Home | History | Annotate | Download | only in geometry
      1 // Copyright 2014 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "ui/gfx/geometry/r_tree_base.h"
      6 
      7 #include <algorithm>
      8 
      9 #include "base/logging.h"
     10 
     11 
     12 // Helpers --------------------------------------------------------------------
     13 
     14 namespace {
     15 
     16 // Returns a Vector2d to allow us to do arithmetic on the result such as
     17 // computing distances between centers.
     18 gfx::Vector2d CenterOfRect(const gfx::Rect& rect) {
     19   return rect.OffsetFromOrigin() +
     20       gfx::Vector2d(rect.width() / 2, rect.height() / 2);
     21 }
     22 
     23 }
     24 
     25 namespace gfx {
     26 
     27 
     28 // RTreeBase::NodeBase --------------------------------------------------------
     29 
     30 RTreeBase::NodeBase::~NodeBase() {
     31 }
     32 
     33 void RTreeBase::NodeBase::RecomputeBoundsUpToRoot() {
     34   RecomputeLocalBounds();
     35   if (parent_)
     36     parent_->RecomputeBoundsUpToRoot();
     37 }
     38 
     39 RTreeBase::NodeBase::NodeBase(const Rect& rect, NodeBase* parent)
     40     : rect_(rect),
     41       parent_(parent) {
     42 }
     43 
     44 void RTreeBase::NodeBase::RecomputeLocalBounds() {
     45 }
     46 
     47 // RTreeBase::RecordBase ------------------------------------------------------
     48 
     49 RTreeBase::RecordBase::RecordBase(const Rect& rect) : NodeBase(rect, NULL) {
     50 }
     51 
     52 RTreeBase::RecordBase::~RecordBase() {
     53 }
     54 
     55 void RTreeBase::RecordBase::AppendIntersectingRecords(
     56     const Rect& query_rect, Records* matches_out) const {
     57   if (rect().Intersects(query_rect))
     58     matches_out->push_back(this);
     59 }
     60 
     61 void RTreeBase::RecordBase::AppendAllRecords(Records* matches_out) const {
     62   matches_out->push_back(this);
     63 }
     64 
     65 scoped_ptr<RTreeBase::NodeBase>
     66 RTreeBase::RecordBase::RemoveAndReturnLastChild() {
     67   return scoped_ptr<NodeBase>();
     68 }
     69 
     70 int RTreeBase::RecordBase::Level() const {
     71   return -1;
     72 }
     73 
     74 
     75 // RTreeBase::Node ------------------------------------------------------------
     76 
     77 RTreeBase::Node::Node() : NodeBase(Rect(), NULL), level_(0) {
     78 }
     79 
     80 RTreeBase::Node::~Node() {
     81 }
     82 
     83 scoped_ptr<RTreeBase::Node> RTreeBase::Node::ConstructParent() {
     84   DCHECK(!parent());
     85   scoped_ptr<Node> new_parent(new Node(level_ + 1));
     86   new_parent->AddChild(scoped_ptr<NodeBase>(this));
     87   return new_parent.Pass();
     88 }
     89 
     90 void RTreeBase::Node::AppendIntersectingRecords(
     91     const Rect& query_rect, Records* matches_out) const {
     92   // Check own bounding box for intersection, can cull all children if no
     93   // intersection.
     94   if (!rect().Intersects(query_rect))
     95     return;
     96 
     97   // Conversely if we are completely contained within the query rect we can
     98   // confidently skip all bounds checks for ourselves and all our children.
     99   if (query_rect.Contains(rect())) {
    100     AppendAllRecords(matches_out);
    101     return;
    102   }
    103 
    104   // We intersect the query rect but we are not are not contained within it.
    105   // We must query each of our children in turn.
