Home | History | Annotate | Download | only in source
      1 /*
      2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 #include "webrtc/modules/video_coding/main/source/jitter_buffer.h"
     11 
     12 #include <assert.h>
     13 
     14 #include <algorithm>
     15 #include <utility>
     16 
     17 #include "webrtc/modules/video_coding/main/interface/video_coding.h"
     18 #include "webrtc/modules/video_coding/main/source/frame_buffer.h"
     19 #include "webrtc/modules/video_coding/main/source/inter_frame_delay.h"
     20 #include "webrtc/modules/video_coding/main/source/internal_defines.h"
     21 #include "webrtc/modules/video_coding/main/source/jitter_buffer_common.h"
     22 #include "webrtc/modules/video_coding/main/source/jitter_estimator.h"
     23 #include "webrtc/modules/video_coding/main/source/packet.h"
     24 #include "webrtc/system_wrappers/interface/clock.h"
     25 #include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
     26 #include "webrtc/system_wrappers/interface/event_wrapper.h"
     27 #include "webrtc/system_wrappers/interface/logging.h"
     28 #include "webrtc/system_wrappers/interface/trace_event.h"
     29 
     30 namespace webrtc {
     31 
     32 // Use this rtt if no value has been reported.
     33 static const uint32_t kDefaultRtt = 200;
     34 
     35 typedef std::pair<uint32_t, VCMFrameBuffer*> FrameListPair;
     36 
     37 bool IsKeyFrame(FrameListPair pair) {
     38   return pair.second->FrameType() == kVideoFrameKey;
     39 }
     40 
     41 bool HasNonEmptyState(FrameListPair pair) {
     42   return pair.second->GetState() != kStateEmpty;
     43 }
     44 
     45 void FrameList::InsertFrame(VCMFrameBuffer* frame) {
     46   insert(rbegin().base(), FrameListPair(frame->TimeStamp(), frame));
     47 }
     48 
     49 VCMFrameBuffer* FrameList::FindFrame(uint32_t timestamp) const {
     50   FrameList::const_iterator it = find(timestamp);
     51   if (it == end())
     52     return NULL;
     53   return it->second;
     54 }
     55 
     56 VCMFrameBuffer* FrameList::PopFrame(uint32_t timestamp) {
     57   FrameList::iterator it = find(timestamp);
     58   if (it == end())
     59     return NULL;
     60   VCMFrameBuffer* frame = it->second;
     61   erase(it);
     62   return frame;
     63 }
     64 
     65 VCMFrameBuffer* FrameList::Front() const {
     66   return begin()->second;
     67 }
     68 
     69 VCMFrameBuffer* FrameList::Back() const {
     70   return rbegin()->second;
     71 }
     72 
     73 int FrameList::RecycleFramesUntilKeyFrame(FrameList::iterator* key_frame_it,
     74                                           UnorderedFrameList* free_frames) {
     75   int drop_count = 0;
     76   FrameList::iterator it = begin();
     77   while (!empty()) {
     78     // Throw at least one frame.
     79     it->second->Reset();
     80     free_frames->push_back(it->second);
     81     erase(it++);
     82     ++drop_count;
     83     if (it != end() && it->second->FrameType() == kVideoFrameKey) {
     84       *key_frame_it = it;
     85       return drop_count;
     86     }
     87   }
     88   *key_frame_it = end();
     89   return drop_count;
     90 }
     91 
     92 int FrameList::CleanUpOldOrEmptyFrames(VCMDecodingState* decoding_state,
     93                                        UnorderedFrameList* free_frames) {
     94   int drop_count = 0;
     95   while (!empty()) {
     96     VCMFrameBuffer* oldest_frame = Front();
     97     bool remove_frame = false;
     98     if (oldest_frame->GetState() == kStateEmpty && size() > 1) {
     99       // This frame is empty, try to update the last decoded state and drop it
    100       // if successful.
    101       remove_frame = decoding_state->UpdateEmptyFrame(oldest_frame);
    102     } else {
    103       remove_frame = decoding_state->IsOldFrame(oldest_frame);
    104     }
    105     if (!remove_frame) {
    106       break;
    107     }
    108     free_frames->push_back(oldest_frame);
    109     ++drop_count;
    110     TRACE_EVENT_INSTANT1("webrtc", "JB::OldOrEmptyFrameDropped", "timestamp",
    111                          oldest_frame->TimeStamp());
    112     erase(begin());
    113   }
    114   return drop_count;
    115 }
    116 
    117 void FrameList::Reset(UnorderedFrameList* free_frames) {
    118   while (!empty()) {
    119     begin()->second->Reset();
    120     free_frames->push_back(begin()->second);
    121     erase(begin());
    122   }
    123 }
    124 
    125 VCMJitterBuffer::VCMJitterBuffer(Clock* clock,
    126                                  EventFactory* event_factory)
    127     : clock_(clock),
    128       running_(false),
    129       crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
    130       frame_event_(event_factory->CreateEvent()),
    131       packet_event_(event_factory->CreateEvent()),
    132       max_number_of_frames_(kStartNumberOfFrames),
    133       frame_buffers_(),
    134       free_frames_(),
    135       decodable_frames_(),
    136       incomplete_frames_(),
    137       last_decoded_state_(),
    138       first_packet_since_reset_(true),
    139       incoming_frame_rate_(0),
    140       incoming_frame_count_(0),
    141       time_last_incoming_frame_count_(0),
    142       incoming_bit_count_(0),
    143       incoming_bit_rate_(0),
    144       drop_count_(0),
    145       num_consecutive_old_frames_(0),
    146       num_consecutive_old_packets_(0),
    147       num_discarded_packets_(0),
    148       jitter_estimate_(),
    149       inter_frame_delay_(clock_->TimeInMilliseconds()),
    150       rtt_ms_(kDefaultRtt),
    151       nack_mode_(kNoNack),
    152       low_rtt_nack_threshold_ms_(-1),
    153       high_rtt_nack_threshold_ms_(-1),
    154       missing_sequence_numbers_(SequenceNumberLessThan()),
    155       nack_seq_nums_(),
    156       max_nack_list_size_(0),
    157       max_packet_age_to_nack_(0),
    158       max_incomplete_time_ms_(0),
    159       decode_error_mode_(kNoErrors),
    160       average_packets_per_frame_(0.0f),
    161       frame_counter_(0) {
    162   memset(frame_buffers_, 0, sizeof(frame_buffers_));
    163 
    164   for (int i = 0; i < kStartNumberOfFrames; i++) {
    165     frame_buffers_[i] = new VCMFrameBuffer();
    166     free_frames_.push_back(frame_buffers_[i]);
    167   }
    168 }
    169 
