Home | History | Annotate | Download | only in ia32
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #if V8_TARGET_ARCH_IA32
      8 
      9 #include "src/ia32/lithium-gap-resolver-ia32.h"
     10 #include "src/ia32/lithium-codegen-ia32.h"
     11 
     12 namespace v8 {
     13 namespace internal {
     14 
     15 LGapResolver::LGapResolver(LCodeGen* owner)
     16     : cgen_(owner),
     17       moves_(32, owner->zone()),
     18       source_uses_(),
     19       destination_uses_(),
     20       spilled_register_(-1) {}
     21 
     22 
     23 void LGapResolver::Resolve(LParallelMove* parallel_move) {
     24   ASSERT(HasBeenReset());
     25   // Build up a worklist of moves.
     26   BuildInitialMoveList(parallel_move);
     27 
     28   for (int i = 0; i < moves_.length(); ++i) {
     29     LMoveOperands move = moves_[i];
     30     // Skip constants to perform them last.  They don't block other moves
     31     // and skipping such moves with register destinations keeps those
     32     // registers free for the whole algorithm.
     33     if (!move.IsEliminated() && !move.source()->IsConstantOperand()) {
     34       PerformMove(i);
     35     }
     36   }
     37 
     38   // Perform the moves with constant sources.
     39   for (int i = 0; i < moves_.length(); ++i) {
     40     if (!moves_[i].IsEliminated()) {
     41       ASSERT(moves_[i].source()->IsConstantOperand());
     42       EmitMove(i);
     43     }
     44   }
     45 
     46   Finish();
     47   ASSERT(HasBeenReset());
     48 }
     49 
     50 
     51 void LGapResolver::BuildInitialMoveList(LParallelMove* parallel_move) {
     52   // Perform a linear sweep of the moves to add them to the initial list of
     53   // moves to perform, ignoring any move that is redundant (the source is
     54   // the same as the destination, the destination is ignored and
     55   // unallocated, or the move was already eliminated).
     56   const ZoneList<LMoveOperands>* moves = parallel_move->move_operands();
     57   for (int i = 0; i < moves->length(); ++i) {
     58     LMoveOperands move = moves->at(i);
     59     if (!move.IsRedundant()) AddMove(move);
     60   }
     61   Verify();
     62 }
     63 
     64 
     65 void LGapResolver::PerformMove(int index) {
     66   // Each call to this function performs a move and deletes it from the move
     67   // graph.  We first recursively perform any move blocking this one.  We
     68   // mark a move as "pending" on entry to PerformMove in order to detect
     69   // cycles in the move graph.  We use operand swaps to resolve cycles,
     70   // which means that a call to PerformMove could change any source operand
     71   // in the move graph.
     72 
     73   ASSERT(!moves_[index].IsPending());
     74   ASSERT(!moves_[index].IsRedundant());
     75 
     76   // Clear this move's destination to indicate a pending move.  The actual
     77   // destination is saved on the side.
     78   ASSERT(moves_[index].source() != NULL);  // Or else it will look eliminated.
     79   LOperand* destination = moves_[index].destination();
     80   moves_[index].set_destination(NULL);
     81 
     82   // Perform a depth-first traversal of the move graph to resolve
     83   // dependencies.  Any unperformed, unpending move with a source the same
     84   // as this one's destination blocks this one so recursively perform all
     85   // such moves.
     86   for (int i = 0; i < moves_.length(); ++i) {
     87     LMoveOperands other_move = moves_[i];
     88     if (other_move.Blocks(destination) && !other_move.IsPending()) {
     89       // Though PerformMove can change any source operand in the move graph,
     90       // this call cannot create a blocking move via a swap (this loop does
     91       // not miss any).  Assume there is a non-blocking move with source A
     92       // and this move is blocked on source B and there is a swap of A and
     93       // B.  Then A and B must be involved in the same cycle (or they would
     94       // not be swapped).  Since this move's destination is B and there is
     95       // only a single incoming edge to an operand, this move must also be
     96       // involved in the same cycle.  In that case, the blocking move will
     97       // be created but will be "pending" when we return from PerformMove.