    106   for (Nodes::const_iterator i = children_.begin(); i != children_.end(); ++i)
    107     (*i)->AppendIntersectingRecords(query_rect, matches_out);
    108 }
    109 
    110 void RTreeBase::Node::AppendAllRecords(Records* matches_out) const {
    111   for (Nodes::const_iterator i = children_.begin(); i != children_.end(); ++i)
    112     (*i)->AppendAllRecords(matches_out);
    113 }
    114 
    115 void RTreeBase::Node::RemoveNodesForReinsert(size_t number_to_remove,
    116                                              Nodes* nodes) {
    117   DCHECK_LE(number_to_remove, children_.size());
    118 
    119   std::partial_sort(children_.begin(),
    120                     children_.begin() + number_to_remove,
    121                     children_.end(),
    122                     &RTreeBase::Node::CompareCenterDistanceFromParent);
    123 
    124   // Move the lowest-distance nodes to the returned vector.
    125   nodes->insert(
    126       nodes->end(), children_.begin(), children_.begin() + number_to_remove);
    127   children_.weak_erase(children_.begin(), children_.begin() + number_to_remove);
    128 }
    129 
    130 scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::RemoveChild(
    131     NodeBase* child_node, Nodes* orphans) {
    132   DCHECK_EQ(this, child_node->parent());
    133 
    134   scoped_ptr<NodeBase> orphan(child_node->RemoveAndReturnLastChild());
    135   while (orphan) {
    136     orphans->push_back(orphan.release());
    137     orphan = child_node->RemoveAndReturnLastChild();
    138   }
    139 
    140   Nodes::iterator i = std::find(children_.begin(), children_.end(), child_node);
    141   DCHECK(i != children_.end());
    142   children_.weak_erase(i);
    143 
    144   return scoped_ptr<NodeBase>(child_node);
    145 }
    146 
    147 scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::RemoveAndReturnLastChild() {
    148   if (children_.empty())
    149     return scoped_ptr<NodeBase>();
    150 
    151   scoped_ptr<NodeBase> last_child(children_.back());
    152   children_.weak_erase(children_.end() - 1);
    153   last_child->set_parent(NULL);
    154   return last_child.Pass();
    155 }
    156 
    157 RTreeBase::Node* RTreeBase::Node::ChooseSubtree(NodeBase* node) {
    158   DCHECK(node);
    159   // Should never be called on a node at equal or lower level in the tree than
    160   // the node to insert.
    161   DCHECK_GT(level_, node->Level());
    162 
    163   // If we are a parent of nodes on the provided node level, we are done.
    164   if (level_ == node->Level() + 1)
    165     return this;
    166 
    167   // Precompute a vector of expanded rects, used by both LeastOverlapIncrease
    168   // and LeastAreaEnlargement.
    169   Rects expanded_rects;
    170   expanded_rects.reserve(children_.size());
    171   for (Nodes::iterator i = children_.begin(); i != children_.end(); ++i)
    172     expanded_rects.push_back(UnionRects(node->rect(), (*i)->rect()));
    173 
    174   Node* best_candidate = NULL;
    175   // For parents of leaf nodes, we pick the node that will cause the least
    176   // increase in overlap by the addition of this new node. This may detect a
    177   // tie, in which case it will return NULL.
    178   if (level_ == 1)
    179     best_candidate = LeastOverlapIncrease(node->rect(), expanded_rects);
    180 
    181   // For non-parents of leaf nodes, or for parents of leaf nodes with ties in
    182   // overlap increase, we choose the subtree with least area enlargement caused
    183   // by the addition of the new node.
    184   if (!best_candidate)
    185     best_candidate = LeastAreaEnlargement(node->rect(), expanded_rects);
    186 
    187   DCHECK(best_candidate);
    188   return best_candidate->ChooseSubtree(node);
    189 }
    190 
    191 size_t RTreeBase::Node::AddChild(scoped_ptr<NodeBase> node) {
    192   DCHECK(node);
    193   // Sanity-check that the level of the child being added is one less than ours.
    194   DCHECK_EQ(level_ - 1, node->Level());
    195   node->set_parent(this);
    196   set_rect(UnionRects(rect(), node->rect()));
    197   children_.push_back(node.release());
    198   return children_.size();
    199 }
    200 
    201 scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::Split(size_t min_children,
    202                                                        size_t max_children) {
    203   // We should have too many children to begin with.
