Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_NO_ASSERTION_CHECKING
     11 #define EIGEN_NO_ASSERTION_CHECKING
     12 #endif
     13 
     14 static int nb_temporaries;
     15 
     16 #define EIGEN_DENSE_STORAGE_CTOR_PLUGIN { if(size!=0) nb_temporaries++; }
     17 
     18 #include "main.h"
     19 #include <Eigen/Cholesky>
     20 #include <Eigen/QR>
     21 
     22 #define VERIFY_EVALUATION_COUNT(XPR,N) {\
     23     nb_temporaries = 0; \
     24     XPR; \
     25     if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \
     26     VERIFY( (#XPR) && nb_temporaries==N ); \
     27   }
     28 
     29 template<typename MatrixType,template <typename,int> class CholType> void test_chol_update(const MatrixType& symm)
     30 {
     31   typedef typename MatrixType::Scalar Scalar;
     32   typedef typename MatrixType::RealScalar RealScalar;
     33   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
     34 
     35   MatrixType symmLo = symm.template triangularView<Lower>();
     36   MatrixType symmUp = symm.template triangularView<Upper>();
     37   MatrixType symmCpy = symm;
     38 
     39   CholType<MatrixType,Lower> chollo(symmLo);
     40   CholType<MatrixType,Upper> cholup(symmUp);
     41 
     42   for (int k=0; k<10; ++k)
     43   {
     44     VectorType vec = VectorType::Random(symm.rows());
     45     RealScalar sigma = internal::random<RealScalar>();
     46     symmCpy += sigma * vec * vec.adjoint();
     47 
     48     // we are doing some downdates, so it might be the case that the matrix is not SPD anymore
     49     CholType<MatrixType,Lower> chol(symmCpy);
     50     if(chol.info()!=Success)
     51       break;
     52 
     53     chollo.rankUpdate(vec, sigma);
     54     VERIFY_IS_APPROX(symmCpy, chollo.reconstructedMatrix());
     55 
     56     cholup.rankUpdate(vec, sigma);
     57     VERIFY_IS_APPROX(symmCpy, cholup.reconstructedMatrix());
     58   }
     59 }
     60 
     61 template<typename MatrixType> void cholesky(const MatrixType& m)
     62 {
     63   typedef typename MatrixType::Index Index;
     64   /* this test covers the following files:
     65      LLT.h LDLT.h
     66   */
     67   Index rows = m.rows();
     68   Index cols = m.cols();
     69 
     70   typedef typename MatrixType::Scalar Scalar;
     71   typedef typename NumTraits<Scalar>::Real RealScalar;
     72   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
     73   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
     74 
     75   MatrixType a0 = MatrixType::Random(rows,cols);
     76   VectorType vecB = VectorType::Random(rows), vecX(rows);
     77   MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols);
     78   SquareMatrixType symm =  a0 * a0.adjoint();
     79   // let's make sure the matrix is not singular or near singular
     80   for (int k=0; k<3; ++k)
     81   {
     82     MatrixType a1 = MatrixType::Random(rows,cols);
     83     symm += a1 * a1.adjoint();
     84   }
     85 
     86   // to test if really Cholesky only uses the upper triangular part, uncomment the following
     87   // FIXME: currently that fails !!
     88   //symm.template part<StrictlyLower>().setZero();
     89 
     90   {
     91     SquareMatrixType symmUp = symm.template triangularView<Upper>();
     92     SquareMatrixType symmLo = symm.template triangularView<Lower>();
     93 
     94     LLT<SquareMatrixType,Lower> chollo(symmLo);
     95     VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix());
     96     vecX = chollo.solve(vecB);
     97     VERIFY_IS_APPROX(symm * vecX, vecB);
     98     matX = chollo.solve(matB);
     99     VERIFY_IS_APPROX(symm * matX, matB);
    100 
    101     // test the upper mode
    102     LLT<SquareMatrixType,Upper> cholup(symmUp);
    103     VERIFY_IS_APPROX(symm, cholup.reconstructedMatrix());
    104     vecX = cholup.solve(vecB);
    105     VERIFY_IS_APPROX(symm * vecX, vecB);
    106     matX = cholup.solve(matB);
    107     VERIFY_IS_APPROX(symm * matX, matB);
    108 
    109     MatrixType neg = -symmLo;
    110     chollo.compute(neg);
    111     VERIFY(chollo.info()==NumericalIssue);
    112 
    113     VERIFY_IS_APPROX(MatrixType(chollo.matrixL().transpose().conjugate()), MatrixType(chollo.matrixU()));
    114     VERIFY_IS_APPROX(MatrixType(chollo.matrixU().transpose().conjugate()), MatrixType(chollo.matrixL()));
    115     VERIFY_IS_APPROX(MatrixType(cholup.matrixL().transpose().conjugate()), MatrixType(cholup.matrixU()));
    116     VERIFY_IS_APPROX(MatrixType(cholup.matrixU().transpose().conjugate()), MatrixType(cholup.matrixL()));
    117 
    118     // test some special use cases of SelfCwiseBinaryOp:
    119     MatrixType m1 = MatrixType::Random(rows,cols), m2(rows,cols);
