Home | History | Annotate | Download | only in url
      1 // Copyright 2013 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "url/url_canon_ip.h"
      6 
      7 #include <stdlib.h>
      8 
      9 #include "base/basictypes.h"
     10 #include "base/logging.h"
     11 #include "url/url_canon_internal.h"
     12 
     13 namespace url {
     14 
     15 namespace {
     16 
     17 // Converts one of the character types that represent a numerical base to the
     18 // corresponding base.
     19 int BaseForType(SharedCharTypes type) {
     20   switch (type) {
     21     case CHAR_HEX:
     22       return 16;
     23     case CHAR_DEC:
     24       return 10;
     25     case CHAR_OCT:
     26       return 8;
     27     default:
     28       return 0;
     29   }
     30 }
     31 
     32 template<typename CHAR, typename UCHAR>
     33 bool DoFindIPv4Components(const CHAR* spec,
     34                           const Component& host,
     35                           Component components[4]) {
     36   if (!host.is_nonempty())
     37     return false;
     38 
     39   int cur_component = 0;  // Index of the component we're working on.
     40   int cur_component_begin = host.begin;  // Start of the current component.
     41   int end = host.end();
     42   for (int i = host.begin; /* nothing */; i++) {
     43     if (i >= end || spec[i] == '.') {
     44       // Found the end of the current component.
     45       int component_len = i - cur_component_begin;
     46       components[cur_component] = Component(cur_component_begin, component_len);
     47 
     48       // The next component starts after the dot.
     49       cur_component_begin = i + 1;
     50       cur_component++;
     51 
     52       // Don't allow empty components (two dots in a row), except we may
     53       // allow an empty component at the end (this would indicate that the
     54       // input ends in a dot). We also want to error if the component is
     55       // empty and it's the only component (cur_component == 1).
     56       if (component_len == 0 && (i < end || cur_component == 1))
     57         return false;
     58 
     59       if (i >= end)
     60         break;  // End of the input.
     61 
     62       if (cur_component == 4) {
     63         // Anything else after the 4th component is an error unless it is a
     64         // dot that would otherwise be treated as the end of input.
     65         if (spec[i] == '.' && i + 1 == end)
     66           break;
     67         return false;
     68       }
     69     } else if (static_cast<UCHAR>(spec[i]) >= 0x80 ||
     70                !IsIPv4Char(static_cast<unsigned char>(spec[i]))) {
     71       // Invalid character for an IPv4 address.
     72       return false;
     73     }
     74   }
     75 
     76   // Fill in any unused components.
     77   while (cur_component < 4)
     78     components[cur_component++] = Component();
     79   return true;
     80 }
     81 
     82 // Converts an IPv4 component to a 32-bit number, while checking for overflow.
     83 //
     84 // Possible return values:
     85 // - IPV4    - The number was valid, and did not overflow.
     86 // - BROKEN  - The input was numeric, but too large for a 32-bit field.
     87 // - NEUTRAL - Input was not numeric.
     88 //
     89 // The input is assumed to be ASCII. FindIPv4Components should have stripped
     90 // out any input that is greater than 7 bits. The components are assumed
     91 // to be non-empty.
     92 template<typename CHAR>
     93 CanonHostInfo::Family IPv4ComponentToNumber(const CHAR* spec,
     94                                             const Component& component,
     95                                             uint32* number) {
     96   // Figure out the base
     97   SharedCharTypes base;
     98   int base_prefix_len = 0;  // Size of the prefix for this base.
     99   if (spec[component.begin] == '0') {
    100     // Either hex or dec, or a standalone zero.
    101     if (component.len == 1) {
    102       base = CHAR_DEC;
    103     } else if (spec[component.begin + 1] == 'X' ||
    104                spec[component.begin + 1] == 'x') {
    105       base = CHAR_HEX;
    106       base_prefix_len = 2;
    107     } else {
    108       base = CHAR_OCT;
    109       base_prefix_len = 1;
    110     }
    111   } else {
    112     base = CHAR_DEC;
    113   }
    114 
    115   // Extend the prefix to consume all leading zeros.
