Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #define EIGEN_NO_STATIC_ASSERT
     11 
     12 #include "main.h"
     13 
     14 template<bool IsInteger> struct adjoint_specific;
     15 
     16 template<> struct adjoint_specific<true> {
     17   template<typename Vec, typename Mat, typename Scalar>
     18   static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
     19     VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3),     numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0));
     20     VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2),       s1*v3.dot(v1)+s2*v3.dot(v2), 0));
     21 
     22     // check compatibility of dot and adjoint
     23     VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0));
     24   }
     25 };
     26 
     27 template<> struct adjoint_specific<false> {
     28   template<typename Vec, typename Mat, typename Scalar>
     29   static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
     30     typedef typename NumTraits<Scalar>::Real RealScalar;
     31     using std::abs;
     32 
     33     RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm());
     34     VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3),     numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref));
     35     VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2),       s1*v3.dot(v1)+s2*v3.dot(v2), ref));
     36 
     37     VERIFY_IS_APPROX(v1.squaredNorm(),                v1.norm() * v1.norm());
     38     // check normalized() and normalize()
     39     VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized());
     40     v3 = v1;
     41     v3.normalize();
     42     VERIFY_IS_APPROX(v1, v1.norm() * v3);
     43     VERIFY_IS_APPROX(v3, v1.normalized());
     44     VERIFY_IS_APPROX(v3.norm(), RealScalar(1));
     45 
     46     // check compatibility of dot and adjoint
     47     ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm()));
     48     VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, test_precision<Scalar>()));
     49 
     50     // check that Random().normalized() works: tricky as the random xpr must be evaluated by
     51     // normalized() in order to produce a consistent result.
     52     VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1));
     53   }
     54 };
     55 
     56 template<typename MatrixType> void adjoint(const MatrixType& m)
     57 {
     58   /* this test covers the following files:
     59      Transpose.h Conjugate.h Dot.h
     60   */
     61   using std::abs;
     62   typedef typename MatrixType::Index Index;
     63   typedef typename MatrixType::Scalar Scalar;
     64   typedef typename NumTraits<Scalar>::Real RealScalar;
     65   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
     66   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
     67 
     68   Index rows = m.rows();
     69   Index cols = m.cols();
     70 
     71   MatrixType m1 = MatrixType::Random(rows, cols),
     72              m2 = MatrixType::Random(rows, cols),
     73              m3(rows, cols),
     74              square = SquareMatrixType::Random(rows, rows);
     75   VectorType v1 = VectorType::Random(rows),
     76              v2 = VectorType::Random(rows),
     77              v3 = VectorType::Random(rows),
     78              vzero = VectorType::Zero(rows);
     79 
     80   Scalar s1 = internal::random<Scalar>(),
     81          s2 = internal::random<Scalar>();
     82 
     83   // check basic compatibility of adjoint, transpose, conjugate
     84   VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(),    m1);
     85   VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(),    m1);
     86 
     87   // check multiplicative behavior
     88   VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(),           m2.adjoint() * m1);
     89   VERIFY_IS_APPROX((s1 * m1).adjoint(),                     numext::conj(s1) * m1.adjoint());
     90 
     91   // check basic properties of dot, squaredNorm
     92   VERIFY_IS_APPROX(numext::conj(v1.dot(v2)),               v2.dot(v1));
     93   VERIFY_IS_APPROX(numext::real(v1.dot(v1)),               v1.squaredNorm());
     94 
     95   adjoint_specific<NumTraits<Scalar>::IsInteger>::run(v1, v2, v3, square, s1, s2);
     96 
     97   VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)),  static_cast<RealScalar>(1));
     98 
     99   // like in testBasicStuff, test operator() to check const-qualification
    100   Index r = internal::random<Index>(0, rows-1),
    101       c = internal::random<Index>(0, cols-1);
    102   VERIFY_IS_APPROX(m1.conjugate()(r,c), numext::conj(m1(r,c)));
    103   VERIFY_IS_APPROX(m1.adjoint()(c,r), numext::conj(m1(r,c)));
    104 
    105   // check inplace transpose
    106   m3 = m1;
    107   m3.transposeInPlace();
    108   VERIFY_IS_APPROX(m3,m1.transpose());
    109   m3.transposeInPlace();
    110   VERIFY_IS_APPROX(m3,m1);
    111 
    112   // check inplace adjoint
    113   m3 = m1;
    114   m3.adjointInPlace();
    115   VERIFY_IS_APPROX(m3,m1.adjoint());
    116   m3.transposeInPlace();
    117   VERIFY_IS_APPROX(m3,m1.conjugate());
    118 
    119   // check mixed dot product
    120   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
    121   RealVectorType rv1 = RealVectorType::Random(rows);
    122   VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1));
    123   VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1));
    124 }
    125 
    126 void test_adjoint()
    127 {
    128   for(int i = 0; i < g_repeat; i++) {
    129     CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) );
    130     CALL_SUBTEST_2( adjoint(Matrix3d()) );
    131     CALL_SUBTEST_3( adjoint(Matrix4f()) );
    132     CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
    133     CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    134     CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    135   }
    136   // test a large static matrix only once
    137   CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) );
    138 
    139 #ifdef EIGEN_TEST_PART_4
    140   {
    141     MatrixXcf a(10,10), b(10,10);
    142     VERIFY_RAISES_ASSERT(a = a.transpose());
    143     VERIFY_RAISES_ASSERT(a = a.transpose() + b);
    144     VERIFY_RAISES_ASSERT(a = b + a.transpose());
    145     VERIFY_RAISES_ASSERT(a = a.conjugate().transpose());
    146     VERIFY_RAISES_ASSERT(a = a.adjoint());
    147     VERIFY_RAISES_ASSERT(a = a.adjoint() + b);
    148     VERIFY_RAISES_ASSERT(a = b + a.adjoint());
    149 
    150     // no assertion should be triggered for these cases:
    151     a.transpose() = a.transpose();
    152     a.transpose() += a.transpose();
    153     a.transpose() += a.transpose() + b;
    154     a.transpose() = a.adjoint();
    155     a.transpose() += a.adjoint();
    156     a.transpose() += a.adjoint() + b;
    157   }
    158 #endif
    159 }
    160 
    161