Home | History | Annotate | Download | only in cctest
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include <stdlib.h>
     29 
     30 #ifdef __linux__
     31 #include <sys/types.h>
     32 #include <sys/stat.h>
     33 #include <fcntl.h>
     34 #include <unistd.h>
     35 #include <errno.h>
     36 #endif
     37 
     38 #include <utility>
     39 
     40 #include "src/v8.h"
     41 
     42 #include "src/full-codegen.h"
     43 #include "src/global-handles.h"
     44 #include "src/snapshot.h"
     45 #include "test/cctest/cctest.h"
     46 
     47 using namespace v8::internal;
     48 
     49 
     50 TEST(MarkingDeque) {
     51   CcTest::InitializeVM();
     52   int mem_size = 20 * kPointerSize;
     53   byte* mem = NewArray<byte>(20*kPointerSize);
     54   Address low = reinterpret_cast<Address>(mem);
     55   Address high = low + mem_size;
     56   MarkingDeque s;
     57   s.Initialize(low, high);
     58 
     59   Address original_address = reinterpret_cast<Address>(&s);
     60   Address current_address = original_address;
     61   while (!s.IsFull()) {
     62     s.PushBlack(HeapObject::FromAddress(current_address));
     63     current_address += kPointerSize;
     64   }
     65 
     66   while (!s.IsEmpty()) {
     67     Address value = s.Pop()->address();
     68     current_address -= kPointerSize;
     69     CHECK_EQ(current_address, value);
     70   }
     71 
     72   CHECK_EQ(original_address, current_address);
     73   DeleteArray(mem);
     74 }
     75 
     76 
     77 TEST(Promotion) {
     78   CcTest::InitializeVM();
     79   TestHeap* heap = CcTest::test_heap();
     80   heap->ConfigureHeap(1, 1, 1, 0);
     81 
     82   v8::HandleScope sc(CcTest::isolate());
     83 
     84   // Allocate a fixed array in the new space.
     85   int array_length =
     86       (Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) /
     87       (4 * kPointerSize);
     88   Object* obj = heap->AllocateFixedArray(array_length).ToObjectChecked();
     89   Handle<FixedArray> array(FixedArray::cast(obj));
     90 
     91   // Array should be in the new space.
     92   CHECK(heap->InSpace(*array, NEW_SPACE));
     93 
     94   // Call mark compact GC, so array becomes an old object.
     95   heap->CollectGarbage(OLD_POINTER_SPACE);
     96 
     97   // Array now sits in the old space
     98   CHECK(heap->InSpace(*array, OLD_POINTER_SPACE));
     99 }
    100 
    101 
    102 TEST(NoPromotion) {
    103   CcTest::InitializeVM();
    104   TestHeap* heap = CcTest::test_heap();
    105   heap->ConfigureHeap(1, 1, 1, 0);
    106 
    107   v8::HandleScope sc(CcTest::isolate());
    108 
    109   // Allocate a big fixed array in the new space.
    110   int array_length =
    111       (Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) /
    112       (2 * kPointerSize);
    113   Object* obj = heap->AllocateFixedArray(array_length).ToObjectChecked();
    114   Handle<FixedArray> array(FixedArray::cast(obj));
    115 
    116   // Array should be in the new space.
    117   CHECK(heap->InSpace(*array, NEW_SPACE));
    118 
    119   // Simulate a full old space to make promotion fail.
    120   SimulateFullSpace(heap->old_pointer_space());
    121 
    122   // Call mark compact GC, and it should pass.
