Home | History | Annotate | Download | only in accessibility
      1 // Copyright 2014 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "base/memory/scoped_ptr.h"
      6 #include "base/strings/string_number_conversions.h"
      7 #include "testing/gtest/include/gtest/gtest.h"
      8 #include "ui/accessibility/ax_node.h"
      9 #include "ui/accessibility/ax_serializable_tree.h"
     10 #include "ui/accessibility/ax_tree.h"
     11 #include "ui/accessibility/ax_tree_serializer.h"
     12 
     13 namespace ui {
     14 namespace {
     15 
     16 // A function to turn a tree into a string, capturing only the node ids
     17 // and their relationship to one another.
     18 //
     19 // The string format is kind of like an S-expression, with each expression
     20 // being either a node id, or a node id followed by a subexpression
     21 // representing its children.
     22 //
     23 // Examples:
     24 //
     25 // (1) is a tree with a single node with id 1.
     26 // (1 (2 3)) is a tree with 1 as the root, and 2 and 3 as its children.
     27 // (1 (2 (3))) has 1 as the root, 2 as its child, and then 3 as the child of 2.
     28 void TreeToStringHelper(const AXNode* node, std::string* out_result) {
     29   *out_result += base::IntToString(node->id());
     30   if (node->child_count() != 0) {
     31     *out_result += " (";
     32     for (int i = 0; i < node->child_count(); ++i) {
     33       if (i != 0)
     34         *out_result += " ";
     35       TreeToStringHelper(node->ChildAtIndex(i), out_result);
     36     }
     37     *out_result += ")";
     38   }
     39 }
     40 
     41 std::string TreeToString(const AXTree& tree) {
     42   std::string result;
     43   TreeToStringHelper(tree.GetRoot(), &result);
     44   return "(" + result + ")";
     45 }
     46 
     47 }  // anonymous namespace
     48 
     49 // A class to create all possible trees with <n> nodes and the ids [1...n].
     50 //
     51 // There are two parts to the algorithm:
     52 //
     53 // The tree structure is formed as follows: without loss of generality,
     54 // the first node becomes the root and the second node becomes its
     55 // child. Thereafter, choose every possible parent for every other node.
     56 //
     57 // So for node i in (3...n), there are (i - 1) possible choices for its
     58 // parent, for a total of (n-1)! (n minus 1 factorial) possible trees.
     59 //
     60 // The second part is the assignment of ids to the nodes in the tree.
     61 // There are exactly n! (n factorial) permutations of the sequence 1...n,
     62 // and each of these is assigned to every node in every possible tree.
     63 //
     64 // The total number of trees returned for a given <n>, then, is
     65 // n! * (n-1)!
     66 //
     67 // n = 2: 2 trees
     68 // n = 3: 12 trees
     69 // n = 4: 144 trees
     70 // n = 5: 2880 trees
     71 //
     72 // This grows really fast! Luckily it's very unlikely that there'd be
     73 // bugs that affect trees with >4 nodes that wouldn't affect a smaller tree
     74 // too.
     75 class TreeGenerator {
     76  public:
     77   TreeGenerator(int node_count)
     78       : node_count_(node_count),
     79         unique_tree_count_(1) {
     80     // (n-1)! for the possible trees.
     81     for (int i = 2; i < node_count_; i++)
     82       unique_tree_count_ *= i;
     83     // n! for the permutations of ids.
     84     for (int i = 2; i <= node_count_; i++)
     85       unique_tree_count_ *= i;
     86   }
     87 
     88   int UniqueTreeCount() {
     89     return unique_tree_count_;
     90   }
     91 
     92   void BuildUniqueTree(int tree_index, AXTree* out_tree) {
     93     std::vector<int> indices;
     94     std::vector<int> permuted;
     95     CHECK(tree_index <= unique_tree_count_);
     96 
     97     // Use the first few bits of |tree_index| to permute
     98     // the indices.
     99     for (int i = 0; i < node_count_; i++)
    100       indices.push_back(i + 1);
    101     for (int i = 0; i < node_count_; i++) {
    102       int p = (node_count_ - i);
    103       int index = tree_index % p;
    104       tree_index /= p;
    105       permuted.push_back(indices[index]);
    106       indices.erase(indices.begin() + index);
    107     }
    108 
    109     // Build an AXTreeUpdate. The first two nodes of the tree always
    110     // go in the same place.
    111     AXTreeUpdate update;
    112     update.nodes.resize(node_count_);
    113     update.nodes[0].id = permuted[0];
    114     update.nodes[0].role = AX_ROLE_ROOT_WEB_AREA;
    115     update.nodes[0].child_ids.push_back(permuted[1]);
    116     update.nodes[1].id = permuted[1];
    117 
    118     // The remaining nodes are assigned based on their parent
    119     // selected from the next bits from |tree_index|.
    120     for (int i = 2; i < node_count_; i++) {
    121       update.nodes[i].id = permuted[i];
    122       int parent_index = (tree_index % i);
    123       tree_index /= i;
    124       update.nodes[parent_index].child_ids.push_back(permuted[i]);
    125     }
    126 
    127     // Unserialize the tree update into the destination tree.
