Home | History | Annotate | Download | only in resampler
      1 /*
      2  *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 // Modified from the Chromium original:
     12 // src/media/base/sinc_resampler.cc
     13 
     14 // Initial input buffer layout, dividing into regions r0_ to r4_ (note: r0_, r3_
     15 // and r4_ will move after the first load):
     16 //
     17 // |----------------|-----------------------------------------|----------------|
     18 //
     19 //                                        request_frames_
     20 //                   <--------------------------------------------------------->
     21 //                                    r0_ (during first load)
     22 //
     23 //  kKernelSize / 2   kKernelSize / 2         kKernelSize / 2   kKernelSize / 2
     24 // <---------------> <--------------->       <---------------> <--------------->
     25 //        r1_               r2_                     r3_               r4_
     26 //
     27 //                             block_size_ == r4_ - r2_
     28 //                   <--------------------------------------->
     29 //
     30 //                                                  request_frames_
     31 //                                    <------------------ ... ----------------->
     32 //                                               r0_ (during second load)
     33 //
     34 // On the second request r0_ slides to the right by kKernelSize / 2 and r3_, r4_
     35 // and block_size_ are reinitialized via step (3) in the algorithm below.
     36 //
     37 // These new regions remain constant until a Flush() occurs.  While complicated,
     38 // this allows us to reduce jitter by always requesting the same amount from the
     39 // provided callback.
     40 //
     41 // The algorithm:
     42 //
     43 // 1) Allocate input_buffer of size: request_frames_ + kKernelSize; this ensures
     44 //    there's enough room to read request_frames_ from the callback into region
     45 //    r0_ (which will move between the first and subsequent passes).
     46 //
     47 // 2) Let r1_, r2_ each represent half the kernel centered around r0_:
     48 //
     49 //        r0_ = input_buffer_ + kKernelSize / 2
     50 //        r1_ = input_buffer_
     51 //        r2_ = r0_
     52 //
     53 //    r0_ is always request_frames_ in size.  r1_, r2_ are kKernelSize / 2 in
     54 //    size.  r1_ must be zero initialized to avoid convolution with garbage (see
     55 //    step (5) for why).
     56 //
     57 // 3) Let r3_, r4_ each represent half the kernel right aligned with the end of
     58 //    r0_ and choose block_size_ as the distance in frames between r4_ and r2_:
     59 //
     60 //        r3_ = r0_ + request_frames_ - kKernelSize
     61 //        r4_ = r0_ + request_frames_ - kKernelSize / 2
     62 //        block_size_ = r4_ - r2_ = request_frames_ - kKernelSize / 2
     63 //
     64 // 4) Consume request_frames_ frames into r0_.
     65 //
     66 // 5) Position kernel centered at start of r2_ and generate output frames until
     67 //    the kernel is centered at the start of r4_ or we've finished generating
     68 //    all the output frames.
     69 //
     70 // 6) Wrap left over data from the r3_ to r1_ and r4_ to r2_.
     71 //
     72 // 7) If we're on the second load, in order to avoid overwriting the frames we
     73 //    just wrapped from r4_ we need to slide r0_ to the right by the size of
     74 //    r4_, which is kKernelSize / 2:
     75 //
     76 //        r0_ = r0_ + kKernelSize / 2 = input_buffer_ + kKernelSize
     77 //
     78 //    r3_, r4_, and block_size_ then need to be reinitialized, so goto (3).
     79 //
     80 // 8) Else, if we're not on the second load, goto (4).
     81 //
     82 // Note: we're glossing over how the sub-sample handling works with
     83 // |virtual_source_idx_|, etc.
     84 
     85 // MSVC++ requires this to be set before any other includes to get M_PI.
     86 #define _USE_MATH_DEFINES
     87 
     88 #include "webrtc/common_audio/resampler/sinc_resampler.h"
     89 #include "webrtc/system_wrappers/interface/compile_assert.h"
     90 #include "webrtc/system_wrappers/interface/cpu_features_wrapper.h"
     91 #include "webrtc/typedefs.h"
     92 
     93 #include <assert.h>
     94 #include <math.h>
     95 #include <string.h>
     96 
     97 #include <limits>
     98 
     99 namespace webrtc {
    100 
    101 static double SincScaleFactor(double io_ratio) {
    102   // |sinc_scale_factor| is basically the normalized cutoff frequency of the
    103   // low-pass filter.