    170 VCMJitterBuffer::~VCMJitterBuffer() {
    171   Stop();
    172   for (int i = 0; i < kMaxNumberOfFrames; i++) {
    173     if (frame_buffers_[i]) {
    174       delete frame_buffers_[i];
    175     }
    176   }
    177   delete crit_sect_;
    178 }
    179 
    180 void VCMJitterBuffer::CopyFrom(const VCMJitterBuffer& rhs) {
    181   if (this != &rhs) {
    182     crit_sect_->Enter();
    183     rhs.crit_sect_->Enter();
    184     running_ = rhs.running_;
    185     max_number_of_frames_ = rhs.max_number_of_frames_;
    186     incoming_frame_rate_ = rhs.incoming_frame_rate_;
    187     incoming_frame_count_ = rhs.incoming_frame_count_;
    188     time_last_incoming_frame_count_ = rhs.time_last_incoming_frame_count_;
    189     incoming_bit_count_ = rhs.incoming_bit_count_;
    190     incoming_bit_rate_ = rhs.incoming_bit_rate_;
    191     drop_count_ = rhs.drop_count_;
    192     num_consecutive_old_frames_ = rhs.num_consecutive_old_frames_;
    193     num_consecutive_old_packets_ = rhs.num_consecutive_old_packets_;
    194     num_discarded_packets_ = rhs.num_discarded_packets_;
    195     jitter_estimate_ = rhs.jitter_estimate_;
    196     inter_frame_delay_ = rhs.inter_frame_delay_;
    197     waiting_for_completion_ = rhs.waiting_for_completion_;
    198     rtt_ms_ = rhs.rtt_ms_;
    199     first_packet_since_reset_ = rhs.first_packet_since_reset_;
    200     last_decoded_state_ =  rhs.last_decoded_state_;
    201     decode_error_mode_ = rhs.decode_error_mode_;
    202     assert(max_nack_list_size_ == rhs.max_nack_list_size_);
    203     assert(max_packet_age_to_nack_ == rhs.max_packet_age_to_nack_);
    204     assert(max_incomplete_time_ms_ == rhs.max_incomplete_time_ms_);
    205     receive_statistics_ = rhs.receive_statistics_;
    206     nack_seq_nums_.resize(rhs.nack_seq_nums_.size());
    207     missing_sequence_numbers_ = rhs.missing_sequence_numbers_;
    208     latest_received_sequence_number_ = rhs.latest_received_sequence_number_;
    209     average_packets_per_frame_ = rhs.average_packets_per_frame_;
    210     for (int i = 0; i < kMaxNumberOfFrames; i++) {
    211       if (frame_buffers_[i] != NULL) {
    212         delete frame_buffers_[i];
    213         frame_buffers_[i] = NULL;
    214       }
    215     }
    216     free_frames_.clear();
    217     decodable_frames_.clear();
    218     incomplete_frames_.clear();
    219     int i = 0;
    220     for (UnorderedFrameList::const_iterator it = rhs.free_frames_.begin();
    221          it != rhs.free_frames_.end(); ++it, ++i) {
    222       frame_buffers_[i] = new VCMFrameBuffer;
    223       free_frames_.push_back(frame_buffers_[i]);
    224     }
    225     CopyFrames(&decodable_frames_, rhs.decodable_frames_, &i);
    226     CopyFrames(&incomplete_frames_, rhs.incomplete_frames_, &i);
    227     rhs.crit_sect_->Leave();
    228     crit_sect_->Leave();
    229   }
    230 }
    231 
    232 void VCMJitterBuffer::CopyFrames(FrameList* to_list,
    233     const FrameList& from_list, int* index) {
    234   to_list->clear();
    235   for (FrameList::const_iterator it = from_list.begin();
    236        it != from_list.end(); ++it, ++*index) {
    237     frame_buffers_[*index] = new VCMFrameBuffer(*it->second);
    238     to_list->InsertFrame(frame_buffers_[*index]);
    239   }
    240 }
    241 
    242 void VCMJitterBuffer::Start() {
    243   CriticalSectionScoped cs(crit_sect_);
    244   running_ = true;
    245   incoming_frame_count_ = 0;
    246   incoming_frame_rate_ = 0;
    247   incoming_bit_count_ = 0;
    248   incoming_bit_rate_ = 0;
    249   time_last_incoming_frame_count_ = clock_->TimeInMilliseconds();
    250   receive_statistics_.clear();
    251 
    252   num_consecutive_old_frames_ = 0;
    253   num_consecutive_old_packets_ = 0;
    254   num_discarded_packets_ = 0;
    255 
    256   // Start in a non-signaled state.
    257   frame_event_->Reset();
    258   packet_event_->Reset();
    259   waiting_for_completion_.frame_size = 0;
    260   waiting_for_completion_.timestamp = 0;
    261   waiting_for_completion_.latest_packet_time = -1;
    262   first_packet_since_reset_ = true;
    263   rtt_ms_ = kDefaultRtt;
    264   last_decoded_state_.Reset();
    265 }
    266 
    267 void VCMJitterBuffer::Stop() {
    268   crit_sect_->Enter();
    269   running_ = false;
    270   last_decoded_state_.Reset();
    271   free_frames_.clear();
    272   decodable_frames_.clear();
    273   incomplete_frames_.clear();
    274   // Make sure all frames are reset and free.
    275   for (int i = 0; i < kMaxNumberOfFrames; i++) {
    276     if (frame_buffers_[i] != NULL) {
    277       static_cast<VCMFrameBuffer*>(frame_buffers_[i])->Reset();
    278       free_frames_.push_back(frame_buffers_[i]);
    279     }
    280   }
    281   crit_sect_->Leave();
    282   // Make sure we wake up any threads waiting on these events.
    283   frame_event_->Set();
    284   packet_event_->Set();
    285 }
    286 
    287 bool VCMJitterBuffer::Running() const {
    288   CriticalSectionScoped cs(crit_sect_);
    289   return running_;
    290 }
    291 
    292 void VCMJitterBuffer::Flush() {
    293   CriticalSectionScoped cs(crit_sect_);
    294   decodable_frames_.Reset(&free_frames_);
    295   incomplete_frames_.Reset(&free_frames_);
    296   last_decoded_state_.Reset();  // TODO(mikhal): sync reset.
    297   frame_event_->Reset();
    298   packet_event_->Reset();
    299   num_consecutive_old_frames_ = 0;
    300   num_consecutive_old_packets_ = 0;
    301   // Also reset the jitter and delay estimates
    302   jitter_estimate_.Reset();
    303   inter_frame_delay_.Reset(clock_->TimeInMilliseconds());
    304   waiting_for_completion_.frame_size = 0;
    305   waiting_for_completion_.timestamp = 0;
    306   waiting_for_completion_.latest_packet_time = -1;
    307   first_packet_since_reset_ = true;
    308   missing_sequence_numbers_.clear();
    309 }
    310 
    311 // Get received key and delta frames
    312 std::map<FrameType, uint32_t> VCMJitterBuffer::FrameStatistics() const {
    313   CriticalSectionScoped cs(crit_sect_);
    314   return receive_statistics_;
    315 }
    316 
    317 int VCMJitterBuffer::num_discarded_packets() const {
    318   CriticalSectionScoped cs(crit_sect_);
    319   return num_discarded_packets_;
    320 }
    321 
    322 // Calculate framerate and bitrate.