     98       PerformMove(i);
     99     }
    100   }
    101 
    102   // We are about to resolve this move and don't need it marked as
    103   // pending, so restore its destination.
    104   moves_[index].set_destination(destination);
    105 
    106   // This move's source may have changed due to swaps to resolve cycles and
    107   // so it may now be the last move in the cycle.  If so remove it.
    108   if (moves_[index].source()->Equals(destination)) {
    109     RemoveMove(index);
    110     return;
    111   }
    112 
    113   // The move may be blocked on a (at most one) pending move, in which case
    114   // we have a cycle.  Search for such a blocking move and perform a swap to
    115   // resolve it.
    116   for (int i = 0; i < moves_.length(); ++i) {
    117     LMoveOperands other_move = moves_[i];
    118     if (other_move.Blocks(destination)) {
    119       ASSERT(other_move.IsPending());
    120       EmitSwap(index);
    121       return;
    122     }
    123   }
    124 
    125   // This move is not blocked.
    126   EmitMove(index);
    127 }
    128 
    129 
    130 void LGapResolver::AddMove(LMoveOperands move) {
    131   LOperand* source = move.source();
    132   if (source->IsRegister()) ++source_uses_[source->index()];
    133 
    134   LOperand* destination = move.destination();
    135   if (destination->IsRegister()) ++destination_uses_[destination->index()];
    136 
    137   moves_.Add(move, cgen_->zone());
    138 }
    139 
    140 
    141 void LGapResolver::RemoveMove(int index) {
    142   LOperand* source = moves_[index].source();
    143   if (source->IsRegister()) {
    144     --source_uses_[source->index()];
    145     ASSERT(source_uses_[source->index()] >= 0);
    146   }
    147 
    148   LOperand* destination = moves_[index].destination();
    149   if (destination->IsRegister()) {
    150     --destination_uses_[destination->index()];
    151     ASSERT(destination_uses_[destination->index()] >= 0);
    152   }
    153 
    154   moves_[index].Eliminate();
    155 }
    156 
    157 
    158 int LGapResolver::CountSourceUses(LOperand* operand) {
    159   int count = 0;
    160   for (int i = 0; i < moves_.length(); ++i) {
    161     if (!moves_[i].IsEliminated() && moves_[i].source()->Equals(operand)) {
    162       ++count;
    163     }
    164   }
    165   return count;
    166 }
    167 
    168 
    169 Register LGapResolver::GetFreeRegisterNot(Register reg) {
    170   int skip_index = reg.is(no_reg) ? -1 : Register::ToAllocationIndex(reg);
    171   for (int i = 0; i < Register::NumAllocatableRegisters(); ++i) {
    172     if (source_uses_[i] == 0 && destination_uses_[i] > 0 && i != skip_index) {
    173       return Register::FromAllocationIndex(i);
    174     }
    175   }
    176   return no_reg;
    177 }
    178 
    179 
    180 bool LGapResolver::HasBeenReset() {
    181   if (!moves_.is_empty()) return false;
    182   if (spilled_register_ >= 0) return false;
    183 
    184   for (int i = 0; i < Register::NumAllocatableRegisters(); ++i) {
    185     if (source_uses_[i] != 0) return false;
    186     if (destination_uses_[i] != 0) return false;
    187   }
    188   return true;
    189 }
    190 
    191 
    192 void LGapResolver::Verify() {
    193 #ifdef ENABLE_SLOW_ASSERTS
    194   // No operand should be the destination for more than one move.