    204   DCHECK_EQ(max_children + 1, children_.size());
    205 
    206   // Determine if we should split along the horizontal or vertical axis.
    207   std::vector<NodeBase*> vertical_sort(children_.get());
    208   std::vector<NodeBase*> horizontal_sort(children_.get());
    209   std::sort(vertical_sort.begin(),
    210             vertical_sort.end(),
    211             &RTreeBase::Node::CompareVertical);
    212   std::sort(horizontal_sort.begin(),
    213             horizontal_sort.end(),
    214             &RTreeBase::Node::CompareHorizontal);
    215 
    216   Rects low_vertical_bounds;
    217   Rects low_horizontal_bounds;
    218   BuildLowBounds(vertical_sort,
    219                  horizontal_sort,
    220                  &low_vertical_bounds,
    221                  &low_horizontal_bounds);
    222 
    223   Rects high_vertical_bounds;
    224   Rects high_horizontal_bounds;
    225   BuildHighBounds(vertical_sort,
    226                   horizontal_sort,
    227                   &high_vertical_bounds,
    228                   &high_horizontal_bounds);
    229 
    230   // Choose |end_index| such that both Nodes after the split will have
    231   // min_children <= children_.size() <= max_children.
    232   size_t end_index = std::min(max_children, children_.size() - min_children);
    233   bool is_vertical_split =
    234       SmallestMarginSum(min_children,
    235                         end_index,
    236                         low_horizontal_bounds,
    237                         high_horizontal_bounds) <
    238       SmallestMarginSum(min_children,
    239                         end_index,
    240                         low_vertical_bounds,
    241                         high_vertical_bounds);
    242 
    243   // Choose split index along chosen axis and perform the split.
    244   const Rects& low_bounds(
    245       is_vertical_split ? low_vertical_bounds : low_horizontal_bounds);
    246   const Rects& high_bounds(
    247       is_vertical_split ? high_vertical_bounds : high_horizontal_bounds);
    248   size_t split_index =
    249       ChooseSplitIndex(min_children, end_index, low_bounds, high_bounds);
    250 
    251   const std::vector<NodeBase*>& sort(
    252       is_vertical_split ? vertical_sort : horizontal_sort);
    253   return DivideChildren(low_bounds, high_bounds, sort, split_index);
    254 }
    255 
    256 int RTreeBase::Node::Level() const {
    257   return level_;
    258 }
    259 
    260 RTreeBase::Node::Node(int level) : NodeBase(Rect(), NULL), level_(level) {
    261 }
    262 
    263 // static
    264 bool RTreeBase::Node::CompareVertical(const NodeBase* a, const NodeBase* b) {
    265   const Rect& a_rect = a->rect();
    266   const Rect& b_rect = b->rect();
    267   return (a_rect.y() < b_rect.y()) ||
    268          ((a_rect.y() == b_rect.y()) && (a_rect.height() < b_rect.height()));
    269 }
    270 
    271 // static
    272 bool RTreeBase::Node::CompareHorizontal(const NodeBase* a, const NodeBase* b) {
    273   const Rect& a_rect = a->rect();
    274   const Rect& b_rect = b->rect();
    275   return (a_rect.x() < b_rect.x()) ||
    276          ((a_rect.x() == b_rect.x()) && (a_rect.width() < b_rect.width()));
    277 }
    278 
    279 // static
    280 bool RTreeBase::Node::CompareCenterDistanceFromParent(const NodeBase* a,
    281                                                       const NodeBase* b) {
    282   const NodeBase* p = a->parent();
    283 
    284   DCHECK(p);
    285   DCHECK_EQ(p, b->parent());
    286 
    287   Vector2d p_center = CenterOfRect(p->rect());
    288   Vector2d a_center = CenterOfRect(a->rect());
    289   Vector2d b_center = CenterOfRect(b->rect());
    290 
    291   // We don't bother with square roots because we are only comparing the two
    292   // values for sorting purposes.