    323 void VCMJitterBuffer::IncomingRateStatistics(unsigned int* framerate,
    324                                              unsigned int* bitrate) {
    325   assert(framerate);
    326   assert(bitrate);
    327   CriticalSectionScoped cs(crit_sect_);
    328   const int64_t now = clock_->TimeInMilliseconds();
    329   int64_t diff = now - time_last_incoming_frame_count_;
    330   if (diff < 1000 && incoming_frame_rate_ > 0 && incoming_bit_rate_ > 0) {
    331     // Make sure we report something even though less than
    332     // 1 second has passed since last update.
    333     *framerate = incoming_frame_rate_;
    334     *bitrate = incoming_bit_rate_;
    335   } else if (incoming_frame_count_ != 0) {
    336     // We have received frame(s) since last call to this function
    337 
    338     // Prepare calculations
    339     if (diff <= 0) {
    340       diff = 1;
    341     }
    342     // we add 0.5f for rounding
    343     float rate = 0.5f + ((incoming_frame_count_ * 1000.0f) / diff);
    344     if (rate < 1.0f) {
    345       rate = 1.0f;
    346     }
    347 
    348     // Calculate frame rate
    349     // Let r be rate.
    350     // r(0) = 1000*framecount/delta_time.
    351     // (I.e. frames per second since last calculation.)
    352     // frame_rate = r(0)/2 + r(-1)/2
    353     // (I.e. fr/s average this and the previous calculation.)
    354     *framerate = (incoming_frame_rate_ + static_cast<unsigned int>(rate)) / 2;
    355     incoming_frame_rate_ = static_cast<unsigned int>(rate);
    356 
    357     // Calculate bit rate
    358     if (incoming_bit_count_ == 0) {
    359       *bitrate = 0;
    360     } else {
    361       *bitrate = 10 * ((100 * incoming_bit_count_) /
    362                        static_cast<unsigned int>(diff));
    363     }
    364     incoming_bit_rate_ = *bitrate;
    365 
    366     // Reset count
    367     incoming_frame_count_ = 0;
    368     incoming_bit_count_ = 0;
    369     time_last_incoming_frame_count_ = now;
    370 
    371   } else {
    372     // No frames since last call
    373     time_last_incoming_frame_count_ = clock_->TimeInMilliseconds();
    374     *framerate = 0;
    375     *bitrate = 0;
    376     incoming_frame_rate_ = 0;
    377     incoming_bit_rate_ = 0;
    378   }
    379 }
    380 
    381 // Answers the question:
    382 // Will the packet sequence be complete if the next frame is grabbed for
    383 // decoding right now? That is, have we lost a frame between the last decoded
    384 // frame and the next, or is the next
    385 // frame missing one or more packets?
    386 bool VCMJitterBuffer::CompleteSequenceWithNextFrame() {
    387   CriticalSectionScoped cs(crit_sect_);
    388   // Finding oldest frame ready for decoder, check sequence number and size
    389   CleanUpOldOrEmptyFrames();
    390   if (!decodable_frames_.empty()) {
    391     if (decodable_frames_.Front()->GetState() == kStateComplete) {
    392       return true;
    393     }
    394   } else if (incomplete_frames_.size() <= 1) {
    395     // Frame not ready to be decoded.
    396     return true;
    397   }
    398   return false;
    399 }
    400 
    401 // Returns immediately or a |max_wait_time_ms| ms event hang waiting for a
    402 // complete frame, |max_wait_time_ms| decided by caller.
    403 bool VCMJitterBuffer::NextCompleteTimestamp(
    404     uint32_t max_wait_time_ms, uint32_t* timestamp) {
    405   crit_sect_->Enter();
    406   if (!running_) {
    407     crit_sect_->Leave();
    408     return false;
    409   }
    410   CleanUpOldOrEmptyFrames();
    411 
    412   if (decodable_frames_.empty() ||
    413       decodable_frames_.Front()->GetState() != kStateComplete) {
    414     const int64_t end_wait_time_ms = clock_->TimeInMilliseconds() +
    415         max_wait_time_ms;
    416     int64_t wait_time_ms = max_wait_time_ms;
    417     while (wait_time_ms > 0) {
    418       crit_sect_->Leave();
    419       const EventTypeWrapper ret =
    420         frame_event_->Wait(static_cast<uint32_t>(wait_time_ms));
    421       crit_sect_->Enter();
    422       if (ret == kEventSignaled) {
    423         // Are we shutting down the jitter buffer?
    424         if (!running_) {
    425           crit_sect_->Leave();
    426           return false;
    427         }
    428         // Finding oldest frame ready for decoder.
    429         CleanUpOldOrEmptyFrames();
    430         if (decodable_frames_.empty() ||
    431             decodable_frames_.Front()->GetState() != kStateComplete) {
    432           wait_time_ms = end_wait_time_ms - clock_->TimeInMilliseconds();
    433         } else {
    434           break;
    435         }
    436       } else {
    437         break;
    438       }
    439     }
    440     // Inside |crit_sect_|.
    441   } else {
    442     // We already have a frame, reset the event.
    443     frame_event_->Reset();
    444   }
    445   if (decodable_frames_.empty() ||
    446       decodable_frames_.Front()->GetState() != kStateComplete) {
    447     crit_sect_->Leave();
    448     return false;
    449   }
    450   *timestamp = decodable_frames_.Front()->TimeStamp();
    451   crit_sect_->Leave();
    452   return true;
    453 }
    454 
    455 bool VCMJitterBuffer::NextMaybeIncompleteTimestamp(uint32_t* timestamp) {
    456   CriticalSectionScoped cs(crit_sect_);
    457   if (!running_) {
    458     return false;
    459   }
    460   if (decode_error_mode_ == kNoErrors) {
    461     // No point to continue, as we are not decoding with errors.
    462     return false;
    463   }
    464 
    465   CleanUpOldOrEmptyFrames();
    466 
    467   if (decodable_frames_.empty()) {
    468     return false;
    469   }
    470   VCMFrameBuffer* oldest_frame = decodable_frames_.Front();
    471   // If we have exactly one frame in the buffer, release it only if it is
    472   // complete. We know decodable_frames_ is  not empty due to the previous
    473   // check.
    474   if (decodable_frames_.size() == 1 && incomplete_frames_.empty()
    475       && oldest_frame->GetState() != kStateComplete) {
    476     return false;
    477   }
    478 
    479   *timestamp = oldest_frame->TimeStamp();
    480   return true;
    481 }
    482 
    483 VCMEncodedFrame* VCMJitterBuffer::ExtractAndSetDecode(uint32_t timestamp) {
    484   CriticalSectionScoped cs(crit_sect_);
    485 
    486   if (!running_) {
    487     return NULL;
    488   }
    489   // Extract the frame with the desired timestamp.
    490   VCMFrameBuffer* frame = decodable_frames_.PopFrame(timestamp);
    491   bool continuous = true;
    492   if (!frame) {
    493     frame = incomplete_frames_.PopFrame(timestamp);
    494     if (frame)
    495       continuous = last_decoded_state_.ContinuousFrame(frame);
    496     else
    497       return NULL;
    498   }
    499   TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", timestamp, "Extract");
    500   // Frame pulled out from jitter buffer, update the jitter estimate.