    123   heap->CollectGarbage(OLD_POINTER_SPACE);
    124 }
    125 
    126 
    127 TEST(MarkCompactCollector) {
    128   FLAG_incremental_marking = false;
    129   CcTest::InitializeVM();
    130   Isolate* isolate = CcTest::i_isolate();
    131   TestHeap* heap = CcTest::test_heap();
    132   Factory* factory = isolate->factory();
    133 
    134   v8::HandleScope sc(CcTest::isolate());
    135   Handle<GlobalObject> global(isolate->context()->global_object());
    136 
    137   // call mark-compact when heap is empty
    138   heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 1");
    139 
    140   // keep allocating garbage in new space until it fails
    141   const int ARRAY_SIZE = 100;
    142   AllocationResult allocation;
    143   do {
    144     allocation = heap->AllocateFixedArray(ARRAY_SIZE);
    145   } while (!allocation.IsRetry());
    146   heap->CollectGarbage(NEW_SPACE, "trigger 2");
    147   heap->AllocateFixedArray(ARRAY_SIZE).ToObjectChecked();
    148 
    149   // keep allocating maps until it fails
    150   do {
    151     allocation = heap->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
    152   } while (!allocation.IsRetry());
    153   heap->CollectGarbage(MAP_SPACE, "trigger 3");
    154   heap->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize).ToObjectChecked();
    155 
    156   { HandleScope scope(isolate);
    157     // allocate a garbage
    158     Handle<String> func_name = factory->InternalizeUtf8String("theFunction");
    159     Handle<JSFunction> function = factory->NewFunction(func_name);
    160     JSReceiver::SetProperty(global, func_name, function, NONE, SLOPPY).Check();
    161 
    162     factory->NewJSObject(function);
    163   }
    164 
    165   heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 4");
    166 
    167   { HandleScope scope(isolate);
    168     Handle<String> func_name = factory->InternalizeUtf8String("theFunction");
    169     CHECK(JSReceiver::HasOwnProperty(global, func_name));
    170     Handle<Object> func_value =
    171         Object::GetProperty(global, func_name).ToHandleChecked();
    172     CHECK(func_value->IsJSFunction());
    173     Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
    174     Handle<JSObject> obj = factory->NewJSObject(function);
    175 
    176     Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
    177     JSReceiver::SetProperty(global, obj_name, obj, NONE, SLOPPY).Check();
    178     Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
    179     Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
    180     JSReceiver::SetProperty(obj, prop_name, twenty_three, NONE, SLOPPY).Check();
    181   }
    182 
    183   heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 5");
    184 
    185   { HandleScope scope(isolate);
    186     Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
    187     CHECK(JSReceiver::HasOwnProperty(global, obj_name));
    188     Handle<Object> object =
    189         Object::GetProperty(global, obj_name).ToHandleChecked();
    190     CHECK(object->IsJSObject());
    191     Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
    192     CHECK_EQ(*Object::GetProperty(object, prop_name).ToHandleChecked(),
    193              Smi::FromInt(23));
    194   }
    195 }
    196 
    197 
    198 // TODO(1600): compaction of map space is temporary removed from GC.
    199 #if 0
    200 static Handle<Map> CreateMap(Isolate* isolate) {
    201   return isolate->factory()->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
    202 }
    203 
    204 
    205 TEST(MapCompact) {
    206   FLAG_max_map_space_pages = 16;
    207   CcTest::InitializeVM();
    208   Isolate* isolate = CcTest::i_isolate();
    209   Factory* factory = isolate->factory();
    210 
    211   {
    212     v8::HandleScope sc;
    213     // keep allocating maps while pointers are still encodable and thus
    214     // mark compact is permitted.
    215     Handle<JSObject> root = factory->NewJSObjectFromMap(CreateMap());
    216     do {
    217       Handle<Map> map = CreateMap();
    218       map->set_prototype(*root);
    219       root = factory->NewJSObjectFromMap(map);
    220     } while (CcTest::heap()->map_space()->MapPointersEncodable());
    221   }
    222   // Now, as we don't have any handles to just allocated maps, we should
    223   // be able to trigger map compaction.
    224   // To give an additional chance to fail, try to force compaction which
    225   // should be impossible right now.
    226   CcTest::heap()->CollectAllGarbage(Heap::kForceCompactionMask);
    227   // And now map pointers should be encodable again.
