Home | History | Annotate | Download | only in docs
      1 ====================
      2 Objective-C Literals
      3 ====================
      4 
      5 Introduction
      6 ============
      7 
      8 Three new features were introduced into clang at the same time:
      9 *NSNumber Literals* provide a syntax for creating ``NSNumber`` from
     10 scalar literal expressions; *Collection Literals* provide a short-hand
     11 for creating arrays and dictionaries; *Object Subscripting* provides a
     12 way to use subscripting with Objective-C objects. Users of Apple
     13 compiler releases can use these features starting with the Apple LLVM
     14 Compiler 4.0. Users of open-source LLVM.org compiler releases can use
     15 these features starting with clang v3.1.
     16 
     17 These language additions simplify common Objective-C programming
     18 patterns, make programs more concise, and improve the safety of
     19 container creation.
     20 
     21 This document describes how the features are implemented in clang, and
     22 how to use them in your own programs.
     23 
     24 NSNumber Literals
     25 =================
     26 
     27 The framework class ``NSNumber`` is used to wrap scalar values inside
     28 objects: signed and unsigned integers (``char``, ``short``, ``int``,
     29 ``long``, ``long long``), floating point numbers (``float``,
     30 ``double``), and boolean values (``BOOL``, C++ ``bool``). Scalar values
     31 wrapped in objects are also known as *boxed* values.
     32 
     33 In Objective-C, any character, numeric or boolean literal prefixed with
     34 the ``'@'`` character will evaluate to a pointer to an ``NSNumber``
     35 object initialized with that value. C's type suffixes may be used to
     36 control the size of numeric literals.
     37 
     38 Examples
     39 --------
     40 
     41 The following program illustrates the rules for ``NSNumber`` literals:
     42 
     43 .. code-block:: objc
     44 
     45     void main(int argc, const char *argv[]) {
     46       // character literals.
     47       NSNumber *theLetterZ = @'Z';          // equivalent to [NSNumber numberWithChar:'Z']
     48 
     49       // integral literals.
     50       NSNumber *fortyTwo = @42;             // equivalent to [NSNumber numberWithInt:42]
     51       NSNumber *fortyTwoUnsigned = @42U;    // equivalent to [NSNumber numberWithUnsignedInt:42U]
     52       NSNumber *fortyTwoLong = @42L;        // equivalent to [NSNumber numberWithLong:42L]
     53       NSNumber *fortyTwoLongLong = @42LL;   // equivalent to [NSNumber numberWithLongLong:42LL]
     54 
     55       // floating point literals.
     56       NSNumber *piFloat = @3.141592654F;    // equivalent to [NSNumber numberWithFloat:3.141592654F]
     57       NSNumber *piDouble = @3.1415926535;   // equivalent to [NSNumber numberWithDouble:3.1415926535]
     58 
     59       // BOOL literals.
     60       NSNumber *yesNumber = @YES;           // equivalent to [NSNumber numberWithBool:YES]
     61       NSNumber *noNumber = @NO;             // equivalent to [NSNumber numberWithBool:NO]
     62 
     63     #ifdef __cplusplus
     64       NSNumber *trueNumber = @true;         // equivalent to [NSNumber numberWithBool:(BOOL)true]
     65       NSNumber *falseNumber = @false;       // equivalent to [NSNumber numberWithBool:(BOOL)false]
     66     #endif
     67     }
     68 
     69 Discussion
     70 ----------
     71 
     72 NSNumber literals only support literal scalar values after the ``'@'``.
     73 Consequently, ``@INT_MAX`` works, but ``@INT_MIN`` does not, because
     74 they are defined like this:
     75 
     76 .. code-block:: objc
     77 
     78     #define INT_MAX   2147483647  /* max value for an int */
     79     #define INT_MIN   (-2147483647-1) /* min value for an int */
     80 
     81 The definition of ``INT_MIN`` is not a simple literal, but a
     82 parenthesized expression. Parenthesized expressions are supported using
     83 the `boxed expression <#objc_boxed_expressions>`_ syntax, which is
     84 described in the next section.