    195   for (int i = 0; i < moves_.length(); ++i) {
    196     LOperand* destination = moves_[i].destination();
    197     for (int j = i + 1; j < moves_.length(); ++j) {
    198       SLOW_ASSERT(!destination->Equals(moves_[j].destination()));
    199     }
    200   }
    201 #endif
    202 }
    203 
    204 
    205 #define __ ACCESS_MASM(cgen_->masm())
    206 
    207 void LGapResolver::Finish() {
    208   if (spilled_register_ >= 0) {
    209     __ pop(Register::FromAllocationIndex(spilled_register_));
    210     spilled_register_ = -1;
    211   }
    212   moves_.Rewind(0);
    213 }
    214 
    215 
    216 void LGapResolver::EnsureRestored(LOperand* operand) {
    217   if (operand->IsRegister() && operand->index() == spilled_register_) {
    218     __ pop(Register::FromAllocationIndex(spilled_register_));
    219     spilled_register_ = -1;
    220   }
    221 }
    222 
    223 
    224 Register LGapResolver::EnsureTempRegister() {
    225   // 1. We may have already spilled to create a temp register.
    226   if (spilled_register_ >= 0) {
    227     return Register::FromAllocationIndex(spilled_register_);
    228   }
    229 
    230   // 2. We may have a free register that we can use without spilling.
    231   Register free = GetFreeRegisterNot(no_reg);
    232   if (!free.is(no_reg)) return free;
    233 
    234   // 3. Prefer to spill a register that is not used in any remaining move
    235   // because it will not need to be restored until the end.
    236   for (int i = 0; i < Register::NumAllocatableRegisters(); ++i) {
    237     if (source_uses_[i] == 0 && destination_uses_[i] == 0) {
    238       Register scratch = Register::FromAllocationIndex(i);
    239       __ push(scratch);
    240       spilled_register_ = i;
    241       return scratch;
    242     }
    243   }
    244 
    245   // 4. Use an arbitrary register.  Register 0 is as arbitrary as any other.
    246   Register scratch = Register::FromAllocationIndex(0);
    247   __ push(scratch);
    248   spilled_register_ = 0;
    249   return scratch;
    250 }
    251 
    252 
    253 void LGapResolver::EmitMove(int index) {
    254   LOperand* source = moves_[index].source();
    255   LOperand* destination = moves_[index].destination();
    256   EnsureRestored(source);
    257   EnsureRestored(destination);
    258 
    259   // Dispatch on the source and destination operand kinds.  Not all
    260   // combinations are possible.
    261   if (source->IsRegister()) {
    262     ASSERT(destination->IsRegister() || destination->IsStackSlot());
    263     Register src = cgen_->ToRegister(source);
    264     Operand dst = cgen_->ToOperand(destination);
    265     __ mov(dst, src);
    266 
    267   } else if (source->IsStackSlot()) {
    268     ASSERT(destination->IsRegister() || destination->IsStackSlot());
    269     Operand src = cgen_->ToOperand(source);
    270     if (destination->IsRegister()) {
    271       Register dst = cgen_->ToRegister(destination);
    272       __ mov(dst, src);
    273     } else {
    274       // Spill on demand to use a temporary register for memory-to-memory
    275       // moves.
    276       Register tmp = EnsureTempRegister();
    277       Operand dst = cgen_->ToOperand(destination);
    278       __ mov(tmp, src);
    279       __ mov(dst, tmp);
    280     }
    281 
    282   } else if (source->IsConstantOperand()) {
    283     LConstantOperand* constant_source = LConstantOperand::cast(source);
    284     if (destination->IsRegister()) {
    285       Register dst = cgen_->ToRegister(destination);
    286       Representation r = cgen_->IsSmi(constant_source)
    287           ? Representation::Smi() : Representation::Integer32();
    288       if (cgen_->IsInteger32(constant_source)) {
    289         __ Move(dst, cgen_->ToImmediate(constant_source, r));
    290       } else {
    291         __ LoadObject(dst, cgen_->ToHandle(constant_source));
    292       }
    293     } else if (destination->IsDoubleRegister()) {
    294       double v = cgen_->ToDouble(constant_source);
    295       uint64_t int_val = BitCast<uint64_t, double>(v);
    296       int32_t lower = static_cast<int32_t>(int_val);