    120     m2 = m1;
    121     m2 += symmLo.template selfadjointView<Lower>().llt().solve(matB);
    122     VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB));
    123     m2 = m1;
    124     m2 -= symmLo.template selfadjointView<Lower>().llt().solve(matB);
    125     VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB));
    126     m2 = m1;
    127     m2.noalias() += symmLo.template selfadjointView<Lower>().llt().solve(matB);
    128     VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB));
    129     m2 = m1;
    130     m2.noalias() -= symmLo.template selfadjointView<Lower>().llt().solve(matB);
    131     VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB));
    132   }
    133 
    134   // LDLT
    135   {
    136     int sign = internal::random<int>()%2 ? 1 : -1;
    137 
    138     if(sign == -1)
    139     {
    140       symm = -symm; // test a negative matrix
    141     }
    142 
    143     SquareMatrixType symmUp = symm.template triangularView<Upper>();
    144     SquareMatrixType symmLo = symm.template triangularView<Lower>();
    145 
    146     LDLT<SquareMatrixType,Lower> ldltlo(symmLo);
    147     VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix());
    148     vecX = ldltlo.solve(vecB);
    149     VERIFY_IS_APPROX(symm * vecX, vecB);
    150     matX = ldltlo.solve(matB);
    151     VERIFY_IS_APPROX(symm * matX, matB);
    152 
    153     LDLT<SquareMatrixType,Upper> ldltup(symmUp);
    154     VERIFY_IS_APPROX(symm, ldltup.reconstructedMatrix());
    155     vecX = ldltup.solve(vecB);
    156     VERIFY_IS_APPROX(symm * vecX, vecB);
    157     matX = ldltup.solve(matB);
    158     VERIFY_IS_APPROX(symm * matX, matB);
    159 
    160     VERIFY_IS_APPROX(MatrixType(ldltlo.matrixL().transpose().conjugate()), MatrixType(ldltlo.matrixU()));
    161     VERIFY_IS_APPROX(MatrixType(ldltlo.matrixU().transpose().conjugate()), MatrixType(ldltlo.matrixL()));
    162     VERIFY_IS_APPROX(MatrixType(ldltup.matrixL().transpose().conjugate()), MatrixType(ldltup.matrixU()));
    163     VERIFY_IS_APPROX(MatrixType(ldltup.matrixU().transpose().conjugate()), MatrixType(ldltup.matrixL()));
    164 
    165     if(MatrixType::RowsAtCompileTime==Dynamic)
    166     {
    167       // note : each inplace permutation requires a small temporary vector (mask)
    168 
    169       // check inplace solve
    170       matX = matB;
    171       VERIFY_EVALUATION_COUNT(matX = ldltlo.solve(matX), 0);
    172       VERIFY_IS_APPROX(matX, ldltlo.solve(matB).eval());
    173 
    174 
    175       matX = matB;
    176       VERIFY_EVALUATION_COUNT(matX = ldltup.solve(matX), 0);
    177       VERIFY_IS_APPROX(matX, ldltup.solve(matB).eval());
    178     }
    179 
    180     // restore
    181     if(sign == -1)
    182       symm = -symm;
    183 
    184     // check matrices coming from linear constraints with Lagrange multipliers
    185     if(rows>=3)
    186     {
    187       SquareMatrixType A = symm;
    188       int c = internal::random<int>(0,rows-2);
    189       A.bottomRightCorner(c,c).setZero();
    190       // Make sure a solution exists:
    191       vecX.setRandom();
    192       vecB = A * vecX;
    193       vecX.setZero();
    194       ldltlo.compute(A);
    195       VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
    196       vecX = ldltlo.solve(vecB);
    197       VERIFY_IS_APPROX(A * vecX, vecB);
    198     }
    199 
    200     // check non-full rank matrices
    201     if(rows>=3)
    202     {
    203       int r = internal::random<int>(1,rows-1);
    204       Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,r);
    205       SquareMatrixType A = a * a.adjoint();
    206       // Make sure a solution exists:
    207       vecX.setRandom();
    208       vecB = A * vecX;
    209       vecX.setZero();
    210       ldltlo.compute(A);
    211       VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
    212       vecX = ldltlo.solve(vecB);
    213       VERIFY_IS_APPROX(A * vecX, vecB);
    214     }
    215 
    216     // check matrices with a wide spectrum
    217     if(rows>=3)
    218     {
    219       RealScalar s = (std::min)(16,std::numeric_limits<RealScalar>::max_exponent10/8);
    220       Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,rows);
    221       Matrix<RealScalar,Dynamic,1> d =  Matrix<RealScalar,Dynamic,1>::Random(rows);
    222       for(int k=0; k<rows; ++k)
    223         d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s));
    224       SquareMatrixType A = a * d.asDiagonal() * a.adjoint();
    225       // Make sure a solution exists:
    226       vecX.setRandom();
    227       vecB = A * vecX;