     85 
     86 Because ``NSNumber`` does not currently support wrapping ``long double``
     87 values, the use of a ``long double NSNumber`` literal (e.g.
     88 ``@123.23L``) will be rejected by the compiler.
     89 
     90 Previously, the ``BOOL`` type was simply a typedef for ``signed char``,
     91 and ``YES`` and ``NO`` were macros that expand to ``(BOOL)1`` and
     92 ``(BOOL)0`` respectively. To support ``@YES`` and ``@NO`` expressions,
     93 these macros are now defined using new language keywords in
     94 ``<objc/objc.h>``:
     95 
     96 .. code-block:: objc
     97 
     98     #if __has_feature(objc_bool)
     99     #define YES             __objc_yes
    100     #define NO              __objc_no
    101     #else
    102     #define YES             ((BOOL)1)
    103     #define NO              ((BOOL)0)
    104     #endif
    105 
    106 The compiler implicitly converts ``__objc_yes`` and ``__objc_no`` to
    107 ``(BOOL)1`` and ``(BOOL)0``. The keywords are used to disambiguate
    108 ``BOOL`` and integer literals.
    109 
    110 Objective-C++ also supports ``@true`` and ``@false`` expressions, which
    111 are equivalent to ``@YES`` and ``@NO``.
    112 
    113 Boxed Expressions
    114 =================
    115 
    116 Objective-C provides a new syntax for boxing C expressions:
    117 
    118 .. code-block:: objc
    119 
    120     @( <expression> )
    121 
    122 Expressions of scalar (numeric, enumerated, BOOL) and C string pointer
    123 types are supported:
    124 
    125 .. code-block:: objc
    126 
    127     // numbers.
    128     NSNumber *smallestInt = @(-INT_MAX - 1);  // [NSNumber numberWithInt:(-INT_MAX - 1)]
    129     NSNumber *piOverTwo = @(M_PI / 2);        // [NSNumber numberWithDouble:(M_PI / 2)]
    130 
    131     // enumerated types.
    132     typedef enum { Red, Green, Blue } Color;
    133     NSNumber *favoriteColor = @(Green);       // [NSNumber numberWithInt:((int)Green)]
    134 
    135     // strings.
    136     NSString *path = @(getenv("PATH"));       // [NSString stringWithUTF8String:(getenv("PATH"))]
    137     NSArray *pathComponents = [path componentsSeparatedByString:@":"];
    138 
    139 Boxed Enums
    140 -----------
    141 
    142 Cocoa frameworks frequently define constant values using *enums.*
    143 Although enum values are integral, they may not be used directly as
    144 boxed literals (this avoids conflicts with future ``'@'``-prefixed
    145 Objective-C keywords). Instead, an enum value must be placed inside a
    146 boxed expression. The following example demonstrates configuring an
    147 ``AVAudioRecorder`` using a dictionary that contains a boxed enumeration
    148 value:
    149 
    150 .. code-block:: objc
    151 
    152     enum {
    153       AVAudioQualityMin = 0,
    154       AVAudioQualityLow = 0x20,
    155       AVAudioQualityMedium = 0x40,
    156       AVAudioQualityHigh = 0x60,
    157       AVAudioQualityMax = 0x7F
    158     };
    159 
    160     - (AVAudioRecorder *)recordToFile:(NSURL *)fileURL {
    161       NSDictionary *settings = @{ AVEncoderAudioQualityKey : @(AVAudioQualityMax) };
    162       return [[AVAudioRecorder alloc] initWithURL:fileURL settings:settings error:NULL];
    163     }
    164 
    165 The expression ``@(AVAudioQualityMax)`` converts ``AVAudioQualityMax``
    166 to an integer type, and boxes the value accordingly. If the enum has a
    167 :ref:`fixed underlying type <objc-fixed-enum>` as in:
    168 
    169 .. code-block:: objc
    170 
    171     typedef enum : unsigned char { Red, Green, Blue } Color;
    172     NSNumber *red = @(Red), *green = @(Green), *blue = @(Blue); // => [NSNumber numberWithUnsignedChar:]
    173 
    174 then the fixed underlying type will be used to select the correct
    175 ``NSNumber`` creation method.