    297       int32_t upper = static_cast<int32_t>(int_val >> kBitsPerInt);
    298       XMMRegister dst = cgen_->ToDoubleRegister(destination);
    299       if (int_val == 0) {
    300         __ xorps(dst, dst);
    301       } else {
    302         __ push(Immediate(upper));
    303         __ push(Immediate(lower));
    304         __ movsd(dst, Operand(esp, 0));
    305         __ add(esp, Immediate(kDoubleSize));
    306       }
    307     } else {
    308       ASSERT(destination->IsStackSlot());
    309       Operand dst = cgen_->ToOperand(destination);
    310       Representation r = cgen_->IsSmi(constant_source)
    311           ? Representation::Smi() : Representation::Integer32();
    312       if (cgen_->IsInteger32(constant_source)) {
    313         __ Move(dst, cgen_->ToImmediate(constant_source, r));
    314       } else {
    315         Register tmp = EnsureTempRegister();
    316         __ LoadObject(tmp, cgen_->ToHandle(constant_source));
    317         __ mov(dst, tmp);
    318       }
    319     }
    320 
    321   } else if (source->IsDoubleRegister()) {
    322     XMMRegister src = cgen_->ToDoubleRegister(source);
    323     if (destination->IsDoubleRegister()) {
    324       XMMRegister dst = cgen_->ToDoubleRegister(destination);
    325       __ movaps(dst, src);
    326     } else {
    327       ASSERT(destination->IsDoubleStackSlot());
    328       Operand dst = cgen_->ToOperand(destination);
    329       __ movsd(dst, src);
    330     }
    331   } else if (source->IsDoubleStackSlot()) {
    332     ASSERT(destination->IsDoubleRegister() ||
    333            destination->IsDoubleStackSlot());
    334     Operand src = cgen_->ToOperand(source);
    335     if (destination->IsDoubleRegister()) {
    336       XMMRegister dst = cgen_->ToDoubleRegister(destination);
    337       __ movsd(dst, src);
    338     } else {
    339       // We rely on having xmm0 available as a fixed scratch register.
    340       Operand dst = cgen_->ToOperand(destination);
    341       __ movsd(xmm0, src);
    342       __ movsd(dst, xmm0);
    343     }
    344   } else {
    345     UNREACHABLE();
    346   }
    347 
    348   RemoveMove(index);
    349 }
    350 
    351 
    352 void LGapResolver::EmitSwap(int index) {
    353   LOperand* source = moves_[index].source();
    354   LOperand* destination = moves_[index].destination();
    355   EnsureRestored(source);
    356   EnsureRestored(destination);
    357 
    358   // Dispatch on the source and destination operand kinds.  Not all
    359   // combinations are possible.
    360   if (source->IsRegister() && destination->IsRegister()) {
    361     // Register-register.
    362     Register src = cgen_->ToRegister(source);
    363     Register dst = cgen_->ToRegister(destination);
    364     __ xchg(dst, src);
    365 
    366   } else if ((source->IsRegister() && destination->IsStackSlot()) ||
    367              (source->IsStackSlot() && destination->IsRegister())) {
    368     // Register-memory.  Use a free register as a temp if possible.  Do not
    369     // spill on demand because the simple spill implementation cannot avoid
    370     // spilling src at this point.
    371     Register tmp = GetFreeRegisterNot(no_reg);
    372     Register reg =
    373         cgen_->ToRegister(source->IsRegister() ? source : destination);
    374     Operand mem =
    375         cgen_->ToOperand(source->IsRegister() ? destination : source);
    376     if (tmp.is(no_reg)) {
    377       __ xor_(reg, mem);
    378       __ xor_(mem, reg);
    379       __ xor_(reg, mem);
    380     } else {
    381       __ mov(tmp, mem);
    382       __ mov(mem, reg);
    383       __ mov(reg, tmp);
    384     }
    385 
    386   } else if (source->IsStackSlot() && destination->IsStackSlot()) {
    387     // Memory-memory.  Spill on demand to use a temporary.  If there is a
    388     // free register after that, use it as a second temporary.
    389     Register tmp0 = EnsureTempRegister();
    390     Register tmp1 = GetFreeRegisterNot(tmp0);
    391     Operand src = cgen_->ToOperand(source);
    392     Operand dst = cgen_->ToOperand(destination);
    393     if (tmp1.is(no_reg)) {
    394       // Only one temp register available to us.