    116   while (base_prefix_len < component.len &&
    117          spec[component.begin + base_prefix_len] == '0')
    118     base_prefix_len++;
    119 
    120   // Put the component, minus any base prefix, into a NULL-terminated buffer so
    121   // we can call the standard library.  Because leading zeros have already been
    122   // discarded, filling the entire buffer is guaranteed to trigger the 32-bit
    123   // overflow check.
    124   const int kMaxComponentLen = 16;
    125   char buf[kMaxComponentLen + 1];  // digits + '\0'
    126   int dest_i = 0;
    127   for (int i = component.begin + base_prefix_len; i < component.end(); i++) {
    128     // We know the input is 7-bit, so convert to narrow (if this is the wide
    129     // version of the template) by casting.
    130     char input = static_cast<char>(spec[i]);
    131 
    132     // Validate that this character is OK for the given base.
    133     if (!IsCharOfType(input, base))
    134       return CanonHostInfo::NEUTRAL;
    135 
    136     // Fill the buffer, if there's space remaining.  This check allows us to
    137     // verify that all characters are numeric, even those that don't fit.
    138     if (dest_i < kMaxComponentLen)
    139       buf[dest_i++] = input;
    140   }
    141 
    142   buf[dest_i] = '\0';
    143 
    144   // Use the 64-bit strtoi so we get a big number (no hex, decimal, or octal
    145   // number can overflow a 64-bit number in <= 16 characters).
    146   uint64 num = _strtoui64(buf, NULL, BaseForType(base));
    147 
    148   // Check for 32-bit overflow.
    149   if (num > kuint32max)
    150     return CanonHostInfo::BROKEN;
    151 
    152   // No overflow.  Success!
    153   *number = static_cast<uint32>(num);
    154   return CanonHostInfo::IPV4;
    155 }
    156 
    157 // See declaration of IPv4AddressToNumber for documentation.
    158 template<typename CHAR>
    159 CanonHostInfo::Family DoIPv4AddressToNumber(const CHAR* spec,
    160                                             const Component& host,
    161                                             unsigned char address[4],
    162                                             int* num_ipv4_components) {
    163   // The identified components. Not all may exist.
    164   Component components[4];
    165   if (!FindIPv4Components(spec, host, components))
    166     return CanonHostInfo::NEUTRAL;
    167 
    168   // Convert existing components to digits. Values up to
    169   // |existing_components| will be valid.
    170   uint32 component_values[4];
    171   int existing_components = 0;
    172 
    173   // Set to true if one or more components are BROKEN.  BROKEN is only
    174   // returned if all components are IPV4 or BROKEN, so, for example,
    175   // 12345678912345.de returns NEUTRAL rather than broken.
    176   bool broken = false;
    177   for (int i = 0; i < 4; i++) {
    178     if (components[i].len <= 0)
    179       continue;
    180     CanonHostInfo::Family family = IPv4ComponentToNumber(
    181         spec, components[i], &component_values[existing_components]);
    182 
    183     if (family == CanonHostInfo::BROKEN) {
    184       broken = true;
    185     } else if (family != CanonHostInfo::IPV4) {
    186       // Stop if we hit a non-BROKEN invalid non-empty component.
    187       return family;
    188     }
    189 
    190     existing_components++;
    191   }
    192 
    193   if (broken)
    194     return CanonHostInfo::BROKEN;
    195 
    196   // Use that sequence of numbers to fill out the 4-component IP address.
    197 
    198   // First, process all components but the last, while making sure each fits
    199   // within an 8-bit field.
    200   for (int i = 0; i < existing_components - 1; i++) {
    201     if (component_values[i] > kuint8max)
    202       return CanonHostInfo::BROKEN;
    203     address[i] = static_cast<unsigned char>(component_values[i]);
    204   }
    205 
    206   // Next, consume the last component to fill in the remaining bytes.
    207   uint32 last_value = component_values[existing_components - 1];
    208   for (int i = 3; i >= existing_components - 1; i--) {
    209     address[i] = static_cast<unsigned char>(last_value);
    210     last_value >>= 8;
    211   }
    212 
    213   // If the last component has residual bits, report overflow.