    176 
    177 Boxing a value of enum type will result in a ``NSNumber`` pointer with a
    178 creation method according to the underlying type of the enum, which can
    179 be a :ref:`fixed underlying type <objc-fixed-enum>`
    180 or a compiler-defined integer type capable of representing the values of
    181 all the members of the enumeration:
    182 
    183 .. code-block:: objc
    184 
    185     typedef enum : unsigned char { Red, Green, Blue } Color;
    186     Color col = Red;
    187     NSNumber *nsCol = @(col); // => [NSNumber numberWithUnsignedChar:]
    188 
    189 Boxed C Strings
    190 ---------------
    191 
    192 A C string literal prefixed by the ``'@'`` token denotes an ``NSString``
    193 literal in the same way a numeric literal prefixed by the ``'@'`` token
    194 denotes an ``NSNumber`` literal. When the type of the parenthesized
    195 expression is ``(char *)`` or ``(const char *)``, the result of the
    196 boxed expression is a pointer to an ``NSString`` object containing
    197 equivalent character data, which is assumed to be '\\0'-terminated and
    198 UTF-8 encoded. The following example converts C-style command line
    199 arguments into ``NSString`` objects.
    200 
    201 .. code-block:: objc
    202 
    203     // Partition command line arguments into positional and option arguments.
    204     NSMutableArray *args = [NSMutableArray new];
    205     NSMutableDictionary *options = [NSMutableDictionary new];
    206     while (--argc) {
    207         const char *arg = *++argv;
    208         if (strncmp(arg, "--", 2) == 0) {
    209             options[@(arg + 2)] = @(*++argv);   // --key value
    210         } else {
    211             [args addObject:@(arg)];            // positional argument
    212         }
    213     }
    214 
    215 As with all C pointers, character pointer expressions can involve
    216 arbitrary pointer arithmetic, therefore programmers must ensure that the
    217 character data is valid. Passing ``NULL`` as the character pointer will
    218 raise an exception at runtime. When possible, the compiler will reject
    219 ``NULL`` character pointers used in boxed expressions.
    220 
    221 Container Literals
    222 ==================
    223 
    224 Objective-C now supports a new expression syntax for creating immutable
    225 array and dictionary container objects.
    226 
    227 Examples
    228 --------
    229 
    230 Immutable array expression:
    231 
    232 .. code-block:: objc
    233 
    234     NSArray *array = @[ @"Hello", NSApp, [NSNumber numberWithInt:42] ];
    235 
    236 This creates an ``NSArray`` with 3 elements. The comma-separated
    237 sub-expressions of an array literal can be any Objective-C object
    238 pointer typed expression.
    239 
    240 Immutable dictionary expression:
    241 
    242 .. code-block:: objc
    243 
    244     NSDictionary *dictionary = @{
    245         @"name" : NSUserName(),
    246         @"date" : [NSDate date],
    247         @"processInfo" : [NSProcessInfo processInfo]
    248     };
    249 
    250 This creates an ``NSDictionary`` with 3 key/value pairs. Value
    251 sub-expressions of a dictionary literal must be Objective-C object
    252 pointer typed, as in array literals. Key sub-expressions must be of an
    253 Objective-C object pointer type that implements the
    254 ``<NSCopying>`` protocol.
    255 
    256 Discussion
    257 ----------
    258 
    259 Neither keys nor values can have the value ``nil`` in containers. If the
    260 compiler can prove that a key or value is ``nil`` at compile time, then
    261 a warning will be emitted. Otherwise, a runtime error will occur.