    293   return (a_center - p_center).LengthSquared() <
    294          (b_center - p_center).LengthSquared();
    295 }
    296 
    297 // static
    298 void RTreeBase::Node::BuildLowBounds(
    299     const std::vector<NodeBase*>& vertical_sort,
    300     const std::vector<NodeBase*>& horizontal_sort,
    301     Rects* vertical_bounds,
    302     Rects* horizontal_bounds) {
    303   Rect vertical_bounds_rect;
    304   vertical_bounds->reserve(vertical_sort.size());
    305   for (std::vector<NodeBase*>::const_iterator i = vertical_sort.begin();
    306        i != vertical_sort.end();
    307        ++i) {
    308     vertical_bounds_rect.Union((*i)->rect());
    309     vertical_bounds->push_back(vertical_bounds_rect);
    310   }
    311 
    312   Rect horizontal_bounds_rect;
    313   horizontal_bounds->reserve(horizontal_sort.size());
    314   for (std::vector<NodeBase*>::const_iterator i = horizontal_sort.begin();
    315        i != horizontal_sort.end();
    316        ++i) {
    317     horizontal_bounds_rect.Union((*i)->rect());
    318     horizontal_bounds->push_back(horizontal_bounds_rect);
    319   }
    320 }
    321 
    322 // static
    323 void RTreeBase::Node::BuildHighBounds(
    324     const std::vector<NodeBase*>& vertical_sort,
    325     const std::vector<NodeBase*>& horizontal_sort,
    326     Rects* vertical_bounds,
    327     Rects* horizontal_bounds) {
    328   Rect vertical_bounds_rect;
    329   vertical_bounds->reserve(vertical_sort.size());
    330   for (std::vector<NodeBase*>::const_reverse_iterator i =
    331            vertical_sort.rbegin();
    332        i != vertical_sort.rend();
    333        ++i) {
    334     vertical_bounds_rect.Union((*i)->rect());
    335     vertical_bounds->push_back(vertical_bounds_rect);
    336   }
    337   std::reverse(vertical_bounds->begin(), vertical_bounds->end());
    338 
    339   Rect horizontal_bounds_rect;
    340   horizontal_bounds->reserve(horizontal_sort.size());
    341   for (std::vector<NodeBase*>::const_reverse_iterator i =
    342            horizontal_sort.rbegin();
    343        i != horizontal_sort.rend();
    344        ++i) {
    345     horizontal_bounds_rect.Union((*i)->rect());
    346     horizontal_bounds->push_back(horizontal_bounds_rect);
    347   }
    348   std::reverse(horizontal_bounds->begin(), horizontal_bounds->end());
    349 }
    350 
    351 size_t RTreeBase::Node::ChooseSplitIndex(size_t start_index,
    352                                          size_t end_index,
    353                                          const Rects& low_bounds,
    354                                          const Rects& high_bounds) {
    355   DCHECK_EQ(low_bounds.size(), high_bounds.size());
    356 
    357   int smallest_overlap_area = UnionRects(
    358       low_bounds[start_index], high_bounds[start_index]).size().GetArea();
    359   int smallest_combined_area = low_bounds[start_index].size().GetArea() +
    360       high_bounds[start_index].size().GetArea();
    361   size_t optimal_split_index = start_index;
    362   for (size_t p = start_index + 1; p < end_index; ++p) {
    363     const int overlap_area =
    364         UnionRects(low_bounds[p], high_bounds[p]).size().GetArea();
    365     const int combined_area =
    366         low_bounds[p].size().GetArea() + high_bounds[p].size().GetArea();
    367     if ((overlap_area < smallest_overlap_area) ||
    368         ((overlap_area == smallest_overlap_area) &&
    369          (combined_area < smallest_combined_area))) {
    370       smallest_overlap_area = overlap_area;
    371       smallest_combined_area = combined_area;
    372       optimal_split_index = p;
    373     }
    374   }
    375 
    376   // optimal_split_index currently points at the last element in the first set,
    377   // so advance it by 1 to point at the first element in the second set.