    501   const bool retransmitted = (frame->GetNackCount() > 0);
    502   if (retransmitted) {
    503     jitter_estimate_.FrameNacked();
    504   } else if (frame->Length() > 0) {
    505     // Ignore retransmitted and empty frames.
    506     if (waiting_for_completion_.latest_packet_time >= 0) {
    507       UpdateJitterEstimate(waiting_for_completion_, true);
    508     }
    509     if (frame->GetState() == kStateComplete) {
    510       UpdateJitterEstimate(*frame, false);
    511     } else {
    512       // Wait for this one to get complete.
    513       waiting_for_completion_.frame_size = frame->Length();
    514       waiting_for_completion_.latest_packet_time =
    515           frame->LatestPacketTimeMs();
    516       waiting_for_completion_.timestamp = frame->TimeStamp();
    517     }
    518   }
    519 
    520   // The state must be changed to decoding before cleaning up zero sized
    521   // frames to avoid empty frames being cleaned up and then given to the
    522   // decoder. Propagates the missing_frame bit.
    523   frame->PrepareForDecode(continuous);
    524 
    525   // We have a frame - update the last decoded state and nack list.
    526   last_decoded_state_.SetState(frame);
    527   DropPacketsFromNackList(last_decoded_state_.sequence_num());
    528 
    529   if ((*frame).IsSessionComplete())
    530     UpdateAveragePacketsPerFrame(frame->NumPackets());
    531 
    532   return frame;
    533 }
    534 
    535 // Release frame when done with decoding. Should never be used to release
    536 // frames from within the jitter buffer.
    537 void VCMJitterBuffer::ReleaseFrame(VCMEncodedFrame* frame) {
    538   CriticalSectionScoped cs(crit_sect_);
    539   VCMFrameBuffer* frame_buffer = static_cast<VCMFrameBuffer*>(frame);
    540   if (frame_buffer) {
    541     free_frames_.push_back(frame_buffer);
    542   }
    543 }
    544 
    545 // Gets frame to use for this timestamp. If no match, get empty frame.
    546 VCMFrameBufferEnum VCMJitterBuffer::GetFrame(const VCMPacket& packet,
    547                                              VCMFrameBuffer** frame) {
    548   // Does this packet belong to an old frame?
    549   if (last_decoded_state_.IsOldPacket(&packet)) {
    550     // Account only for media packets.
    551     if (packet.sizeBytes > 0) {
    552       num_discarded_packets_++;
    553       num_consecutive_old_packets_++;
    554     }
    555     // Update last decoded sequence number if the packet arrived late and
    556     // belongs to a frame with a timestamp equal to the last decoded
    557     // timestamp.
    558     last_decoded_state_.UpdateOldPacket(&packet);
    559     DropPacketsFromNackList(last_decoded_state_.sequence_num());
    560 
    561     if (num_consecutive_old_packets_ > kMaxConsecutiveOldPackets) {
    562       LOG(LS_WARNING) << num_consecutive_old_packets_ << " consecutive old "
    563                          "packets received. Flushing the jitter buffer.";
    564       Flush();
    565       return kFlushIndicator;
    566     }
    567     return kOldPacket;
    568   }
    569   num_consecutive_old_packets_ = 0;
    570 
    571   *frame = incomplete_frames_.FindFrame(packet.timestamp);
    572   if (*frame)
    573     return kNoError;
    574   *frame = decodable_frames_.FindFrame(packet.timestamp);
    575   if (*frame)
    576     return kNoError;
    577 
    578   // No match, return empty frame.
    579   *frame = GetEmptyFrame();
    580   VCMFrameBufferEnum ret = kNoError;
    581   if (!*frame) {
    582     // No free frame! Try to reclaim some...
    583     LOG(LS_WARNING) << "Unable to get empty frame; Recycling.";
    584     bool found_key_frame = RecycleFramesUntilKeyFrame();
    585     *frame = GetEmptyFrame();
    586     assert(*frame);
    587     if (!found_key_frame) {
    588       ret = kFlushIndicator;
    589     }
    590   }
    591   (*frame)->Reset();
    592   return ret;
    593 }
    594 
    595 int64_t VCMJitterBuffer::LastPacketTime(const VCMEncodedFrame* frame,
    596                                         bool* retransmitted) const {
    597   assert(retransmitted);
    598   CriticalSectionScoped cs(crit_sect_);
    599   const VCMFrameBuffer* frame_buffer =
    600       static_cast<const VCMFrameBuffer*>(frame);
    601   *retransmitted = (frame_buffer->GetNackCount() > 0);
    602   return frame_buffer->LatestPacketTimeMs();
    603 }
    604 
    605 VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet,
    606                                                  bool* retransmitted) {
    607   CriticalSectionScoped cs(crit_sect_);
    608 
    609   VCMFrameBuffer* frame = NULL;
    610   const VCMFrameBufferEnum error = GetFrame(packet, &frame);
    611   if (error != kNoError && frame == NULL) {
    612     return error;
    613   }
    614 
    615   int64_t now_ms = clock_->TimeInMilliseconds();
    616   // We are keeping track of the first and latest seq numbers, and
    617   // the number of wraps to be able to calculate how many packets we expect.
    618   if (first_packet_since_reset_) {
    619     // Now it's time to start estimating jitter
    620     // reset the delay estimate.
    621     inter_frame_delay_.Reset(now_ms);
    622   }
    623   if (last_decoded_state_.IsOldPacket(&packet)) {
    624     // This packet belongs to an old, already decoded frame, we want to update
    625     // the last decoded sequence number.
    626     last_decoded_state_.UpdateOldPacket(&packet);
    627     drop_count_++;
    628     // Flush if this happens consistently.
    629     num_consecutive_old_frames_++;
    630     if (num_consecutive_old_frames_ > kMaxConsecutiveOldFrames) {
    631       LOG(LS_WARNING) << num_consecutive_old_packets_ << " consecutive old "
    632                          "frames received. Flushing the jitter buffer.";
    633       Flush();
    634       return kFlushIndicator;
    635     }
    636     return kNoError;
    637   }
    638 
    639   num_consecutive_old_frames_ = 0;
    640 
    641   // Empty packets may bias the jitter estimate (lacking size component),
    642   // therefore don't let empty packet trigger the following updates:
    643   if (packet.frameType != kFrameEmpty) {
    644     if (waiting_for_completion_.timestamp == packet.timestamp) {
    645       // This can get bad if we have a lot of duplicate packets,
    646       // we will then count some packet multiple times.
    647       waiting_for_completion_.frame_size += packet.sizeBytes;
    648       waiting_for_completion_.latest_packet_time = now_ms;
    649     } else if (waiting_for_completion_.latest_packet_time >= 0 &&
    650                waiting_for_completion_.latest_packet_time + 2000 <= now_ms) {
    651       // A packet should never be more than two seconds late
    652       UpdateJitterEstimate(waiting_for_completion_, true);
    653       waiting_for_completion_.latest_packet_time = -1;
    654       waiting_for_completion_.frame_size = 0;
    655       waiting_for_completion_.timestamp = 0;
    656     }
    657   }
    658 
    659   VCMFrameBufferStateEnum previous_state = frame->GetState();
    660   // Insert packet.