    262 
    263 Using array and dictionary literals is safer than the variadic creation
    264 forms commonly in use today. Array literal expressions expand to calls
    265 to ``+[NSArray arrayWithObjects:count:]``, which validates that all
    266 objects are non-``nil``. The variadic form,
    267 ``+[NSArray arrayWithObjects:]`` uses ``nil`` as an argument list
    268 terminator, which can lead to malformed array objects. Dictionary
    269 literals are similarly created with
    270 ``+[NSDictionary dictionaryWithObjects:forKeys:count:]`` which validates
    271 all objects and keys, unlike
    272 ``+[NSDictionary dictionaryWithObjectsAndKeys:]`` which also uses a
    273 ``nil`` parameter as an argument list terminator.
    274 
    275 Object Subscripting
    276 ===================
    277 
    278 Objective-C object pointer values can now be used with C's subscripting
    279 operator.
    280 
    281 Examples
    282 --------
    283 
    284 The following code demonstrates the use of object subscripting syntax
    285 with ``NSMutableArray`` and ``NSMutableDictionary`` objects:
    286 
    287 .. code-block:: objc
    288 
    289     NSMutableArray *array = ...;
    290     NSUInteger idx = ...;
    291     id newObject = ...;
    292     id oldObject = array[idx];
    293     array[idx] = newObject;         // replace oldObject with newObject
    294 
    295     NSMutableDictionary *dictionary = ...;
    296     NSString *key = ...;
    297     oldObject = dictionary[key];
    298     dictionary[key] = newObject;    // replace oldObject with newObject
    299 
    300 The next section explains how subscripting expressions map to accessor
    301 methods.
    302 
    303 Subscripting Methods
    304 --------------------
    305 
    306 Objective-C supports two kinds of subscript expressions: *array-style*
    307 subscript expressions use integer typed subscripts; *dictionary-style*
    308 subscript expressions use Objective-C object pointer typed subscripts.
    309 Each type of subscript expression is mapped to a message send using a
    310 predefined selector. The advantage of this design is flexibility: class
    311 designers are free to introduce subscripting by declaring methods or by
    312 adopting protocols. Moreover, because the method names are selected by
    313 the type of the subscript, an object can be subscripted using both array
    314 and dictionary styles.
    315 
    316 Array-Style Subscripting
    317 ^^^^^^^^^^^^^^^^^^^^^^^^
    318 
    319 When the subscript operand has an integral type, the expression is
    320 rewritten to use one of two different selectors, depending on whether
    321 the element is being read or written. When an expression reads an
    322 element using an integral index, as in the following example:
    323 
    324 .. code-block:: objc
    325 
    326     NSUInteger idx = ...;
    327     id value = object[idx];
    328 
    329 it is translated into a call to ``objectAtIndexedSubscript:``
    330 
    331 .. code-block:: objc
    332 
    333     id value = [object objectAtIndexedSubscript:idx];
    334 
    335 When an expression writes an element using an integral index:
    336 
    337 .. code-block:: objc
    338 
    339     object[idx] = newValue;
    340 
    341 it is translated to a call to ``setObject:atIndexedSubscript:``
    342 
    343 .. code-block:: objc
    344 
    345     [object setObject:newValue atIndexedSubscript:idx];
    346 
    347 These message sends are then type-checked and performed just like
    348 explicit message sends. The method used for objectAtIndexedSubscript:
    349 must be declared with an argument of integral type and a return value of
    350 some Objective-C object pointer type. The method used for
    351 setObject:atIndexedSubscript: must be declared with its first argument
    352 having some Objective-C pointer type and its second argument having
    353 integral type.
    354 
    355 The meaning of indexes is left up to the declaring class. The compiler
    356 will coerce the index to the appropriate argument type of the method it
    357 uses for type-checking. For an instance of ``NSArray``, reading an
    358 element using an index outside the range ``[0, array.count)`` will raise
    359 an exception. For an instance of ``NSMutableArray``, assigning to an
    360 element using an index within this range will replace that element, but
    361 assigning to an element using an index outside this range will raise an
    362 exception; no syntax is provided for inserting, appending, or removing
    363 elements for mutable arrays.