    128     CHECK(out_tree->Unserialize(update));
    129   }
    130 
    131  private:
    132   int node_count_;
    133   int unique_tree_count_;
    134 };
    135 
    136 // Test the TreeGenerator class by building all possible trees with
    137 // 3 nodes and the ids [1...3].
    138 TEST(AXGeneratedTreeTest, TestTreeGenerator) {
    139   int tree_size = 3;
    140   TreeGenerator generator(tree_size);
    141   const char* EXPECTED_TREES[] = {
    142     "(1 (2 3))",
    143     "(2 (1 3))",
    144     "(3 (1 2))",
    145     "(1 (3 2))",
    146     "(2 (3 1))",
    147     "(3 (2 1))",
    148     "(1 (2 (3)))",
    149     "(2 (1 (3)))",
    150     "(3 (1 (2)))",
    151     "(1 (3 (2)))",
    152     "(2 (3 (1)))",
    153     "(3 (2 (1)))",
    154   };
    155 
    156   int n = generator.UniqueTreeCount();
    157   ASSERT_EQ(static_cast<int>(arraysize(EXPECTED_TREES)), n);
    158 
    159   for (int i = 0; i < n; i++) {
    160     AXTree tree;
    161     generator.BuildUniqueTree(i, &tree);
    162     std::string str = TreeToString(tree);
    163     EXPECT_EQ(EXPECTED_TREES[i], str);
    164   }
    165 }
    166 
    167 // Test mutating every possible tree with <n> nodes to every other possible
    168 // tree with <n> nodes, where <n> is 4 in release mode and 3 in debug mode
    169 // (for speed). For each possible combination of trees, we also vary which
    170 // node we serialize first.
    171 //
    172 // For every possible scenario, we check that the AXTreeUpdate is valid,
    173 // that the destination tree can unserialize it and create a valid tree,
    174 // and that after updating all nodes the resulting tree now matches the
    175 // intended tree.
    176 TEST(AXGeneratedTreeTest, SerializeGeneratedTrees) {
    177   // Do a more exhaustive test in release mode. If you're modifying
    178   // the algorithm you may want to try even larger tree sizes if you
    179   // can afford the time.
    180 #ifdef NDEBUG
    181   int tree_size = 4;
    182 #else
    183   LOG(WARNING) << "Debug build, only testing trees with 3 nodes and not 4.";
    184   int tree_size = 3;
    185 #endif
    186 
    187   TreeGenerator generator(tree_size);
    188   int n = generator.UniqueTreeCount();
    189 
    190   for (int i = 0; i < n; i++) {
    191     // Build the first tree, tree0.
    192     AXSerializableTree tree0;
    193     generator.BuildUniqueTree(i, &tree0);
    194     SCOPED_TRACE("tree0 is " + TreeToString(tree0));
    195 
    196     for (int j = 0; j < n; j++) {
    197       // Build the second tree, tree1.
    198       AXSerializableTree tree1;
    199       generator.BuildUniqueTree(j, &tree1);
    200       SCOPED_TRACE("tree1 is " + TreeToString(tree0));
    201 
    202       // Now iterate over which node to update first, |k|.
    203       for (int k = 0; k < tree_size; k++) {
    204         SCOPED_TRACE("i=" + base::IntToString(i) +
    205                      " j=" + base::IntToString(j) +
    206                      " k=" + base::IntToString(k));
    207 
    208         // Start by serializing tree0 and unserializing it into a new
    209         // empty tree |dst_tree|.
    210         scoped_ptr<AXTreeSource<const AXNode*> > tree0_source(
    211             tree0.CreateTreeSource());
    212         AXTreeSerializer<const AXNode*> serializer(tree0_source.get());
    213         AXTreeUpdate update0;
    214         serializer.SerializeChanges(tree0.GetRoot(), &update0);
    215 
    216         AXTree dst_tree;
    217         ASSERT_TRUE(dst_tree.Unserialize(update0));
    218 
    219         // At this point, |dst_tree| should now be identical to |tree0|.
    220         EXPECT_EQ(TreeToString(tree0), TreeToString(dst_tree));
    221 
    222         // Next, pretend that tree0 turned into tree1, and serialize
    223         // a sequence of updates to |dst_tree| to match.
    224         scoped_ptr<AXTreeSource<const AXNode*> > tree1_source(
    225             tree1.CreateTreeSource());
    226         serializer.ChangeTreeSourceForTesting(tree1_source.get());
    227 
    228         for (int k_index = 0; k_index < tree_size; ++k_index) {
    229           int id = 1 + (k + k_index) % tree_size;
    230           AXTreeUpdate update;
    231           serializer.SerializeChanges(tree1.GetFromId(id), &update);
    232           ASSERT_TRUE(dst_tree.Unserialize(update));
    233         }
    234 
    235         // After the sequence of updates, |dst_tree| should now be
    236         // identical to |tree1|.
    237         EXPECT_EQ(TreeToString(tree1), TreeToString(dst_tree));
    238       }
    239     }
    240   }
    241 }
    242 
    243 }  // namespace ui
    244