    661   // Check for first packet. High sequence number will be -1 if neither an empty
    662   // packet nor a media packet has been inserted.
    663   bool first = (frame->GetHighSeqNum() == -1);
    664   FrameData frame_data;
    665   frame_data.rtt_ms = rtt_ms_;
    666   frame_data.rolling_average_packets_per_frame = average_packets_per_frame_;
    667   VCMFrameBufferEnum buffer_return = frame->InsertPacket(packet,
    668                                                          now_ms,
    669                                                          decode_error_mode_,
    670                                                          frame_data);
    671   if (!frame->GetCountedFrame()) {
    672     TRACE_EVENT_ASYNC_BEGIN1("webrtc", "Video", frame->TimeStamp(),
    673                              "timestamp", frame->TimeStamp());
    674   }
    675 
    676   if (buffer_return > 0) {
    677     incoming_bit_count_ += packet.sizeBytes << 3;
    678     if (first_packet_since_reset_) {
    679       latest_received_sequence_number_ = packet.seqNum;
    680       first_packet_since_reset_ = false;
    681     } else {
    682       if (IsPacketRetransmitted(packet)) {
    683         frame->IncrementNackCount();
    684       }
    685       if (!UpdateNackList(packet.seqNum) &&
    686           packet.frameType != kVideoFrameKey) {
    687         buffer_return = kFlushIndicator;
    688       }
    689       latest_received_sequence_number_ = LatestSequenceNumber(
    690           latest_received_sequence_number_, packet.seqNum);
    691     }
    692   }
    693 
    694   // Is the frame already in the decodable list?
    695   bool update_decodable_list = (previous_state != kStateDecodable &&
    696       previous_state != kStateComplete);
    697   bool continuous = IsContinuous(*frame);
    698   switch (buffer_return) {
    699     case kGeneralError:
    700     case kTimeStampError:
    701     case kSizeError: {
    702       // This frame will be cleaned up later from the frame list.
    703       frame->Reset();
    704       break;
    705     }
    706     case kCompleteSession: {
    707       if (update_decodable_list) {
    708         CountFrame(*frame);
    709         frame->SetCountedFrame(true);
    710         if (continuous) {
    711           // Signal that we have a complete session.
    712           frame_event_->Set();
    713         }
    714       }
    715     }
    716     // Note: There is no break here - continuing to kDecodableSession.
    717     case kDecodableSession: {
    718       *retransmitted = (frame->GetNackCount() > 0);
    719       // Signal that we have a received packet.
    720       packet_event_->Set();
    721       if (!update_decodable_list) {
    722         break;
    723       }
    724       if (continuous) {
    725         if (!first) {
    726           incomplete_frames_.PopFrame(packet.timestamp);
    727         }
    728         decodable_frames_.InsertFrame(frame);
    729         FindAndInsertContinuousFrames(*frame);
    730       } else if (first) {
    731         incomplete_frames_.InsertFrame(frame);
    732       }
    733       break;
    734     }
    735     case kIncomplete: {
    736       // No point in storing empty continuous frames.
    737       if (frame->GetState() == kStateEmpty &&
    738           last_decoded_state_.UpdateEmptyFrame(frame)) {
    739         free_frames_.push_back(frame);
    740         frame->Reset();
    741         frame = NULL;
    742         return kNoError;
    743       } else if (first) {
    744         incomplete_frames_.InsertFrame(frame);
    745       }
    746       // Signal that we have received a packet.
    747       packet_event_->Set();
    748       break;
    749     }
    750     case kNoError:
    751     case kOutOfBoundsPacket:
    752     case kDuplicatePacket: {
    753       break;
    754     }
    755     case kFlushIndicator:
    756       return kFlushIndicator;
    757     default: {
    758       assert(false && "JitterBuffer::InsertPacket: Undefined value");
    759     }
    760   }
    761   return buffer_return;
    762 }
    763 
    764 bool VCMJitterBuffer::IsContinuousInState(const VCMFrameBuffer& frame,
    765     const VCMDecodingState& decoding_state) const {
    766   if (decode_error_mode_ == kWithErrors)
    767     return true;
    768   // Is this frame (complete or decodable) and continuous?
    769   // kStateDecodable will never be set when decode_error_mode_ is false
    770   // as SessionInfo determines this state based on the error mode (and frame
    771   // completeness).
    772   if ((frame.GetState() == kStateComplete ||
    773        frame.GetState() == kStateDecodable) &&
    774        decoding_state.ContinuousFrame(&frame)) {
    775     return true;
    776   } else {
    777     return false;
    778   }
    779 }
    780 
    781 bool VCMJitterBuffer::IsContinuous(const VCMFrameBuffer& frame) const {
    782   if (IsContinuousInState(frame, last_decoded_state_)) {
    783     return true;
    784   }
    785   VCMDecodingState decoding_state;
    786   decoding_state.CopyFrom(last_decoded_state_);
    787   for (FrameList::const_iterator it = decodable_frames_.begin();
    788        it != decodable_frames_.end(); ++it)  {
    789     VCMFrameBuffer* decodable_frame = it->second;
    790     if (IsNewerTimestamp(decodable_frame->TimeStamp(), frame.TimeStamp())) {
    791       break;
    792     }
    793     decoding_state.SetState(decodable_frame);
    794     if (IsContinuousInState(frame, decoding_state)) {
    795       return true;
    796     }
    797   }
    798   return false;
    799 }
    800 
    801 void VCMJitterBuffer::FindAndInsertContinuousFrames(
    802     const VCMFrameBuffer& new_frame) {
    803   VCMDecodingState decoding_state;
    804   decoding_state.CopyFrom(last_decoded_state_);
    805   decoding_state.SetState(&new_frame);
    806   // When temporal layers are available, we search for a complete or decodable
    807   // frame until we hit one of the following:
    808   // 1. Continuous base or sync layer.
    809   // 2. The end of the list was reached.
    810   for (FrameList::iterator it = incomplete_frames_.begin();
    811        it != incomplete_frames_.end();)  {
    812     VCMFrameBuffer* frame = it->second;
    813     if (IsNewerTimestamp(new_frame.TimeStamp(), frame->TimeStamp())) {
    814       ++it;
    815       continue;
    816     }
    817     if (IsContinuousInState(*frame, decoding_state)) {
    818       decodable_frames_.InsertFrame(frame);
    819       incomplete_frames_.erase(it++);
    820       decoding_state.SetState(frame);
    821     } else if (frame->TemporalId() <= 0) {
    822       break;
    823     } else {
    824       ++it;
    825     }
    826   }
    827 }
    828 
    829 uint32_t VCMJitterBuffer::EstimatedJitterMs() {
    830   CriticalSectionScoped cs(crit_sect_);
    831   // Compute RTT multiplier for estimation.
    832   // low_rtt_nackThresholdMs_ == -1 means no FEC.