    378   return optimal_split_index + 1;
    379 }
    380 
    381 // static
    382 int RTreeBase::Node::SmallestMarginSum(size_t start_index,
    383                                        size_t end_index,
    384                                        const Rects& low_bounds,
    385                                        const Rects& high_bounds) {
    386   DCHECK_EQ(low_bounds.size(), high_bounds.size());
    387   DCHECK_LT(start_index, low_bounds.size());
    388   DCHECK_LE(start_index, end_index);
    389   DCHECK_LE(end_index, low_bounds.size());
    390   Rects::const_iterator i(low_bounds.begin() + start_index);
    391   Rects::const_iterator j(high_bounds.begin() + start_index);
    392   int smallest_sum = i->width() + i->height() + j->width() + j->height();
    393   for (; i != (low_bounds.begin() + end_index); ++i, ++j) {
    394     smallest_sum = std::min(
    395         smallest_sum, i->width() + i->height() + j->width() + j->height());
    396   }
    397 
    398   return smallest_sum;
    399 }
    400 
    401 void RTreeBase::Node::RecomputeLocalBounds() {
    402   Rect bounds;
    403   for (size_t i = 0; i < children_.size(); ++i)
    404     bounds.Union(children_[i]->rect());
    405 
    406   set_rect(bounds);
    407 }
    408 
    409 int RTreeBase::Node::OverlapIncreaseToAdd(const Rect& rect,
    410                                           const NodeBase* candidate_node,
    411                                           const Rect& expanded_rect) const {
    412   DCHECK(candidate_node);
    413 
    414   // Early-out when |rect| is contained completely within |candidate|.
    415   if (candidate_node->rect().Contains(rect))
    416     return 0;
    417 
    418   int total_original_overlap = 0;
    419   int total_expanded_overlap = 0;
    420 
    421   // Now calculate overlap with all other rects in this node.
    422   for (Nodes::const_iterator it = children_.begin();
    423        it != children_.end(); ++it) {
    424     // Skip calculating overlap with the candidate rect.
    425     if ((*it) == candidate_node)
    426       continue;
    427     NodeBase* overlap_node = (*it);
    428     total_original_overlap += IntersectRects(
    429         candidate_node->rect(), overlap_node->rect()).size().GetArea();
    430     Rect expanded_overlap_rect = expanded_rect;
    431     expanded_overlap_rect.Intersect(overlap_node->rect());
    432     total_expanded_overlap += expanded_overlap_rect.size().GetArea();
    433   }
    434 
    435   return total_expanded_overlap - total_original_overlap;
    436 }
    437 
    438 scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::DivideChildren(
    439     const Rects& low_bounds,
    440     const Rects& high_bounds,
    441     const std::vector<NodeBase*>& sorted_children,
    442     size_t split_index) {
    443   DCHECK_EQ(low_bounds.size(), high_bounds.size());
    444   DCHECK_EQ(low_bounds.size(), sorted_children.size());
    445   DCHECK_LT(split_index, low_bounds.size());
    446   DCHECK_GT(split_index, 0U);
    447 
    448   scoped_ptr<Node> sibling(new Node(level_));
    449   sibling->set_parent(parent());
    450   set_rect(low_bounds[split_index - 1]);
    451   sibling->set_rect(high_bounds[split_index]);
    452 
    453   // Our own children_ vector is unsorted, so we wipe it out and divide the
    454   // sorted bounds rects between ourselves and our sibling.
    455   children_.weak_clear();
    456   children_.insert(children_.end(),
    457                    sorted_children.begin(),
    458                    sorted_children.begin() + split_index);
    459   sibling->children_.insert(sibling->children_.end(),
    460                             sorted_children.begin() + split_index,
    461                             sorted_children.end());
    462 
    463   for (size_t i = 0; i < sibling->children_.size(); ++i)
    464     sibling->children_[i]->set_parent(sibling.get());
    465 
    466   return sibling.PassAs<NodeBase>();
    467 }
    468 
    469 RTreeBase::Node* RTreeBase::Node::LeastOverlapIncrease(
    470     const Rect& node_rect,
    471     const Rects& expanded_rects) {
    472   NodeBase* best_node = children_.front();
    473   int least_overlap_increase =
    474       OverlapIncreaseToAdd(node_rect, children_[0], expanded_rects[0]);
    475   for (size_t i = 1; i < children_.size(); ++i) {
    476     int overlap_increase =
    477         OverlapIncreaseToAdd(node_rect, children_[i], expanded_rects[i]);
    478     if (overlap_increase < least_overlap_increase) {
    479       least_overlap_increase = overlap_increase;
    480       best_node = children_[i];
    481     } else if (overlap_increase == least_overlap_increase) {
    482       // If we are tied at zero there is no possible better overlap increase,
    483       // so we can report a tie early.