    104   double sinc_scale_factor = io_ratio > 1.0 ? 1.0 / io_ratio : 1.0;
    105 
    106   // The sinc function is an idealized brick-wall filter, but since we're
    107   // windowing it the transition from pass to stop does not happen right away.
    108   // So we should adjust the low pass filter cutoff slightly downward to avoid
    109   // some aliasing at the very high-end.
    110   // TODO(crogers): this value is empirical and to be more exact should vary
    111   // depending on kKernelSize.
    112   sinc_scale_factor *= 0.9;
    113 
    114   return sinc_scale_factor;
    115 }
    116 
    117 // If we know the minimum architecture at compile time, avoid CPU detection.
    118 #if defined(WEBRTC_ARCH_X86_FAMILY)
    119 #if defined(__SSE2__)
    120 #define CONVOLVE_FUNC Convolve_SSE
    121 void SincResampler::InitializeCPUSpecificFeatures() {}
    122 #else
    123 // x86 CPU detection required.  Function will be set by
    124 // InitializeCPUSpecificFeatures().
    125 // TODO(dalecurtis): Once Chrome moves to an SSE baseline this can be removed.
    126 #define CONVOLVE_FUNC convolve_proc_
    127 
    128 void SincResampler::InitializeCPUSpecificFeatures() {
    129   convolve_proc_ = WebRtc_GetCPUInfo(kSSE2) ? Convolve_SSE : Convolve_C;
    130 }
    131 #endif
    132 #elif defined(WEBRTC_ARCH_ARM_V7)
    133 #if defined(WEBRTC_ARCH_ARM_NEON)
    134 #define CONVOLVE_FUNC Convolve_NEON
    135 void SincResampler::InitializeCPUSpecificFeatures() {}
    136 #else
    137 // ARM CPU detection required.  Function will be set by
    138 // InitializeCPUSpecificFeatures().
    139 #define CONVOLVE_FUNC convolve_proc_
    140 
    141 void SincResampler::InitializeCPUSpecificFeatures() {
    142   convolve_proc_ = WebRtc_GetCPUFeaturesARM() & kCPUFeatureNEON ?
    143       Convolve_NEON : Convolve_C;
    144 }
    145 #endif
    146 #else
    147 // Unknown architecture.
    148 #define CONVOLVE_FUNC Convolve_C
    149 void SincResampler::InitializeCPUSpecificFeatures() {}
    150 #endif
    151 
    152 SincResampler::SincResampler(double io_sample_rate_ratio,
    153                              int request_frames,
    154                              SincResamplerCallback* read_cb)
    155     : io_sample_rate_ratio_(io_sample_rate_ratio),
    156       read_cb_(read_cb),
    157       request_frames_(request_frames),
    158       input_buffer_size_(request_frames_ + kKernelSize),
    159       // Create input buffers with a 16-byte alignment for SSE optimizations.
    160       kernel_storage_(static_cast<float*>(
    161           AlignedMalloc(sizeof(float) * kKernelStorageSize, 16))),
    162       kernel_pre_sinc_storage_(static_cast<float*>(
    163           AlignedMalloc(sizeof(float) * kKernelStorageSize, 16))),
    164       kernel_window_storage_(static_cast<float*>(
    165           AlignedMalloc(sizeof(float) * kKernelStorageSize, 16))),
    166       input_buffer_(static_cast<float*>(
    167           AlignedMalloc(sizeof(float) * input_buffer_size_, 16))),
    168 #if defined(WEBRTC_CPU_DETECTION)
    169       convolve_proc_(NULL),
    170 #endif
    171       r1_(input_buffer_.get()),
    172       r2_(input_buffer_.get() + kKernelSize / 2) {
    173 #if defined(WEBRTC_CPU_DETECTION)
    174   InitializeCPUSpecificFeatures();
    175   assert(convolve_proc_);
    176 #endif
    177   assert(request_frames_ > 0);
    178   Flush();
    179   assert(block_size_ > kKernelSize);
    180 
    181   memset(kernel_storage_.get(), 0,
    182          sizeof(*kernel_storage_.get()) * kKernelStorageSize);
    183   memset(kernel_pre_sinc_storage_.get(), 0,
    184          sizeof(*kernel_pre_sinc_storage_.get()) * kKernelStorageSize);
    185   memset(kernel_window_storage_.get(), 0,
    186          sizeof(*kernel_window_storage_.get()) * kKernelStorageSize);
    187 
    188   InitializeKernel();
    189 }
    190 
    191 SincResampler::~SincResampler() {}
    192 
    193 void SincResampler::UpdateRegions(bool second_load) {
    194   // Setup various region pointers in the buffer (see diagram above).  If we're
    195   // on the second load we need to slide r0_ to the right by kKernelSize / 2.