    833   double rtt_mult = 1.0f;
    834   if (low_rtt_nack_threshold_ms_ >= 0 &&
    835       static_cast<int>(rtt_ms_) >= low_rtt_nack_threshold_ms_) {
    836     // For RTTs above low_rtt_nack_threshold_ms_ we don't apply extra delay
    837     // when waiting for retransmissions.
    838     rtt_mult = 0.0f;
    839   }
    840   return jitter_estimate_.GetJitterEstimate(rtt_mult);
    841 }
    842 
    843 void VCMJitterBuffer::UpdateRtt(uint32_t rtt_ms) {
    844   CriticalSectionScoped cs(crit_sect_);
    845   rtt_ms_ = rtt_ms;
    846   jitter_estimate_.UpdateRtt(rtt_ms);
    847 }
    848 
    849 void VCMJitterBuffer::SetNackMode(VCMNackMode mode,
    850                                   int low_rtt_nack_threshold_ms,
    851                                   int high_rtt_nack_threshold_ms) {
    852   CriticalSectionScoped cs(crit_sect_);
    853   nack_mode_ = mode;
    854   if (mode == kNoNack) {
    855     missing_sequence_numbers_.clear();
    856   }
    857   assert(low_rtt_nack_threshold_ms >= -1 && high_rtt_nack_threshold_ms >= -1);
    858   assert(high_rtt_nack_threshold_ms == -1 ||
    859          low_rtt_nack_threshold_ms <= high_rtt_nack_threshold_ms);
    860   assert(low_rtt_nack_threshold_ms > -1 || high_rtt_nack_threshold_ms == -1);
    861   low_rtt_nack_threshold_ms_ = low_rtt_nack_threshold_ms;
    862   high_rtt_nack_threshold_ms_ = high_rtt_nack_threshold_ms;
    863   // Don't set a high start rtt if high_rtt_nack_threshold_ms_ is used, to not
    864   // disable NACK in hybrid mode.
    865   if (rtt_ms_ == kDefaultRtt && high_rtt_nack_threshold_ms_ != -1) {
    866     rtt_ms_ = 0;
    867   }
    868   if (!WaitForRetransmissions()) {
    869     jitter_estimate_.ResetNackCount();
    870   }
    871 }
    872 
    873 void VCMJitterBuffer::SetNackSettings(size_t max_nack_list_size,
    874                                       int max_packet_age_to_nack,
    875                                       int max_incomplete_time_ms) {
    876   CriticalSectionScoped cs(crit_sect_);
    877   assert(max_packet_age_to_nack >= 0);
    878   assert(max_incomplete_time_ms_ >= 0);
    879   max_nack_list_size_ = max_nack_list_size;
    880   max_packet_age_to_nack_ = max_packet_age_to_nack;
    881   max_incomplete_time_ms_ = max_incomplete_time_ms;
    882   nack_seq_nums_.resize(max_nack_list_size_);
    883 }
    884 
    885 VCMNackMode VCMJitterBuffer::nack_mode() const {
    886   CriticalSectionScoped cs(crit_sect_);
    887   return nack_mode_;
    888 }
    889 
    890 int VCMJitterBuffer::NonContinuousOrIncompleteDuration() {
    891   if (incomplete_frames_.empty()) {
    892     return 0;
    893   }
    894   uint32_t start_timestamp = incomplete_frames_.Front()->TimeStamp();
    895   if (!decodable_frames_.empty()) {
    896     start_timestamp = decodable_frames_.Back()->TimeStamp();
    897   }
    898   return incomplete_frames_.Back()->TimeStamp() - start_timestamp;
    899 }
    900 
    901 uint16_t VCMJitterBuffer::EstimatedLowSequenceNumber(
    902     const VCMFrameBuffer& frame) const {
    903   assert(frame.GetLowSeqNum() >= 0);
    904   if (frame.HaveFirstPacket())
    905     return frame.GetLowSeqNum();
    906 
    907   // This estimate is not accurate if more than one packet with lower sequence
    908   // number is lost.
    909   return frame.GetLowSeqNum() - 1;
    910 }
    911 
    912 uint16_t* VCMJitterBuffer::GetNackList(uint16_t* nack_list_size,
    913                                        bool* request_key_frame) {
    914   CriticalSectionScoped cs(crit_sect_);
    915   *request_key_frame = false;
    916   if (nack_mode_ == kNoNack) {
    917     *nack_list_size = 0;
    918     return NULL;
    919   }
    920   if (last_decoded_state_.in_initial_state()) {
    921     VCMFrameBuffer* next_frame =  NextFrame();
    922     const bool first_frame_is_key = next_frame &&
    923         next_frame->FrameType() == kVideoFrameKey &&
    924         next_frame->HaveFirstPacket();
    925     if (!first_frame_is_key) {
    926       bool have_non_empty_frame = decodable_frames_.end() != find_if(
    927           decodable_frames_.begin(), decodable_frames_.end(),
    928           HasNonEmptyState);
    929       if (!have_non_empty_frame) {
    930         have_non_empty_frame = incomplete_frames_.end() != find_if(
    931             incomplete_frames_.begin(), incomplete_frames_.end(),
    932             HasNonEmptyState);
    933       }
    934       bool found_key_frame = RecycleFramesUntilKeyFrame();
    935       if (!found_key_frame) {
    936         *request_key_frame = have_non_empty_frame;
    937         *nack_list_size = 0;
    938         return NULL;
    939       }
    940     }
    941   }
    942   if (TooLargeNackList()) {
    943     *request_key_frame = !HandleTooLargeNackList();
    944   }
    945   if (max_incomplete_time_ms_ > 0) {
    946     int non_continuous_incomplete_duration =
    947         NonContinuousOrIncompleteDuration();
    948     if (non_continuous_incomplete_duration > 90 * max_incomplete_time_ms_) {
    949       LOG_F(LS_WARNING) << "Too long non-decodable duration: "
    950                         << non_continuous_incomplete_duration << " > "
    951                         << 90 * max_incomplete_time_ms_;
    952       FrameList::reverse_iterator rit = find_if(incomplete_frames_.rbegin(),
    953           incomplete_frames_.rend(), IsKeyFrame);
    954       if (rit == incomplete_frames_.rend()) {
    955         // Request a key frame if we don't have one already.
    956         *request_key_frame = true;
    957         *nack_list_size = 0;
    958         return NULL;
    959       } else {
    960         // Skip to the last key frame. If it's incomplete we will start
    961         // NACKing it.
    962         // Note that the estimated low sequence number is correct for VP8
    963         // streams because only the first packet of a key frame is marked.