    214   if (last_value != 0)
    215     return CanonHostInfo::BROKEN;
    216 
    217   // Tell the caller how many components we saw.
    218   *num_ipv4_components = existing_components;
    219 
    220   // Success!
    221   return CanonHostInfo::IPV4;
    222 }
    223 
    224 // Return true if we've made a final IPV4/BROKEN decision, false if the result
    225 // is NEUTRAL, and we could use a second opinion.
    226 template<typename CHAR, typename UCHAR>
    227 bool DoCanonicalizeIPv4Address(const CHAR* spec,
    228                                const Component& host,
    229                                CanonOutput* output,
    230                                CanonHostInfo* host_info) {
    231   host_info->family = IPv4AddressToNumber(
    232       spec, host, host_info->address, &host_info->num_ipv4_components);
    233 
    234   switch (host_info->family) {
    235     case CanonHostInfo::IPV4:
    236       // Definitely an IPv4 address.
    237       host_info->out_host.begin = output->length();
    238       AppendIPv4Address(host_info->address, output);
    239       host_info->out_host.len = output->length() - host_info->out_host.begin;
    240       return true;
    241     case CanonHostInfo::BROKEN:
    242       // Definitely broken.
    243       return true;
    244     default:
    245       // Could be IPv6 or a hostname.
    246       return false;
    247   }
    248 }
    249 
    250 // Helper class that describes the main components of an IPv6 input string.
    251 // See the following examples to understand how it breaks up an input string:
    252 //
    253 // [Example 1]: input = "[::aa:bb]"
    254 //  ==> num_hex_components = 2
    255 //  ==> hex_components[0] = Component(3,2) "aa"
    256 //  ==> hex_components[1] = Component(6,2) "bb"
    257 //  ==> index_of_contraction = 0
    258 //  ==> ipv4_component = Component(0, -1)
    259 //
    260 // [Example 2]: input = "[1:2::3:4:5]"
    261 //  ==> num_hex_components = 5
    262 //  ==> hex_components[0] = Component(1,1) "1"
    263 //  ==> hex_components[1] = Component(3,1) "2"
    264 //  ==> hex_components[2] = Component(6,1) "3"
    265 //  ==> hex_components[3] = Component(8,1) "4"
    266 //  ==> hex_components[4] = Component(10,1) "5"
    267 //  ==> index_of_contraction = 2
    268 //  ==> ipv4_component = Component(0, -1)
    269 //
    270 // [Example 3]: input = "[::ffff:192.168.0.1]"
    271 //  ==> num_hex_components = 1
    272 //  ==> hex_components[0] = Component(3,4) "ffff"
    273 //  ==> index_of_contraction = 0
    274 //  ==> ipv4_component = Component(8, 11) "192.168.0.1"
    275 //
    276 // [Example 4]: input = "[1::]"
    277 //  ==> num_hex_components = 1
    278 //  ==> hex_components[0] = Component(1,1) "1"
    279 //  ==> index_of_contraction = 1
    280 //  ==> ipv4_component = Component(0, -1)
    281 //
    282 // [Example 5]: input = "[::192.168.0.1]"
    283 //  ==> num_hex_components = 0
    284 //  ==> index_of_contraction = 0
    285 //  ==> ipv4_component = Component(8, 11) "192.168.0.1"
    286 //
    287 struct IPv6Parsed {
    288   // Zero-out the parse information.
    289   void reset() {
    290     num_hex_components = 0;
    291     index_of_contraction = -1;
    292     ipv4_component.reset();
    293   }
    294 
    295   // There can be up to 8 hex components (colon separated) in the literal.
    296   Component hex_components[8];
    297 
    298   // The count of hex components present. Ranges from [0,8].
    299   int num_hex_components;
    300 
    301   // The index of the hex component that the "::" contraction precedes, or
    302   // -1 if there is no contraction.
    303   int index_of_contraction;
    304 
    305   // The range of characters which are an IPv4 literal.
