error (1 / 32767) for each step.
    227   //
    228   // The quantization error is insignificant in the RMS calculation so does not
    229   // need to be accounted for there.
    230   low_freq_max_error = DBFS(low_freq_max_error - 2.0 / 32767);
    231   high_freq_max_error = DBFS(high_freq_max_error - 2.0 / 32767);
    232 
    233   EXPECT_LE(rms_error, rms_error_);
    234   EXPECT_LE(low_freq_max_error, low_freq_error_);
    235 
    236   // All conversions currently have a high frequency error around -6 dbFS.
    237   static const double kHighFrequencyMaxError = -6.02;
    238   EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError);
    239 }
    240 
    241 TEST_P(PushSincResamplerTest, ResampleInt) { ResampleTest(true); }
    242 
    243 TEST_P(PushSincResamplerTest, ResampleFloat) { ResampleTest(false); }
    244 
    245 // Almost all conversions have an RMS error of around -14 dbFS.
    246 static const double kResamplingRMSError = -14.42;
    247 
    248 // Thresholds chosen arbitrarily based on what each resampling reported during
    249 // testing.  All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
    250 INSTANTIATE_TEST_CASE_P(
    251     PushSincResamplerTest,
    252     PushSincResamplerTest,
    253     testing::Values(
    254         // First run through the rates tested in SincResamplerTest. The
    255         // thresholds are identical.
    256         //
    257         // We don't test rates which fail to provide an integer number of
    258         // samples in a 10 ms block (22050 and 11025 Hz). WebRTC doesn't support
    259         // these rates in any case (for the same reason).
    260 
    261         // To 44.1kHz
    262         std::tr1::make_tuple(8000, 44100, kResamplingRMSError, -62.73),
    263         std::tr1::make_tuple(16000, 44100, kResamplingRMSError, -62.54),
    264         std::tr1::make_tuple(32000, 44100, kResamplingRMSError, -63.32),
    265         std::tr1::make_tuple(44100, 44100, kResamplingRMSError, -73.53),
    266         std::tr1::make_tuple(48000, 44100, -15.01, -64.04),
    267         std::tr1::make_tuple(96000, 44100, -18.49, -25.51),
    268         std::tr1::make_tuple(192000, 44100, -20.50, -13.31),
    269 
    270         // To 48kHz
    271         std::tr1::make_tuple(8000, 48000, kResamplingRMSError, -63.43),
    272         std::tr1::make_tuple(16000, 48000, kResamplingRMSError, -63.96),
    273         std::tr1::make_tuple(32000, 48000, kResamplingRMSError, -64.04),
    274         std::tr1::make_tuple(44100, 48000, kResamplingRMSError, -62.63),
    275         std::tr1::make_tuple(48000, 48000, kResamplingRMSError, -73.52),
    276         std::tr1::make_tuple(96000, 48000, -18.40, -28.44),
    277         std::tr1::make_tuple(192000, 48000, -20.43, -14.11),
    278 
    279         // To 96kHz
    280         std::tr1::make_tuple(8000, 96000, kResamplingRMSError, -63.19),
    281         std::tr1::make_tuple(16000, 96000, kResamplingRMSError, -63.39),
    282         std::tr1::make_tuple(32000, 96000, kResamplingRMSError, -63.95),
    283         std::tr1::make_tuple(44100, 96000, kResamplingRMSError, -62.63),
    284         std::tr1::make_tuple(48000, 96000, kResamplingRMSError, -73.52),
    285         std::tr1::make_tuple(96000, 96000, kResamplingRMSError, -73.52),
    286         std::tr1::make_tuple(192000, 96000, kResamplingRMSError, -28.41),
    287 
    288         // To 192kHz
    289         std::tr1::make_tuple(8000, 192000, kResamplingRMSError, -63.10),
    290         std::tr1::make_tuple(16000, 192000, kResamplingRMSError, -63.14),
    291         std::tr1::make_tuple(32000, 192000, kResamplingRMSError, -63.38),
    292         std::tr1::make_tuple(44100, 192000, kResamplingRMSError, -62.63),
    293         std::tr1::make_tuple(48000, 192000, kResamplingRMSError, -73.44),
    294         std::tr1::make_tuple(96000, 192000, kResamplingRMSError, -73.52),
    295         std::tr1::make_tuple(192000, 192000, kResamplingRMSError, -73.52),
    296 
    297         // Next run through some additional cases interesting for WebRTC.
    298         // We skip some extreme downsampled cases (192 -> {8, 16}, 96 -> 8)
    299         // because they violate |kHighFrequencyMaxError|, which is not
    300         // unexpected. It's very unlikely that we'll see these conversions in
    301         // practice anyway.
    302 
    303         // To 8 kHz
    304         std::tr1::make_tuple(8000, 8000, kResamplingRMSError, -75.50),
    305         std::tr1::make_tuple(16000, 8000, -18.56, -28.79),
    306         std::tr1::make_tuple(32000, 8000, -20.36, -14.13),
    307         std::tr1::make_tuple(44100, 8000, -21.00, -11.39),
    308         std::tr1::make_tuple(48000, 8000, -20.96, -11.04),
    309 
    310         // To 16 kHz
    311         std::tr1::make_tuple(8000, 16000, kResamplingRMSError, -70.30),
    312         std::tr1::make_tuple(16000, 16000, kResamplingRMSError, -75.51),
    313         std::tr1::make_tuple(32000, 16000, -18.48, -28.59),
    314         std::tr1::make_tuple(44100, 16000, -19.30, -19.67),
    315         std::tr1::make_tuple(48000, 16000, -19.81, -18.11),
    316         std::tr1::make_tuple(96000, 16000, -20.95, -10.96),
    317 
    318         // To 32 kHz
    319         std::tr1::make_tuple(8000, 32000, kResamplingRMSError, -70.30),
    320         std::tr1::make_tuple(16000, 32000, kResamplingRMSError, -75.51),
    321         std::tr1::make_tuple(32000, 32000, kResamplingRMSError, -75.51),
    322         std::tr1::make_tuple(44100, 32000, -16.44, -51.10),
    323         std::tr1::make_tuple(48000, 32000, -16.90, -44.03),
    324         std::tr1::make_tuple(96000, 32000, -19.61, -18.04),
    325         std::tr1::make_tuple(192000, 32000, -21.02, -10.94)));
    326 
    327 }  // namespace webrtc
    328