    484       if (overlap_increase == 0)
    485         return NULL;
    486 
    487       best_node = NULL;
    488     }
    489   }
    490 
    491   // Ensure that our children are always Nodes and not Records.
    492   DCHECK_GE(level_, 1);
    493   return static_cast<Node*>(best_node);
    494 }
    495 
    496 RTreeBase::Node* RTreeBase::Node::LeastAreaEnlargement(
    497     const Rect& node_rect,
    498     const Rects& expanded_rects) {
    499   DCHECK(!children_.empty());
    500   DCHECK_EQ(children_.size(), expanded_rects.size());
    501 
    502   NodeBase* best_node = children_.front();
    503   int least_area_enlargement =
    504       expanded_rects[0].size().GetArea() - best_node->rect().size().GetArea();
    505   for (size_t i = 1; i < children_.size(); ++i) {
    506     NodeBase* candidate_node = children_[i];
    507     int area_change = expanded_rects[i].size().GetArea() -
    508                       candidate_node->rect().size().GetArea();
    509     DCHECK_GE(area_change, 0);
    510     if (area_change < least_area_enlargement) {
    511       best_node = candidate_node;
    512       least_area_enlargement = area_change;
    513     } else if (area_change == least_area_enlargement &&
    514         candidate_node->rect().size().GetArea() <
    515             best_node->rect().size().GetArea()) {
    516       // Ties are broken by choosing the entry with the least area.
    517       best_node = candidate_node;
    518     }
    519   }
    520 
    521   // Ensure that our children are always Nodes and not Records.
    522   DCHECK_GE(level_, 1);
    523   return static_cast<Node*>(best_node);
    524 }
    525 
    526 
    527 // RTreeBase ------------------------------------------------------------------
    528 
    529 RTreeBase::RTreeBase(size_t min_children, size_t max_children)
    530     : root_(new Node()),
    531       min_children_(min_children),
    532       max_children_(max_children) {
    533   DCHECK_GE(min_children_, 2U);
    534   DCHECK_LE(min_children_, max_children_ / 2U);
    535 }
    536 
    537 RTreeBase::~RTreeBase() {
    538 }
    539 
    540 void RTreeBase::InsertNode(
    541     scoped_ptr<NodeBase> node, int* highest_reinsert_level) {
    542   // Find the most appropriate parent to insert node into.
    543   Node* parent = root_->ChooseSubtree(node.get());
    544   DCHECK(parent);
    545   // Verify ChooseSubtree returned a Node at the correct level.
    546   DCHECK_EQ(parent->Level(), node->Level() + 1);
    547   Node* insert_parent = static_cast<Node*>(parent);
    548   NodeBase* needs_bounds_recomputed = insert_parent->parent();
    549   Nodes reinserts;
    550   // Attempt to insert the Node, if this overflows the Node we must handle it.
    551   while (insert_parent &&
    552          insert_parent->AddChild(node.Pass()) > max_children_) {
    553     // If we have yet to re-insert nodes at this level during this data insert,
    554     // and we're not at the root, R*-Tree calls for re-insertion of some of the
    555     // nodes, resulting in a better balance on the tree.
    556     if (insert_parent->parent() &&
    557         insert_parent->Level() > *highest_reinsert_level) {
    558       insert_parent->RemoveNodesForReinsert(max_children_ / 3, &reinserts);
    559       // Adjust highest_reinsert_level to this level.
    560       *highest_reinsert_level = insert_parent->Level();
    561       // RemoveNodesForReinsert() does not recompute bounds, so mark it.