    306   Component ipv4_component;
    307 };
    308 
    309 // Parse the IPv6 input string. If parsing succeeded returns true and fills
    310 // |parsed| with the information. If parsing failed (because the input is
    311 // invalid) returns false.
    312 template<typename CHAR, typename UCHAR>
    313 bool DoParseIPv6(const CHAR* spec, const Component& host, IPv6Parsed* parsed) {
    314   // Zero-out the info.
    315   parsed->reset();
    316 
    317   if (!host.is_nonempty())
    318     return false;
    319 
    320   // The index for start and end of address range (no brackets).
    321   int begin = host.begin;
    322   int end = host.end();
    323 
    324   int cur_component_begin = begin;  // Start of the current component.
    325 
    326   // Scan through the input, searching for hex components, "::" contractions,
    327   // and IPv4 components.
    328   for (int i = begin; /* i <= end */; i++) {
    329     bool is_colon = spec[i] == ':';
    330     bool is_contraction = is_colon && i < end - 1 && spec[i + 1] == ':';
    331 
    332     // We reached the end of the current component if we encounter a colon
    333     // (separator between hex components, or start of a contraction), or end of
    334     // input.
    335     if (is_colon || i == end) {
    336       int component_len = i - cur_component_begin;
    337 
    338       // A component should not have more than 4 hex digits.
    339       if (component_len > 4)
    340         return false;
    341 
    342       // Don't allow empty components.
    343       if (component_len == 0) {
    344         // The exception is when contractions appear at beginning of the
    345         // input or at the end of the input.
    346         if (!((is_contraction && i == begin) || (i == end &&
    347             parsed->index_of_contraction == parsed->num_hex_components)))
    348           return false;
    349       }
    350 
    351       // Add the hex component we just found to running list.
    352       if (component_len > 0) {
    353         // Can't have more than 8 components!
    354         if (parsed->num_hex_components >= 8)
    355           return false;
    356 
    357         parsed->hex_components[parsed->num_hex_components++] =
    358             Component(cur_component_begin, component_len);
    359       }
    360     }
    361 
    362     if (i == end)
    363       break;  // Reached the end of the input, DONE.
    364 
    365     // We found a "::" contraction.
    366     if (is_contraction) {
    367       // There can be at most one contraction in the literal.
    368       if (parsed->index_of_contraction != -1)
    369         return false;
    370       parsed->index_of_contraction = parsed->num_hex_components;
    371       ++i;  // Consume the colon we peeked.
    372     }
    373 
    374     if (is_colon) {
    375       // Colons are separators between components, keep track of where the
    376       // current component started (after this colon).
    377       cur_component_begin = i + 1;
    378     } else {
    379       if (static_cast<UCHAR>(spec[i]) >= 0x80)
    380         return false;  // Not ASCII.
    381 
    382       if (!IsHexChar(static_cast<unsigned char>(spec[i]))) {
    383         // Regular components are hex numbers. It is also possible for
    384         // a component to be an IPv4 address in dotted form.
    385         if (IsIPv4Char(static_cast<unsigned char>(spec[i]))) {
    386           // Since IPv4 address can only appear at the end, assume the rest
    387           // of the string is an IPv4 address. (We will parse this separately
    388           // later).
    389           parsed->ipv4_component =
    390               Component(cur_component_begin, end - cur_component_begin);
    391           break;
    392         } else {
    393           // The character was neither a hex digit, nor an IPv4 character.
    394           return false;
    395         }
    396       }
    397     }
    398   }
    399 
    400   return true;
    401 }
    402 
    403 // Verifies the parsed IPv6 information, checking that the various components
    404 // add up to the right number of bits (hex components are 16 bits, while
    405 // embedded IPv4 formats are 32 bits, and contractions are placeholdes for
    406 // 16 or more bits). Returns true if sizes match up, false otherwise. On
    407 // success writes the length of the contraction (if any) to
    408 // |out_num_bytes_of_contraction|.