    964         last_decoded_state_.Reset();
    965         DropPacketsFromNackList(EstimatedLowSequenceNumber(*rit->second));
    966       }
    967     }
    968   }
    969   unsigned int i = 0;
    970   SequenceNumberSet::iterator it = missing_sequence_numbers_.begin();
    971   for (; it != missing_sequence_numbers_.end(); ++it, ++i) {
    972     nack_seq_nums_[i] = *it;
    973   }
    974   *nack_list_size = i;
    975   return &nack_seq_nums_[0];
    976 }
    977 
    978 void VCMJitterBuffer::SetDecodeErrorMode(VCMDecodeErrorMode error_mode) {
    979   CriticalSectionScoped cs(crit_sect_);
    980   decode_error_mode_ = error_mode;
    981 }
    982 
    983 VCMFrameBuffer* VCMJitterBuffer::NextFrame() const {
    984   if (!decodable_frames_.empty())
    985     return decodable_frames_.Front();
    986   if (!incomplete_frames_.empty())
    987     return incomplete_frames_.Front();
    988   return NULL;
    989 }
    990 
    991 bool VCMJitterBuffer::UpdateNackList(uint16_t sequence_number) {
    992   if (nack_mode_ == kNoNack) {
    993     return true;
    994   }
    995   // Make sure we don't add packets which are already too old to be decoded.
    996   if (!last_decoded_state_.in_initial_state()) {
    997     latest_received_sequence_number_ = LatestSequenceNumber(
    998         latest_received_sequence_number_,
    999         last_decoded_state_.sequence_num());
   1000   }
   1001   if (IsNewerSequenceNumber(sequence_number,
   1002                             latest_received_sequence_number_)) {
   1003     // Push any missing sequence numbers to the NACK list.
   1004     for (uint16_t i = latest_received_sequence_number_ + 1;
   1005          IsNewerSequenceNumber(sequence_number, i); ++i) {
   1006       missing_sequence_numbers_.insert(missing_sequence_numbers_.end(), i);
   1007       TRACE_EVENT_INSTANT1("webrtc", "AddNack", "seqnum", i);
   1008     }
   1009     if (TooLargeNackList() && !HandleTooLargeNackList()) {
   1010       LOG(LS_WARNING) << "Requesting key frame due to too large NACK list.";
   1011       return false;
   1012     }
   1013     if (MissingTooOldPacket(sequence_number) &&
   1014         !HandleTooOldPackets(sequence_number)) {
   1015       LOG(LS_WARNING) << "Requesting key frame due to missing too old packets";
   1016       return false;
   1017     }
   1018   } else {
   1019     missing_sequence_numbers_.erase(sequence_number);
   1020     TRACE_EVENT_INSTANT1("webrtc", "RemoveNack", "seqnum", sequence_number);
   1021   }
   1022   return true;
   1023 }
   1024 
   1025 bool VCMJitterBuffer::TooLargeNackList() const {
   1026   return missing_sequence_numbers_.size() > max_nack_list_size_;
   1027 }
   1028 
   1029 bool VCMJitterBuffer::HandleTooLargeNackList() {
   1030   // Recycle frames until the NACK list is small enough. It is likely cheaper to
   1031   // request a key frame than to retransmit this many missing packets.
   1032   LOG_F(LS_WARNING) << "NACK list has grown too large: "
   1033                     << missing_sequence_numbers_.size() << " > "
   1034                     << max_nack_list_size_;
   1035   bool key_frame_found = false;
   1036   while (TooLargeNackList()) {
   1037     key_frame_found = RecycleFramesUntilKeyFrame();
   1038   }
   1039   return key_frame_found;
   1040 }
   1041 
   1042 bool VCMJitterBuffer::MissingTooOldPacket(
   1043     uint16_t latest_sequence_number) const {
   1044   if (missing_sequence_numbers_.empty()) {
   1045     return false;
   1046   }
   1047   const uint16_t age_of_oldest_missing_packet = latest_sequence_number -
   1048       *missing_sequence_numbers_.begin();
   1049   // Recycle frames if the NACK list contains too old sequence numbers as
   1050   // the packets may have already been dropped by the sender.
   1051   return age_of_oldest_missing_packet > max_packet_age_to_nack_;
   1052 }
   1053 
   1054 bool VCMJitterBuffer::HandleTooOldPackets(uint16_t latest_sequence_number) {
   1055   bool key_frame_found = false;
   1056   const uint16_t age_of_oldest_missing_packet = latest_sequence_number -
   1057       *missing_sequence_numbers_.begin();
   1058   LOG_F(LS_WARNING) << "NACK list contains too old sequence numbers: "
   1059                     << age_of_oldest_missing_packet << " > "
   1060                     << max_packet_age_to_nack_;
   1061   while (MissingTooOldPacket(latest_sequence_number)) {
   1062     key_frame_found = RecycleFramesUntilKeyFrame();
   1063   }
   1064   return key_frame_found;
   1065 }
   1066 
   1067 void VCMJitterBuffer::DropPacketsFromNackList(
   1068     uint16_t last_decoded_sequence_number) {
   1069   // Erase all sequence numbers from the NACK list which we won't need any
   1070   // longer.
   1071   missing_sequence_numbers_.erase(missing_sequence_numbers_.begin(),
   1072                                   missing_sequence_numbers_.upper_bound(
   1073                                       last_decoded_sequence_number));
   1074 }
   1075 
   1076 int64_t VCMJitterBuffer::LastDecodedTimestamp() const {
   1077   CriticalSectionScoped cs(crit_sect_);
   1078   return last_decoded_state_.time_stamp();
   1079 }
   1080 
   1081 void VCMJitterBuffer::RenderBufferSize(uint32_t* timestamp_start,
   1082                                        uint32_t* timestamp_end) {
   1083   CriticalSectionScoped cs(crit_sect_);
   1084   CleanUpOldOrEmptyFrames();
   1085   *timestamp_start = 0;
   1086   *timestamp_end = 0;
   1087   if (decodable_frames_.empty()) {
   1088     return;
   1089   }
   1090   *timestamp_start = decodable_frames_.Front()->TimeStamp();
   1091   *timestamp_end = decodable_frames_.Back()->TimeStamp();
   1092 }
   1093 
   1094 VCMFrameBuffer* VCMJitterBuffer::GetEmptyFrame() {
   1095   if (free_frames_.empty()) {
   1096     if (!TryToIncreaseJitterBufferSize()) {
   1097       return NULL;
   1098     }
   1099   }
   1100   VCMFrameBuffer* frame = free_frames_.front();
   1101   free_frames_.pop_front();
   1102   return frame;
   1103 }
   1104 
   1105 bool VCMJitterBuffer::TryToIncreaseJitterBufferSize() {
   1106   if (max_number_of_frames_ >= kMaxNumberOfFrames)
   1107     return false;
   1108   VCMFrameBuffer* new_frame = new VCMFrameBuffer();
   1109   frame_buffers_[max_number_of_frames_] = new_frame;
   1110   free_frames_.push_back(new_frame);
   1111   ++max_number_of_frames_;
   1112   TRACE_COUNTER1("webrtc", "JBMaxFrames", max_number_of_frames_);
   1113   return true;
   1114 }
   1115 
   1116 // Recycle oldest frames up to a key frame, used if jitter buffer is completely
   1117 // full.
   1118 bool VCMJitterBuffer::RecycleFramesUntilKeyFrame() {
   1119   // First release incomplete frames, and only release decodable frames if there
   1120   // are no incomplete ones.