    228   CHECK(CcTest::heap()->map_space()->MapPointersEncodable());
    229 }
    230 #endif
    231 
    232 
    233 static int NumberOfWeakCalls = 0;
    234 static void WeakPointerCallback(
    235     const v8::WeakCallbackData<v8::Value, void>& data) {
    236   std::pair<v8::Persistent<v8::Value>*, int>* p =
    237       reinterpret_cast<std::pair<v8::Persistent<v8::Value>*, int>*>(
    238           data.GetParameter());
    239   ASSERT_EQ(1234, p->second);
    240   NumberOfWeakCalls++;
    241   p->first->Reset();
    242 }
    243 
    244 
    245 TEST(ObjectGroups) {
    246   FLAG_incremental_marking = false;
    247   CcTest::InitializeVM();
    248   GlobalHandles* global_handles = CcTest::i_isolate()->global_handles();
    249   TestHeap* heap = CcTest::test_heap();
    250   NumberOfWeakCalls = 0;
    251   v8::HandleScope handle_scope(CcTest::isolate());
    252 
    253   Handle<Object> g1s1 =
    254       global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
    255   Handle<Object> g1s2 =
    256       global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
    257   Handle<Object> g1c1 =
    258       global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
    259   std::pair<Handle<Object>*, int> g1s1_and_id(&g1s1, 1234);
    260   GlobalHandles::MakeWeak(g1s1.location(),
    261                           reinterpret_cast<void*>(&g1s1_and_id),
    262                           &WeakPointerCallback);
    263   std::pair<Handle<Object>*, int> g1s2_and_id(&g1s2, 1234);
    264   GlobalHandles::MakeWeak(g1s2.location(),
    265                           reinterpret_cast<void*>(&g1s2_and_id),
    266                           &WeakPointerCallback);
    267   std::pair<Handle<Object>*, int> g1c1_and_id(&g1c1, 1234);
    268   GlobalHandles::MakeWeak(g1c1.location(),
    269                           reinterpret_cast<void*>(&g1c1_and_id),
    270                           &WeakPointerCallback);
    271 
    272   Handle<Object> g2s1 =
    273       global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
    274   Handle<Object> g2s2 =
    275     global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
    276   Handle<Object> g2c1 =
    277     global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
    278   std::pair<Handle<Object>*, int> g2s1_and_id(&g2s1, 1234);
    279   GlobalHandles::MakeWeak(g2s1.location(),
    280                           reinterpret_cast<void*>(&g2s1_and_id),
    281                           &WeakPointerCallback);
    282   std::pair<Handle<Object>*, int> g2s2_and_id(&g2s2, 1234);
    283   GlobalHandles::MakeWeak(g2s2.location(),
    284                           reinterpret_cast<void*>(&g2s2_and_id),
    285                           &WeakPointerCallback);
    286   std::pair<Handle<Object>*, int> g2c1_and_id(&g2c1, 1234);
    287   GlobalHandles::MakeWeak(g2c1.location(),
    288                           reinterpret_cast<void*>(&g2c1_and_id),
    289                           &WeakPointerCallback);
    290 
    291   Handle<Object> root = global_handles->Create(*g1s1);  // make a root.
    292 
    293   // Connect group 1 and 2, make a cycle.
    294   Handle<FixedArray>::cast(g1s2)->set(0, *g2s2);
    295   Handle<FixedArray>::cast(g2s1)->set(0, *g1s1);
    296 
    297   {
    298     Object** g1_objects[] = { g1s1.location(), g1s2.location() };
    299     Object** g1_children[] = { g1c1.location() };
    300     Object** g2_objects[] = { g2s1.location(), g2s2.location() };
    301     Object** g2_children[] = { g2c1.location() };
    302     global_handles->AddObjectGroup(g1_objects, 2, NULL);
    303     global_handles->AddImplicitReferences(
    304         Handle<HeapObject>::cast(g1s1).location(), g1_children, 1);
    305     global_handles->AddObjectGroup(g2_objects, 2, NULL);
    306     global_handles->AddImplicitReferences(
    307         Handle<HeapObject>::cast(g2s1).location(), g2_children, 1);
    308   }
    309   // Do a full GC
    310   heap->CollectGarbage(OLD_POINTER_SPACE);
    311 
    312   // All object should be alive.
    313   CHECK_EQ(0, NumberOfWeakCalls);
    314 
    315   // Weaken the root.
