Home | History | Annotate | Download | only in Core
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_FUZZY_H
     12 #define EIGEN_FUZZY_H
     13 
     14 namespace Eigen {
     15 
     16 namespace internal
     17 {
     18 
     19 template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
     20 struct isApprox_selector
     21 {
     22   static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
     23   {
     24     using std::min;
     25     typename internal::nested<Derived,2>::type nested(x);
     26     typename internal::nested<OtherDerived,2>::type otherNested(y);
     27     return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * (min)(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum());
     28   }
     29 };
     30 
     31 template<typename Derived, typename OtherDerived>
     32 struct isApprox_selector<Derived, OtherDerived, true>
     33 {
     34   static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar&)
     35   {
     36     return x.matrix() == y.matrix();
     37   }
     38 };
     39 
     40 template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
     41 struct isMuchSmallerThan_object_selector
     42 {
     43   static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
     44   {
     45     return x.cwiseAbs2().sum() <= numext::abs2(prec) * y.cwiseAbs2().sum();
     46   }
     47 };
     48 
     49 template<typename Derived, typename OtherDerived>
     50 struct isMuchSmallerThan_object_selector<Derived, OtherDerived, true>
     51 {
     52   static bool run(const Derived& x, const OtherDerived&, const typename Derived::RealScalar&)
     53   {
     54     return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
     55   }
     56 };
     57 
     58 template<typename Derived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
     59 struct isMuchSmallerThan_scalar_selector
     60 {
     61   static bool run(const Derived& x, const typename Derived::RealScalar& y, const typename Derived::RealScalar& prec)
     62   {
     63     return x.cwiseAbs2().sum() <= numext::abs2(prec * y);
     64   }
     65 };
     66 
     67 template<typename Derived>
     68 struct isMuchSmallerThan_scalar_selector<Derived, true>
     69 {
     70   static bool run(const Derived& x, const typename Derived::RealScalar&, const typename Derived::RealScalar&)
     71   {
     72     return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
     73   }
     74 };
     75 
     76 } // end namespace internal
     77 
     78 
     79 /** \returns \c true if \c *this is approximately equal to \a other, within the precision
     80   * determined by \a prec.
     81   *
     82   * \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$
     83   * are considered to be approximately equal within precision \f$ p \f$ if
     84   * \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f]
     85   * For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm
     86   * L2 norm).
     87   *
     88   * \note Because of the multiplicativeness of this comparison, one can't use this function
     89   * to check whether \c *this is approximately equal to the zero matrix or vector.
     90   * Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix
     91   * or vector. If you want to test whether \c *this is zero, use internal::isMuchSmallerThan(const
     92   * RealScalar&, RealScalar) instead.
     93   *
     94   * \sa internal::isMuchSmallerThan(const RealScalar&, RealScalar) const
     95   */
     96 template<typename Derived>
     97 template<typename OtherDerived>
     98 bool DenseBase<Derived>::isApprox(
     99   const DenseBase<OtherDerived>& other,
    100   const RealScalar& prec
    101 ) const
    102 {
    103   return internal::isApprox_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
    104 }
    105 
    106 /** \returns \c true if the norm of \c *this is much smaller than \a other,
    107   * within the precision determined by \a prec.
    108   *
    109   * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
    110   * considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if
    111   * \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f]
    112   *
    113   * For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason,
    114   * the value of the reference scalar \a other should come from the Hilbert-Schmidt norm
    115   * of a reference matrix of same dimensions.
    116   *
    117   * \sa isApprox(), isMuchSmallerThan(const DenseBase<OtherDerived>&, RealScalar) const
    118   */
    119 template<typename Derived>
    120 bool DenseBase<Derived>::isMuchSmallerThan(
    121   const typename NumTraits<Scalar>::Real& other,
    122   const RealScalar& prec
    123 ) const
    124 {
    125   return internal::isMuchSmallerThan_scalar_selector<Derived>::run(derived(), other, prec);
    126 }
    127 
    128 /** \returns \c true if the norm of \c *this is much smaller than the norm of \a other,
    129   * within the precision determined by \a prec.
    130   *
    131   * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
    132   * considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if
    133   * \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f]
    134   * For matrices, the comparison is done using the Hilbert-Schmidt norm.
    135   *
    136   * \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const
    137   */
    138 template<typename Derived>
    139 template<typename OtherDerived>
    140 bool DenseBase<Derived>::isMuchSmallerThan(
    141   const DenseBase<OtherDerived>& other,
    142   const RealScalar& prec
    143 ) const
    144 {
    145   return internal::isMuchSmallerThan_object_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
    146 }
    147 
    148 } // end namespace Eigen
    149 
    150 #endif // EIGEN_FUZZY_H
    151