    409 bool CheckIPv6ComponentsSize(const IPv6Parsed& parsed,
    410                              int* out_num_bytes_of_contraction) {
    411   // Each group of four hex digits contributes 16 bits.
    412   int num_bytes_without_contraction = parsed.num_hex_components * 2;
    413 
    414   // If an IPv4 address was embedded at the end, it contributes 32 bits.
    415   if (parsed.ipv4_component.is_valid())
    416     num_bytes_without_contraction += 4;
    417 
    418   // If there was a "::" contraction, its size is going to be:
    419   // MAX([16bits], [128bits] - num_bytes_without_contraction).
    420   int num_bytes_of_contraction = 0;
    421   if (parsed.index_of_contraction != -1) {
    422     num_bytes_of_contraction = 16 - num_bytes_without_contraction;
    423     if (num_bytes_of_contraction < 2)
    424       num_bytes_of_contraction = 2;
    425   }
    426 
    427   // Check that the numbers add up.
    428   if (num_bytes_without_contraction + num_bytes_of_contraction != 16)
    429     return false;
    430 
    431   *out_num_bytes_of_contraction = num_bytes_of_contraction;
    432   return true;
    433 }
    434 
    435 // Converts a hex comonent into a number. This cannot fail since the caller has
    436 // already verified that each character in the string was a hex digit, and
    437 // that there were no more than 4 characters.
    438 template<typename CHAR>
    439 uint16 IPv6HexComponentToNumber(const CHAR* spec, const Component& component) {
    440   DCHECK(component.len <= 4);
    441 
    442   // Copy the hex string into a C-string.
    443   char buf[5];
    444   for (int i = 0; i < component.len; ++i)
    445     buf[i] = static_cast<char>(spec[component.begin + i]);
    446   buf[component.len] = '\0';
    447 
    448   // Convert it to a number (overflow is not possible, since with 4 hex
    449   // characters we can at most have a 16 bit number).
    450   return static_cast<uint16>(_strtoui64(buf, NULL, 16));
    451 }
    452 
    453 // Converts an IPv6 address to a 128-bit number (network byte order), returning
    454 // true on success. False means that the input was not a valid IPv6 address.
    455 template<typename CHAR, typename UCHAR>
    456 bool DoIPv6AddressToNumber(const CHAR* spec,
    457                            const Component& host,
    458                            unsigned char address[16]) {
    459   // Make sure the component is bounded by '[' and ']'.
    460   int end = host.end();
    461   if (!host.is_nonempty() || spec[host.begin] != '[' || spec[end - 1] != ']')
    462     return false;
    463 
    464   // Exclude the square brackets.
    465   Component ipv6_comp(host.begin + 1, host.len - 2);
    466 
    467   // Parse the IPv6 address -- identify where all the colon separated hex
    468   // components are, the "::" contraction, and the embedded IPv4 address.
    469   IPv6Parsed ipv6_parsed;
    470   if (!DoParseIPv6<CHAR, UCHAR>(spec, ipv6_comp, &ipv6_parsed))
    471     return false;
    472 
    473   // Do some basic size checks to make sure that the address doesn't
    474   // specify more than 128 bits or fewer than 128 bits. This also resolves
    475   // how may zero bytes the "::" contraction represents.
    476   int num_bytes_of_contraction;
    477   if (!CheckIPv6ComponentsSize(ipv6_parsed, &num_bytes_of_contraction))
    478     return false;
    479 
    480   int cur_index_in_address = 0;
    481 
    482   // Loop through each hex components, and contraction in order.
    483   for (int i = 0; i <= ipv6_parsed.num_hex_components; ++i) {
    484     // Append the contraction if it appears before this component.
    485     if (i == ipv6_parsed.index_of_contraction) {
    486       for (int j = 0; j < num_bytes_of_contraction; ++j)
    487         address[cur_index_in_address++] = 0;
    488     }
    489     // Append the hex component's value.
    490     if (i != ipv6_parsed.num_hex_components) {
    491       // Get the 16-bit value for this hex component.