    316   std::pair<Handle<Object>*, int> root_and_id(&root, 1234);
    317   GlobalHandles::MakeWeak(root.location(),
    318                           reinterpret_cast<void*>(&root_and_id),
    319                           &WeakPointerCallback);
    320   // But make children strong roots---all the objects (except for children)
    321   // should be collectable now.
    322   global_handles->ClearWeakness(g1c1.location());
    323   global_handles->ClearWeakness(g2c1.location());
    324 
    325   // Groups are deleted, rebuild groups.
    326   {
    327     Object** g1_objects[] = { g1s1.location(), g1s2.location() };
    328     Object** g1_children[] = { g1c1.location() };
    329     Object** g2_objects[] = { g2s1.location(), g2s2.location() };
    330     Object** g2_children[] = { g2c1.location() };
    331     global_handles->AddObjectGroup(g1_objects, 2, NULL);
    332     global_handles->AddImplicitReferences(
    333         Handle<HeapObject>::cast(g1s1).location(), g1_children, 1);
    334     global_handles->AddObjectGroup(g2_objects, 2, NULL);
    335     global_handles->AddImplicitReferences(
    336         Handle<HeapObject>::cast(g2s1).location(), g2_children, 1);
    337   }
    338 
    339   heap->CollectGarbage(OLD_POINTER_SPACE);
    340 
    341   // All objects should be gone. 5 global handles in total.
    342   CHECK_EQ(5, NumberOfWeakCalls);
    343 
    344   // And now make children weak again and collect them.
    345   GlobalHandles::MakeWeak(g1c1.location(),
    346                           reinterpret_cast<void*>(&g1c1_and_id),
    347                           &WeakPointerCallback);
    348   GlobalHandles::MakeWeak(g2c1.location(),
    349                           reinterpret_cast<void*>(&g2c1_and_id),
    350                           &WeakPointerCallback);
    351 
    352   heap->CollectGarbage(OLD_POINTER_SPACE);
    353   CHECK_EQ(7, NumberOfWeakCalls);
    354 }
    355 
    356 
    357 class TestRetainedObjectInfo : public v8::RetainedObjectInfo {
    358  public:
    359   TestRetainedObjectInfo() : has_been_disposed_(false) {}
    360 
    361   bool has_been_disposed() { return has_been_disposed_; }
    362 
    363   virtual void Dispose() {
    364     ASSERT(!has_been_disposed_);
    365     has_been_disposed_ = true;
    366   }
    367 
    368   virtual bool IsEquivalent(v8::RetainedObjectInfo* other) {
    369     return other == this;
    370   }
    371 
    372   virtual intptr_t GetHash() { return 0; }
    373 
    374   virtual const char* GetLabel() { return "whatever"; }
    375 
    376  private:
    377   bool has_been_disposed_;
    378 };
    379 
    380 
    381 TEST(EmptyObjectGroups) {
    382   CcTest::InitializeVM();
    383   GlobalHandles* global_handles = CcTest::i_isolate()->global_handles();
    384 
    385   v8::HandleScope handle_scope(CcTest::isolate());
    386 
    387   Handle<Object> object = global_handles->Create(
    388       CcTest::test_heap()->AllocateFixedArray(1).ToObjectChecked());
    389 
    390   TestRetainedObjectInfo info;
    391   global_handles->AddObjectGroup(NULL, 0, &info);
    392   ASSERT(info.has_been_disposed());
    393 
    394   global_handles->AddImplicitReferences(
    395         Handle<HeapObject>::cast(object).location(), NULL, 0);
    396 }
    397 
    398 
    399 #if defined(__has_feature)
    400 #if __has_feature(address_sanitizer)
    401 #define V8_WITH_ASAN 1
    402 #endif
    403 #endif
    404 
    405 
    406 // Here is a memory use test that uses /proc, and is therefore Linux-only.  We
    407 // do not care how much memory the simulator uses, since it is only there for
    408 // debugging purposes. Testing with ASAN doesn't make sense, either.