    364 
    365 A class need not declare both methods in order to take advantage of this
    366 language feature. For example, the class ``NSArray`` declares only
    367 ``objectAtIndexedSubscript:``, so that assignments to elements will fail
    368 to type-check; moreover, its subclass ``NSMutableArray`` declares
    369 ``setObject:atIndexedSubscript:``.
    370 
    371 Dictionary-Style Subscripting
    372 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    373 
    374 When the subscript operand has an Objective-C object pointer type, the
    375 expression is rewritten to use one of two different selectors, depending
    376 on whether the element is being read from or written to. When an
    377 expression reads an element using an Objective-C object pointer
    378 subscript operand, as in the following example:
    379 
    380 .. code-block:: objc
    381 
    382     id key = ...;
    383     id value = object[key];
    384 
    385 it is translated into a call to the ``objectForKeyedSubscript:`` method:
    386 
    387 .. code-block:: objc
    388 
    389     id value = [object objectForKeyedSubscript:key];
    390 
    391 When an expression writes an element using an Objective-C object pointer
    392 subscript:
    393 
    394 .. code-block:: objc
    395 
    396     object[key] = newValue;
    397 
    398 it is translated to a call to ``setObject:forKeyedSubscript:``
    399 
    400 .. code-block:: objc
    401 
    402     [object setObject:newValue forKeyedSubscript:key];
    403 
    404 The behavior of ``setObject:forKeyedSubscript:`` is class-specific; but
    405 in general it should replace an existing value if one is already
    406 associated with a key, otherwise it should add a new value for the key.
    407 No syntax is provided for removing elements from mutable dictionaries.
    408 
    409 Discussion
    410 ----------
    411 
    412 An Objective-C subscript expression occurs when the base operand of the
    413 C subscript operator has an Objective-C object pointer type. Since this
    414 potentially collides with pointer arithmetic on the value, these
    415 expressions are only supported under the modern Objective-C runtime,
    416 which categorically forbids such arithmetic.
    417 
    418 Currently, only subscripts of integral or Objective-C object pointer
    419 type are supported. In C++, a class type can be used if it has a single
    420 conversion function to an integral or Objective-C pointer type, in which
    421 case that conversion is applied and analysis continues as appropriate.
    422 Otherwise, the expression is ill-formed.
    423 
    424 An Objective-C object subscript expression is always an l-value. If the
    425 expression appears on the left-hand side of a simple assignment operator
    426 (=), the element is written as described below. If the expression
    427 appears on the left-hand side of a compound assignment operator (e.g.
    428 +=), the program is ill-formed, because the result of reading an element
    429 is always an Objective-C object pointer and no binary operators are
    430 legal on such pointers. If the expression appears in any other position,
    431 the element is read as described below. It is an error to take the
    432 address of a subscript expression, or (in C++) to bind a reference to
    433 it.
    434 
    435 Programs can use object subscripting with Objective-C object pointers of
    436 type ``id``. Normal dynamic message send rules apply; the compiler must
    437 see *some* declaration of the subscripting methods, and will pick the
    438 declaration seen first.
    439 
    440 Caveats
    441 =======
    442 
    443 Objects created using the literal or boxed expression syntax are not
    444 guaranteed to be uniqued by the runtime, but nor are they guaranteed to
    445 be newly-allocated. As such, the result of performing direct comparisons
    446 against the location of an object literal (using ``==``, ``!=``, ``<``,
    447 ``<=``, ``>``, or ``>=``) is not well-defined. This is usually a simple
    448 mistake in code that intended to call the ``isEqual:`` method (or the
    449 ``compare:`` method).