    492       uint16 number = IPv6HexComponentToNumber<CHAR>(
    493           spec, ipv6_parsed.hex_components[i]);
    494       // Append to |address|, in network byte order.
    495       address[cur_index_in_address++] = (number & 0xFF00) >> 8;
    496       address[cur_index_in_address++] = (number & 0x00FF);
    497     }
    498   }
    499 
    500   // If there was an IPv4 section, convert it into a 32-bit number and append
    501   // it to |address|.
    502   if (ipv6_parsed.ipv4_component.is_valid()) {
    503     // Append the 32-bit number to |address|.
    504     int ignored_num_ipv4_components;
    505     if (CanonHostInfo::IPV4 !=
    506         IPv4AddressToNumber(spec,
    507                             ipv6_parsed.ipv4_component,
    508                             &address[cur_index_in_address],
    509                             &ignored_num_ipv4_components))
    510       return false;
    511   }
    512 
    513   return true;
    514 }
    515 
    516 // Searches for the longest sequence of zeros in |address|, and writes the
    517 // range into |contraction_range|. The run of zeros must be at least 16 bits,
    518 // and if there is a tie the first is chosen.
    519 void ChooseIPv6ContractionRange(const unsigned char address[16],
    520                                 Component* contraction_range) {
    521   // The longest run of zeros in |address| seen so far.
    522   Component max_range;
    523 
    524   // The current run of zeros in |address| being iterated over.
    525   Component cur_range;
    526 
    527   for (int i = 0; i < 16; i += 2) {
    528     // Test for 16 bits worth of zero.
    529     bool is_zero = (address[i] == 0 && address[i + 1] == 0);
    530 
    531     if (is_zero) {
    532       // Add the zero to the current range (or start a new one).
    533       if (!cur_range.is_valid())
    534         cur_range = Component(i, 0);
    535       cur_range.len += 2;
    536     }
    537 
    538     if (!is_zero || i == 14) {
    539       // Just completed a run of zeros. If the run is greater than 16 bits,
    540       // it is a candidate for the contraction.
    541       if (cur_range.len > 2 && cur_range.len > max_range.len) {
    542         max_range = cur_range;
    543       }
    544       cur_range.reset();
    545     }
    546   }
    547   *contraction_range = max_range;
    548 }
    549 
    550 // Return true if we've made a final IPV6/BROKEN decision, false if the result
    551 // is NEUTRAL, and we could use a second opinion.
    552 template<typename CHAR, typename UCHAR>
    553 bool DoCanonicalizeIPv6Address(const CHAR* spec,
    554                                const Component& host,
    555                                CanonOutput* output,
    556                                CanonHostInfo* host_info) {
    557   // Turn the IP address into a 128 bit number.
    558   if (!IPv6AddressToNumber(spec, host, host_info->address)) {
    559     // If it's not an IPv6 address, scan for characters that should *only*
    560     // exist in an IPv6 address.
    561     for (int i = host.begin; i < host.end(); i++) {
    562       switch (spec[i]) {
    563         case '[':
    564         case ']':
    565         case ':':
    566           host_info->family = CanonHostInfo::BROKEN;
    567           return true;
    568       }
    569     }
    570 
    571     // No invalid characters.  Could still be IPv4 or a hostname.
    572     host_info->family = CanonHostInfo::NEUTRAL;
    573     return false;
    574   }
    575 
    576   host_info->out_host.begin = output->length();
    577   output->push_back('[');
    578   AppendIPv6Address(host_info->address, output);
    579   output->push_back(']');
    580   host_info->out_host.len = output->length() - host_info->out_host.begin;
    581 
    582   host_info->family = CanonHostInfo::IPV6;
    583   return true;
    584 }
    585 
    586 }  // namespace
    587 
    588 void AppendIPv4Address(const unsigned char address[4], CanonOutput* output) {
    589   for (int i = 0; i < 4; i++) {
    590     char str[16];
    591     _itoa_s(address[i], str, 10);
    592 
    593     for (int ch = 0; str[ch] != 0; ch++)
    594       output->push_back(str[ch]);
    595 
    596     if (i != 3)
    597       output->push_back('.');
    598   }
    599 }
    600 
    601 void AppendIPv6Address(const unsigned char address[16], CanonOutput* output) {
    602   // We will output the address according to the rules in:
    603   // http://tools.ietf.org/html/draft-kawamura-ipv6-text-representation-01#section-4
    604 
    605   // Start by finding where to place the "::" contraction (if any).