    562       needs_bounds_recomputed = insert_parent;
    563       break;
    564     }
    565 
    566     // Split() will create a sibling to insert_parent both of which will have
    567     // valid bounds, but this invalidates their parent's bounds.
    568     node = insert_parent->Split(min_children_, max_children_);
    569     insert_parent = static_cast<Node*>(insert_parent->parent());
    570     needs_bounds_recomputed = insert_parent;
    571   }
    572 
    573   // If we have a Node to insert, and we hit the root of the current tree,
    574   // we create a new root which is the parent of the current root and the
    575   // insert_node. Note that we must release() the |root_| since
    576   // ConstructParent() will take ownership of it.
    577   if (!insert_parent && node) {
    578     root_ = root_.release()->ConstructParent();
    579     root_->AddChild(node.Pass());
    580   }
    581 
    582   // Recompute bounds along insertion path.
    583   if (needs_bounds_recomputed)
    584     needs_bounds_recomputed->RecomputeBoundsUpToRoot();
    585 
    586   // Complete re-inserts, if any. The algorithm only allows for one invocation
    587   // of RemoveNodesForReinsert() per level of the tree in an overall call to
    588   // Insert().
    589   while (!reinserts.empty()) {
    590     Nodes::iterator last_element = reinserts.end() - 1;
    591     NodeBase* temp_ptr(*last_element);
    592     reinserts.weak_erase(last_element);
    593     InsertNode(make_scoped_ptr(temp_ptr), highest_reinsert_level);
    594   }
    595 }
    596 
    597 scoped_ptr<RTreeBase::NodeBase> RTreeBase::RemoveNode(NodeBase* node) {
    598   // We need to remove this node from its parent.
    599   Node* parent = static_cast<Node*>(node->parent());
    600   // Record nodes are never allowed as the root, so we should always have a
    601   // parent.
    602   DCHECK(parent);
    603   // Should always be a leaf that had the record.
    604   DCHECK_EQ(0, parent->Level());
    605 
    606   Nodes orphans;
    607   scoped_ptr<NodeBase> removed_node(parent->RemoveChild(node, &orphans));
    608 
    609   // It's possible that by removing |node| from |parent| we have made |parent|
    610   // have less than the minimum number of children, in which case we will need
    611   // to remove and delete |parent| while reinserting any other children that it
    612   // had. We traverse up the tree doing this until we remove a child from a
    613   // parent that still has greater than or equal to the minimum number of Nodes.
    614   while (parent->count() < min_children_) {
    615     NodeBase* child = parent;
    616     parent = static_cast<Node*>(parent->parent());
    617 
    618     // If we've hit the root, stop.
    619     if (!parent)
    620       break;
    621 
    622     parent->RemoveChild(child, &orphans);
    623   }
    624 
    625   // If we stopped deleting nodes up the tree before encountering the root,
    626   // we'll need to fix up the bounds from the first parent we didn't delete
    627   // up to the root.
    628   if (parent)
    629     parent->RecomputeBoundsUpToRoot();
    630   else
    631     root_->RecomputeBoundsUpToRoot();
    632 
    633   while (!orphans.empty()) {
    634     Nodes::iterator last_element = orphans.end() - 1;
    635     NodeBase* temp_ptr(*last_element);
    636     orphans.weak_erase(last_element);
    637     int starting_level = -1;
    638     InsertNode(make_scoped_ptr(temp_ptr), &starting_level);
    639   }
    640 
    641   return removed_node.Pass();
    642 }
    643 
    644 void RTreeBase::PruneRootIfNecessary() {
    645   if (root()->count() == 1 && root()->Level() > 0) {
    646     // Awkward reset(cast(release)) pattern here because there's no better way
    647     // to downcast the scoped_ptr from RemoveAndReturnLastChild() from NodeBase
    648     // to Node.
    649     root_.reset(
    650         static_cast<Node*>(root_->RemoveAndReturnLastChild().release()));
    651   }
    652 }
    653 
    654 void RTreeBase::ResetRoot() {
    655   root_.reset(new Node());
    656 }
    657 
    658 }  // namespace gfx
    659