    409 #if defined(__linux__) && !defined(USE_SIMULATOR) && !defined(V8_WITH_ASAN)
    410 
    411 
    412 static uintptr_t ReadLong(char* buffer, intptr_t* position, int base) {
    413   char* end_address = buffer + *position;
    414   uintptr_t result = strtoul(buffer + *position, &end_address, base);
    415   CHECK(result != ULONG_MAX || errno != ERANGE);
    416   CHECK(end_address > buffer + *position);
    417   *position = end_address - buffer;
    418   return result;
    419 }
    420 
    421 
    422 // The memory use computed this way is not entirely accurate and depends on
    423 // the way malloc allocates memory.  That's why the memory use may seem to
    424 // increase even though the sum of the allocated object sizes decreases.  It
    425 // also means that the memory use depends on the kernel and stdlib.
    426 static intptr_t MemoryInUse() {
    427   intptr_t memory_use = 0;
    428 
    429   int fd = open("/proc/self/maps", O_RDONLY);
    430   if (fd < 0) return -1;
    431 
    432   const int kBufSize = 10000;
    433   char buffer[kBufSize];
    434   int length = read(fd, buffer, kBufSize);
    435   intptr_t line_start = 0;
    436   CHECK_LT(length, kBufSize);  // Make the buffer bigger.
    437   CHECK_GT(length, 0);  // We have to find some data in the file.
    438   while (line_start < length) {
    439     if (buffer[line_start] == '\n') {
    440       line_start++;
    441       continue;
    442     }
    443     intptr_t position = line_start;
    444     uintptr_t start = ReadLong(buffer, &position, 16);
    445     CHECK_EQ(buffer[position++], '-');
    446     uintptr_t end = ReadLong(buffer, &position, 16);
    447     CHECK_EQ(buffer[position++], ' ');
    448     CHECK(buffer[position] == '-' || buffer[position] == 'r');
    449     bool read_permission = (buffer[position++] == 'r');
    450     CHECK(buffer[position] == '-' || buffer[position] == 'w');
    451     bool write_permission = (buffer[position++] == 'w');
    452     CHECK(buffer[position] == '-' || buffer[position] == 'x');
    453     bool execute_permission = (buffer[position++] == 'x');
    454     CHECK(buffer[position] == '-' || buffer[position] == 'p');
    455     bool private_mapping = (buffer[position++] == 'p');
    456     CHECK_EQ(buffer[position++], ' ');
    457     uintptr_t offset = ReadLong(buffer, &position, 16);
    458     USE(offset);
    459     CHECK_EQ(buffer[position++], ' ');
    460     uintptr_t major = ReadLong(buffer, &position, 16);
    461     USE(major);
    462     CHECK_EQ(buffer[position++], ':');
    463     uintptr_t minor = ReadLong(buffer, &position, 16);
    464     USE(minor);
    465     CHECK_EQ(buffer[position++], ' ');
    466     uintptr_t inode = ReadLong(buffer, &position, 10);
    467     while (position < length && buffer[position] != '\n') position++;
    468     if ((read_permission || write_permission || execute_permission) &&
    469         private_mapping && inode == 0) {
    470       memory_use += (end - start);
    471     }
    472 
    473     line_start = position;
    474   }
    475   close(fd);
    476   return memory_use;
    477 }
    478 
    479 
    480 intptr_t ShortLivingIsolate() {
    481   v8::Isolate* isolate = v8::Isolate::New();
    482   { v8::Isolate::Scope isolate_scope(isolate);
    483     v8::Locker lock(isolate);
    484     v8::HandleScope handle_scope(isolate);
    485     v8::Local<v8::Context> context = v8::Context::New(isolate);
    486     CHECK(!context.IsEmpty());
    487   }
    488   isolate->Dispose();
    489   return MemoryInUse();
    490 }
    491 
    492 
    493 TEST(RegressJoinThreadsOnIsolateDeinit) {
    494   intptr_t size_limit = ShortLivingIsolate() * 2;
    495   for (int i = 0; i < 10; i++) {
    496     CHECK_GT(size_limit, ShortLivingIsolate());
    497   }
    498 }
    499 
    500 #endif  // __linux__ and !USE_SIMULATOR
    501