    606   Component contraction_range;
    607   ChooseIPv6ContractionRange(address, &contraction_range);
    608 
    609   for (int i = 0; i <= 14;) {
    610     // We check 2 bytes at a time, from bytes (0, 1) to (14, 15), inclusive.
    611     DCHECK(i % 2 == 0);
    612     if (i == contraction_range.begin && contraction_range.len > 0) {
    613       // Jump over the contraction.
    614       if (i == 0)
    615         output->push_back(':');
    616       output->push_back(':');
    617       i = contraction_range.end();
    618     } else {
    619       // Consume the next 16 bits from |address|.
    620       int x = address[i] << 8 | address[i + 1];
    621 
    622       i += 2;
    623 
    624       // Stringify the 16 bit number (at most requires 4 hex digits).
    625       char str[5];
    626       _itoa_s(x, str, 16);
    627       for (int ch = 0; str[ch] != 0; ++ch)
    628         output->push_back(str[ch]);
    629 
    630       // Put a colon after each number, except the last.
    631       if (i < 16)
    632         output->push_back(':');
    633     }
    634   }
    635 }
    636 
    637 bool FindIPv4Components(const char* spec,
    638                         const Component& host,
    639                         Component components[4]) {
    640   return DoFindIPv4Components<char, unsigned char>(spec, host, components);
    641 }
    642 
    643 bool FindIPv4Components(const base::char16* spec,
    644                         const Component& host,
    645                         Component components[4]) {
    646   return DoFindIPv4Components<base::char16, base::char16>(
    647       spec, host, components);
    648 }
    649 
    650 void CanonicalizeIPAddress(const char* spec,
    651                            const Component& host,
    652                            CanonOutput* output,
    653                            CanonHostInfo* host_info) {
    654   if (DoCanonicalizeIPv4Address<char, unsigned char>(
    655           spec, host, output, host_info))
    656     return;
    657   if (DoCanonicalizeIPv6Address<char, unsigned char>(
    658           spec, host, output, host_info))
    659     return;
    660 }
    661 
    662 void CanonicalizeIPAddress(const base::char16* spec,
    663                            const Component& host,
    664                            CanonOutput* output,
    665                            CanonHostInfo* host_info) {
    666   if (DoCanonicalizeIPv4Address<base::char16, base::char16>(
    667           spec, host, output, host_info))
    668     return;
    669   if (DoCanonicalizeIPv6Address<base::char16, base::char16>(
    670           spec, host, output, host_info))
    671     return;
    672 }
    673 
    674 CanonHostInfo::Family IPv4AddressToNumber(const char* spec,
    675                                           const Component& host,
    676                                           unsigned char address[4],
    677                                           int* num_ipv4_components) {
    678   return DoIPv4AddressToNumber<char>(spec, host, address, num_ipv4_components);
    679 }
    680 
    681 CanonHostInfo::Family IPv4AddressToNumber(const base::char16* spec,
    682                                           const Component& host,
    683                                           unsigned char address[4],
    684                                           int* num_ipv4_components) {
    685   return DoIPv4AddressToNumber<base::char16>(
    686       spec, host, address, num_ipv4_components);
    687 }
    688 
    689 bool IPv6AddressToNumber(const char* spec,
    690                          const Component& host,
    691                          unsigned char address[16]) {
    692   return DoIPv6AddressToNumber<char, unsigned char>(spec, host, address);
    693 }
    694 
    695 bool IPv6AddressToNumber(const base::char16* spec,
    696                          const Component& host,
    697                          unsigned char address[16]) {
    698   return DoIPv6AddressToNumber<base::char16, base::char16>(spec, host, address);
    699 }
    700 
    701 }  // namespace url
    702