    450 
    451 This caveat applies to compile-time string literals as well.
    452 Historically, string literals (using the ``@"..."`` syntax) have been
    453 uniqued across translation units during linking. This is an
    454 implementation detail of the compiler and should not be relied upon. If
    455 you are using such code, please use global string constants instead
    456 (``NSString * const MyConst = @"..."``) or use ``isEqual:``.
    457 
    458 Grammar Additions
    459 =================
    460 
    461 To support the new syntax described above, the Objective-C
    462 ``@``-expression grammar has the following new productions:
    463 
    464 ::
    465 
    466     objc-at-expression : '@' (string-literal | encode-literal | selector-literal | protocol-literal | object-literal)
    467                        ;
    468 
    469     object-literal : ('+' | '-')? numeric-constant
    470                    | character-constant
    471                    | boolean-constant
    472                    | array-literal
    473                    | dictionary-literal
    474                    ;
    475 
    476     boolean-constant : '__objc_yes' | '__objc_no' | 'true' | 'false'  /* boolean keywords. */
    477                      ;
    478 
    479     array-literal : '[' assignment-expression-list ']'
    480                   ;
    481 
    482     assignment-expression-list : assignment-expression (',' assignment-expression-list)?
    483                                | /* empty */
    484                                ;
    485 
    486     dictionary-literal : '{' key-value-list '}'
    487                        ;
    488 
    489     key-value-list : key-value-pair (',' key-value-list)?
    490                    | /* empty */
    491                    ;
    492 
    493     key-value-pair : assignment-expression ':' assignment-expression
    494                    ;
    495 
    496 Note: ``@true`` and ``@false`` are only supported in Objective-C++.
    497 
    498 Availability Checks
    499 ===================
    500 
    501 Programs test for the new features by using clang's \_\_has\_feature
    502 checks. Here are examples of their use:
    503 
    504 .. code-block:: objc
    505 
    506     #if __has_feature(objc_array_literals)
    507         // new way.
    508         NSArray *elements = @[ @"H", @"He", @"O", @"C" ];
    509     #else
    510         // old way (equivalent).
    511         id objects[] = { @"H", @"He", @"O", @"C" };
    512         NSArray *elements = [NSArray arrayWithObjects:objects count:4];
    513     #endif
    514 
    515     #if __has_feature(objc_dictionary_literals)
    516         // new way.
    517         NSDictionary *masses = @{ @"H" : @1.0078,  @"He" : @4.0026, @"O" : @15.9990, @"C" : @12.0096 };
    518     #else
    519         // old way (equivalent).
    520         id keys[] = { @"H", @"He", @"O", @"C" };
    521         id values[] = { [NSNumber numberWithDouble:1.0078], [NSNumber numberWithDouble:4.0026],
    522                         [NSNumber numberWithDouble:15.9990], [NSNumber numberWithDouble:12.0096] };
    523         NSDictionary *masses = [NSDictionary dictionaryWithObjects:objects forKeys:keys count:4];
    524     #endif
    525 
    526     #if __has_feature(objc_subscripting)
    527         NSUInteger i, count = elements.count;
    528         for (i = 0; i < count; ++i) {
    529             NSString *element = elements[i];
    530             NSNumber *mass = masses[element];
    531             NSLog(@"the mass of %@ is %@", element, mass);
    532         }
    533     #else
    534         NSUInteger i, count = [elements count];
    535         for (i = 0; i < count; ++i) {
    536             NSString *element = [elements objectAtIndex:i];
    537             NSNumber *mass = [masses objectForKey:element];
    538             NSLog(@"the mass of %@ is %@", element, mass);
    539         }
    540     #endif
    541 
    542 Code can use also ``__has_feature(objc_bool)`` to check for the
    543 availability of numeric literals support. This checks for the new
    544 ``__objc_yes / __objc_no`` keywords, which enable the use of
    545 ``@YES / @NO`` literals.
    546 
    547 To check whether boxed expressions are supported, use
    548 ``__has_feature(objc_boxed_expressions)`` feature macro.
    549