    395       __ mov(tmp0, dst);
    396       __ xor_(tmp0, src);
    397       __ xor_(src, tmp0);
    398       __ xor_(tmp0, src);
    399       __ mov(dst, tmp0);
    400     } else {
    401       __ mov(tmp0, dst);
    402       __ mov(tmp1, src);
    403       __ mov(dst, tmp1);
    404       __ mov(src, tmp0);
    405     }
    406   } else if (source->IsDoubleRegister() && destination->IsDoubleRegister()) {
    407     // XMM register-register swap. We rely on having xmm0
    408     // available as a fixed scratch register.
    409     XMMRegister src = cgen_->ToDoubleRegister(source);
    410     XMMRegister dst = cgen_->ToDoubleRegister(destination);
    411     __ movaps(xmm0, src);
    412     __ movaps(src, dst);
    413     __ movaps(dst, xmm0);
    414   } else if (source->IsDoubleRegister() || destination->IsDoubleRegister()) {
    415     // XMM register-memory swap.  We rely on having xmm0
    416     // available as a fixed scratch register.
    417     ASSERT(source->IsDoubleStackSlot() || destination->IsDoubleStackSlot());
    418     XMMRegister reg = cgen_->ToDoubleRegister(source->IsDoubleRegister()
    419                                               ? source
    420                                               : destination);
    421     Operand other =
    422         cgen_->ToOperand(source->IsDoubleRegister() ? destination : source);
    423     __ movsd(xmm0, other);
    424     __ movsd(other, reg);
    425     __ movaps(reg, xmm0);
    426   } else if (source->IsDoubleStackSlot() && destination->IsDoubleStackSlot()) {
    427     // Double-width memory-to-memory.  Spill on demand to use a general
    428     // purpose temporary register and also rely on having xmm0 available as
    429     // a fixed scratch register.
    430     Register tmp = EnsureTempRegister();
    431     Operand src0 = cgen_->ToOperand(source);
    432     Operand src1 = cgen_->HighOperand(source);
    433     Operand dst0 = cgen_->ToOperand(destination);
    434     Operand dst1 = cgen_->HighOperand(destination);
    435     __ movsd(xmm0, dst0);  // Save destination in xmm0.
    436     __ mov(tmp, src0);  // Then use tmp to copy source to destination.
    437     __ mov(dst0, tmp);
    438     __ mov(tmp, src1);
    439     __ mov(dst1, tmp);
    440     __ movsd(src0, xmm0);
    441 
    442   } else {
    443     // No other combinations are possible.
    444     UNREACHABLE();
    445   }
    446 
    447   // The swap of source and destination has executed a move from source to
    448   // destination.
    449   RemoveMove(index);
    450 
    451   // Any unperformed (including pending) move with a source of either
    452   // this move's source or destination needs to have their source
    453   // changed to reflect the state of affairs after the swap.
    454   for (int i = 0; i < moves_.length(); ++i) {
    455     LMoveOperands other_move = moves_[i];
    456     if (other_move.Blocks(source)) {
    457       moves_[i].set_source(destination);
    458     } else if (other_move.Blocks(destination)) {
    459       moves_[i].set_source(source);
    460     }
    461   }
    462 
    463   // In addition to swapping the actual uses as sources, we need to update
    464   // the use counts.
    465   if (source->IsRegister() && destination->IsRegister()) {
    466     int temp = source_uses_[source->index()];
    467     source_uses_[source->index()] = source_uses_[destination->index()];
    468     source_uses_[destination->index()] = temp;
    469   } else if (source->IsRegister()) {
    470     // We don't have use counts for non-register operands like destination.
    471     // Compute those counts now.
    472     source_uses_[source->index()] = CountSourceUses(source);
    473   } else if (destination->IsRegister()) {
    474     source_uses_[destination->index()] = CountSourceUses(destination);
    475   }
    476 }
    477 
    478 #undef __
    479 
    480 } }  // namespace v8::internal
    481 
    482 #endif  // V8_TARGET_ARCH_IA32
    483