    196   r0_ = input_buffer_.get() + (second_load ? kKernelSize : kKernelSize / 2);
    197   r3_ = r0_ + request_frames_ - kKernelSize;
    198   r4_ = r0_ + request_frames_ - kKernelSize / 2;
    199   block_size_ = r4_ - r2_;
    200 
    201   // r1_ at the beginning of the buffer.
    202   assert(r1_ == input_buffer_.get());
    203   // r1_ left of r2_, r4_ left of r3_ and size correct.
    204   assert(r2_ - r1_ == r4_ - r3_);
    205   // r2_ left of r3.
    206   assert(r2_ < r3_);
    207 }
    208 
    209 void SincResampler::InitializeKernel() {
    210   // Blackman window parameters.
    211   static const double kAlpha = 0.16;
    212   static const double kA0 = 0.5 * (1.0 - kAlpha);
    213   static const double kA1 = 0.5;
    214   static const double kA2 = 0.5 * kAlpha;
    215 
    216   // Generates a set of windowed sinc() kernels.
    217   // We generate a range of sub-sample offsets from 0.0 to 1.0.
    218   const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
    219   for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
    220     const float subsample_offset =
    221         static_cast<float>(offset_idx) / kKernelOffsetCount;
    222 
    223     for (int i = 0; i < kKernelSize; ++i) {
    224       const int idx = i + offset_idx * kKernelSize;
    225       const float pre_sinc = M_PI * (i - kKernelSize / 2 - subsample_offset);
    226       kernel_pre_sinc_storage_[idx] = pre_sinc;
    227 
    228       // Compute Blackman window, matching the offset of the sinc().
    229       const float x = (i - subsample_offset) / kKernelSize;
    230       const float window = kA0 - kA1 * cos(2.0 * M_PI * x) + kA2
    231           * cos(4.0 * M_PI * x);
    232       kernel_window_storage_[idx] = window;
    233 
    234       // Compute the sinc with offset, then window the sinc() function and store
    235       // at the correct offset.
    236       if (pre_sinc == 0) {
    237         kernel_storage_[idx] = sinc_scale_factor * window;
    238       } else {
    239         kernel_storage_[idx] =
    240             window * sin(sinc_scale_factor * pre_sinc) / pre_sinc;
    241       }
    242     }
    243   }
    244 }
    245 
    246 void SincResampler::SetRatio(double io_sample_rate_ratio) {
    247   if (fabs(io_sample_rate_ratio_ - io_sample_rate_ratio) <
    248       std::numeric_limits<double>::epsilon()) {
    249     return;
    250   }
    251 
    252   io_sample_rate_ratio_ = io_sample_rate_ratio;
    253 
    254   // Optimize reinitialization by reusing values which are independent of
    255   // |sinc_scale_factor|.  Provides a 3x speedup.
    256   const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
    257   for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
    258     for (int i = 0; i < kKernelSize; ++i) {
    259       const int idx = i + offset_idx * kKernelSize;
    260       const float window = kernel_window_storage_[idx];
    261       const float pre_sinc = kernel_pre_sinc_storage_[idx];
    262 
    263       if (pre_sinc == 0) {
    264         kernel_storage_[idx] = sinc_scale_factor * window;
    265       } else {
    266         kernel_storage_[idx] =
    267             window * sin(sinc_scale_factor * pre_sinc) / pre_sinc;
    268       }
    269     }
    270   }
    271 }
    272 
    273 void SincResampler::Resample(int frames, float* destination) {
    274   int remaining_frames = frames;
    275 
    276   // Step (1) -- Prime the input buffer at the start of the input stream.
    277   if (!buffer_primed_ && remaining_frames) {
    278     read_cb_->Run(request_frames_, r0_);
    279     buffer_primed_ = true;
    280   }
    281 
    282   // Step (2) -- Resample!  const what we can outside of the loop for speed.  It
    283   // actually has an impact on ARM performance.  See inner loop comment below.