   1121   FrameList::iterator key_frame_it;
   1122   bool key_frame_found = false;
   1123   int dropped_frames = 0;
   1124   dropped_frames += incomplete_frames_.RecycleFramesUntilKeyFrame(
   1125       &key_frame_it, &free_frames_);
   1126   key_frame_found = key_frame_it != incomplete_frames_.end();
   1127   if (dropped_frames == 0) {
   1128     dropped_frames += decodable_frames_.RecycleFramesUntilKeyFrame(
   1129         &key_frame_it, &free_frames_);
   1130     key_frame_found = key_frame_it != decodable_frames_.end();
   1131   }
   1132   drop_count_ += dropped_frames;
   1133   TRACE_EVENT_INSTANT0("webrtc", "JB::RecycleFramesUntilKeyFrame");
   1134   if (key_frame_found) {
   1135     LOG(LS_INFO) << "Found key frame while dropping frames.";
   1136     // Reset last decoded state to make sure the next frame decoded is a key
   1137     // frame, and start NACKing from here.
   1138     last_decoded_state_.Reset();
   1139     DropPacketsFromNackList(EstimatedLowSequenceNumber(*key_frame_it->second));
   1140   } else if (decodable_frames_.empty()) {
   1141     // All frames dropped. Reset the decoding state and clear missing sequence
   1142     // numbers as we're starting fresh.
   1143     last_decoded_state_.Reset();
   1144     missing_sequence_numbers_.clear();
   1145   }
   1146   return key_frame_found;
   1147 }
   1148 
   1149 // Must be called under the critical section |crit_sect_|.
   1150 void VCMJitterBuffer::CountFrame(const VCMFrameBuffer& frame) {
   1151   if (!frame.GetCountedFrame()) {
   1152     // Ignore ACK frames.
   1153     incoming_frame_count_++;
   1154   }
   1155 
   1156   if (frame.FrameType() == kVideoFrameKey) {
   1157     TRACE_EVENT_ASYNC_STEP0("webrtc", "Video",
   1158                             frame.TimeStamp(), "KeyComplete");
   1159   } else {
   1160     TRACE_EVENT_ASYNC_STEP0("webrtc", "Video",
   1161                             frame.TimeStamp(), "DeltaComplete");
   1162   }
   1163 
   1164   // Update receive statistics. We count all layers, thus when you use layers
   1165   // adding all key and delta frames might differ from frame count.
   1166   if (frame.IsSessionComplete()) {
   1167     ++receive_statistics_[frame.FrameType()];
   1168   }
   1169 }
   1170 
   1171 void VCMJitterBuffer::UpdateAveragePacketsPerFrame(int current_number_packets) {
   1172   if (frame_counter_ > kFastConvergeThreshold) {
   1173     average_packets_per_frame_ = average_packets_per_frame_
   1174               * (1 - kNormalConvergeMultiplier)
   1175             + current_number_packets * kNormalConvergeMultiplier;
   1176   } else if (frame_counter_ > 0) {
   1177     average_packets_per_frame_ = average_packets_per_frame_
   1178               * (1 - kFastConvergeMultiplier)
   1179             + current_number_packets * kFastConvergeMultiplier;
   1180     frame_counter_++;
   1181   } else {
   1182     average_packets_per_frame_ = current_number_packets;
   1183     frame_counter_++;
   1184   }
   1185 }
   1186 
   1187 // Must be called under the critical section |crit_sect_|.
   1188 void VCMJitterBuffer::CleanUpOldOrEmptyFrames() {
   1189   drop_count_ +=
   1190       decodable_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
   1191           &free_frames_);
   1192   drop_count_ +=
   1193       incomplete_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
   1194           &free_frames_);
   1195   if (!last_decoded_state_.in_initial_state()) {
   1196     DropPacketsFromNackList(last_decoded_state_.sequence_num());
   1197   }
   1198 }
   1199 
   1200 // Must be called from within |crit_sect_|.
   1201 bool VCMJitterBuffer::IsPacketRetransmitted(const VCMPacket& packet) const {
   1202   return missing_sequence_numbers_.find(packet.seqNum) !=
   1203       missing_sequence_numbers_.end();
   1204 }
   1205 
   1206 // Must be called under the critical section |crit_sect_|. Should never be
   1207 // called with retransmitted frames, they must be filtered out before this
   1208 // function is called.
   1209 void VCMJitterBuffer::UpdateJitterEstimate(const VCMJitterSample& sample,
   1210                                            bool incomplete_frame) {
   1211   if (sample.latest_packet_time == -1) {
   1212     return;
   1213   }
   1214   UpdateJitterEstimate(sample.latest_packet_time, sample.timestamp,
   1215                        sample.frame_size, incomplete_frame);
   1216 }
   1217 
   1218 // Must be called under the critical section crit_sect_. Should never be
   1219 // called with retransmitted frames, they must be filtered out before this
   1220 // function is called.
   1221 void VCMJitterBuffer::UpdateJitterEstimate(const VCMFrameBuffer& frame,
   1222                                            bool incomplete_frame) {
   1223   if (frame.LatestPacketTimeMs() == -1) {
   1224     return;
   1225   }
   1226   // No retransmitted frames should be a part of the jitter
   1227   // estimate.
   1228   UpdateJitterEstimate(frame.LatestPacketTimeMs(), frame.TimeStamp(),
   1229                        frame.Length(), incomplete_frame);
   1230 }
   1231 
   1232 // Must be called under the critical section |crit_sect_|. Should never be
   1233 // called with retransmitted frames, they must be filtered out before this
   1234 // function is called.
   1235 void VCMJitterBuffer::UpdateJitterEstimate(
   1236     int64_t latest_packet_time_ms,
   1237     uint32_t timestamp,
   1238     unsigned int frame_size,
   1239     bool incomplete_frame) {
   1240   if (latest_packet_time_ms == -1) {
   1241     return;
   1242   }
   1243   int64_t frame_delay;
   1244   bool not_reordered = inter_frame_delay_.CalculateDelay(timestamp,
   1245                                                       &frame_delay,
   1246                                                       latest_packet_time_ms);
   1247   // Filter out frames which have been reordered in time by the network
   1248   if (not_reordered) {
   1249     // Update the jitter estimate with the new samples
   1250     jitter_estimate_.UpdateEstimate(frame_delay, frame_size, incomplete_frame);
   1251   }
   1252 }
   1253 
   1254 bool VCMJitterBuffer::WaitForRetransmissions() {
   1255   if (nack_mode_ == kNoNack) {
   1256     // NACK disabled -> don't wait for retransmissions.
   1257     return false;
   1258   }
   1259   // Evaluate if the RTT is higher than |high_rtt_nack_threshold_ms_|, and in
   1260   // that case we don't wait for retransmissions.
   1261   if (high_rtt_nack_threshold_ms_ >= 0 &&
   1262       rtt_ms_ >= static_cast<unsigned int>(high_rtt_nack_threshold_ms_)) {
   1263     return false;
   1264   }
   1265   return true;
   1266 }
   1267 }  // namespace webrtc
   1268