    284   const double current_io_ratio = io_sample_rate_ratio_;
    285   const float* const kernel_ptr = kernel_storage_.get();
    286   while (remaining_frames) {
    287     // |i| may be negative if the last Resample() call ended on an iteration
    288     // that put |virtual_source_idx_| over the limit.
    289     //
    290     // Note: The loop construct here can severely impact performance on ARM
    291     // or when built with clang.  See https://codereview.chromium.org/18566009/
    292     for (int i = ceil((block_size_ - virtual_source_idx_) / current_io_ratio);
    293          i > 0; --i) {
    294       assert(virtual_source_idx_ < block_size_);
    295 
    296       // |virtual_source_idx_| lies in between two kernel offsets so figure out
    297       // what they are.
    298       const int source_idx = virtual_source_idx_;
    299       const double subsample_remainder = virtual_source_idx_ - source_idx;
    300 
    301       const double virtual_offset_idx =
    302           subsample_remainder * kKernelOffsetCount;
    303       const int offset_idx = virtual_offset_idx;
    304 
    305       // We'll compute "convolutions" for the two kernels which straddle
    306       // |virtual_source_idx_|.
    307       const float* const k1 = kernel_ptr + offset_idx * kKernelSize;
    308       const float* const k2 = k1 + kKernelSize;
    309 
    310       // Ensure |k1|, |k2| are 16-byte aligned for SIMD usage.  Should always be
    311       // true so long as kKernelSize is a multiple of 16.
    312       assert(0u == (reinterpret_cast<uintptr_t>(k1) & 0x0F));
    313       assert(0u == (reinterpret_cast<uintptr_t>(k2) & 0x0F));
    314 
    315       // Initialize input pointer based on quantized |virtual_source_idx_|.
    316       const float* const input_ptr = r1_ + source_idx;
    317 
    318       // Figure out how much to weight each kernel's "convolution".
    319       const double kernel_interpolation_factor =
    320           virtual_offset_idx - offset_idx;
    321       *destination++ = CONVOLVE_FUNC(
    322           input_ptr, k1, k2, kernel_interpolation_factor);
    323 
    324       // Advance the virtual index.
    325       virtual_source_idx_ += current_io_ratio;
    326 
    327       if (!--remaining_frames)
    328         return;
    329     }
    330 
    331     // Wrap back around to the start.
    332     virtual_source_idx_ -= block_size_;
    333 
    334     // Step (3) -- Copy r3_, r4_ to r1_, r2_.
    335     // This wraps the last input frames back to the start of the buffer.
    336     memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * kKernelSize);
    337 
    338     // Step (4) -- Reinitialize regions if necessary.
    339     if (r0_ == r2_)
    340       UpdateRegions(true);
    341 
    342     // Step (5) -- Refresh the buffer with more input.
    343     read_cb_->Run(request_frames_, r0_);
    344   }
    345 }
    346 
    347 #undef CONVOLVE_FUNC
    348 
    349 int SincResampler::ChunkSize() const {
    350   return block_size_ / io_sample_rate_ratio_;
    351 }
    352 
    353 void SincResampler::Flush() {
    354   virtual_source_idx_ = 0;
    355   buffer_primed_ = false;
    356   memset(input_buffer_.get(), 0,
    357          sizeof(*input_buffer_.get()) * input_buffer_size_);
    358   UpdateRegions(false);
    359 }
    360 
    361 float SincResampler::Convolve_C(const float* input_ptr, const float* k1,
    362                                 const float* k2,
    363                                 double kernel_interpolation_factor) {
    364   float sum1 = 0;
    365   float sum2 = 0;
    366 
    367   // Generate a single output sample.  Unrolling this loop hurt performance in
    368   // local testing.
    369   int n = kKernelSize;
    370   while (n--) {
    371     sum1 += *input_ptr * *k1++;
    372     sum2 += *input_ptr++ * *k2++;
    373   }
    374 
    375   // Linearly interpolate the two "convolutions".
    376   return (1.0 - kernel_interpolation_factor) * sum1
    377       + kernel_interpolation_factor * sum2;
    378 }
    379 
    380 }  // namespace webrtc
    381