    228       vecX.setZero();
    229       ldltlo.compute(A);
    230       VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
    231       vecX = ldltlo.solve(vecB);
    232       VERIFY_IS_APPROX(A * vecX, vecB);
    233     }
    234   }
    235 
    236   // update/downdate
    237   CALL_SUBTEST(( test_chol_update<SquareMatrixType,LLT>(symm)  ));
    238   CALL_SUBTEST(( test_chol_update<SquareMatrixType,LDLT>(symm) ));
    239 }
    240 
    241 template<typename MatrixType> void cholesky_cplx(const MatrixType& m)
    242 {
    243   // classic test
    244   cholesky(m);
    245 
    246   // test mixing real/scalar types
    247 
    248   typedef typename MatrixType::Index Index;
    249 
    250   Index rows = m.rows();
    251   Index cols = m.cols();
    252 
    253   typedef typename MatrixType::Scalar Scalar;
    254   typedef typename NumTraits<Scalar>::Real RealScalar;
    255   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RealMatrixType;
    256   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
    257 
    258   RealMatrixType a0 = RealMatrixType::Random(rows,cols);
    259   VectorType vecB = VectorType::Random(rows), vecX(rows);
    260   MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols);
    261   RealMatrixType symm =  a0 * a0.adjoint();
    262   // let's make sure the matrix is not singular or near singular
    263   for (int k=0; k<3; ++k)
    264   {
    265     RealMatrixType a1 = RealMatrixType::Random(rows,cols);
    266     symm += a1 * a1.adjoint();
    267   }
    268 
    269   {
    270     RealMatrixType symmLo = symm.template triangularView<Lower>();
    271 
    272     LLT<RealMatrixType,Lower> chollo(symmLo);
    273     VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix());
    274     vecX = chollo.solve(vecB);
    275     VERIFY_IS_APPROX(symm * vecX, vecB);
    276 //     matX = chollo.solve(matB);
    277 //     VERIFY_IS_APPROX(symm * matX, matB);
    278   }
    279 
    280   // LDLT
    281   {
    282     int sign = internal::random<int>()%2 ? 1 : -1;
    283 
    284     if(sign == -1)
    285     {
    286       symm = -symm; // test a negative matrix
    287     }
    288 
    289     RealMatrixType symmLo = symm.template triangularView<Lower>();
    290 
    291     LDLT<RealMatrixType,Lower> ldltlo(symmLo);
    292     VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix());
    293     vecX = ldltlo.solve(vecB);
    294     VERIFY_IS_APPROX(symm * vecX, vecB);
    295 //     matX = ldltlo.solve(matB);
    296 //     VERIFY_IS_APPROX(symm * matX, matB);
    297   }
    298 }
    299 
    300 // regression test for bug 241
    301 template<typename MatrixType> void cholesky_bug241(const MatrixType& m)
    302 {
    303   eigen_assert(m.rows() == 2 && m.cols() == 2);
    304 
    305   typedef typename MatrixType::Scalar Scalar;
    306   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
    307 
    308   MatrixType matA;
    309   matA << 1, 1, 1, 1;
    310   VectorType vecB;
    311   vecB << 1, 1;
    312   VectorType vecX = matA.ldlt().solve(vecB);
    313   VERIFY_IS_APPROX(matA * vecX, vecB);
    314 }
    315 
    316 // LDLT is not guaranteed to work for indefinite matrices, but happens to work fine if matrix is diagonal.
    317 // This test checks that LDLT reports correctly that matrix is indefinite.
    318 // See http://forum.kde.org/viewtopic.php?f=74&t=106942 and bug 736
    319 template<typename MatrixType> void cholesky_definiteness(const MatrixType& m)
    320 {
    321   eigen_assert(m.rows() == 2 && m.cols() == 2);
    322   MatrixType mat;
    323   {
    324     mat << 1, 0, 0, -1;
    325     LDLT<MatrixType> ldlt(mat);
    326     VERIFY(!ldlt.isNegative());
    327     VERIFY(!ldlt.isPositive());
    328   }
    329   {
    330     mat << 1, 2, 2, 1;
    331     LDLT<MatrixType> ldlt(mat);
    332     VERIFY(!ldlt.isNegative());
    333     VERIFY(!ldlt.isPositive());
    334   }
    335   {
    336     mat << 0, 0, 0, 0;
    337     LDLT<MatrixType> ldlt(mat);
    338     VERIFY(ldlt.isNegative());
    339     VERIFY(ldlt.isPositive());
    340   }
    341   {
    342     mat << 0, 0, 0, 1;
    343     LDLT<MatrixType> ldlt(mat);
    344     VERIFY(!ldlt.isNegative());
    345     VERIFY(ldlt.isPositive());
    346   }
    347   {
    348     mat << -1, 0, 0, 0;
    349     LDLT<MatrixType> ldlt(mat);
    350     VERIFY(ldlt.isNegative());
    351     VERIFY(!ldlt.isPositive());
    352   }
    353 }
    354 
    355 template<typename MatrixType> void cholesky_verify_assert()
    356 {
    357   MatrixType tmp;
    358 
    359   LLT<MatrixType> llt;
    360   VERIFY_RAISES_ASSERT(llt.matrixL())
    361   VERIFY_RAISES_ASSERT(llt.matrixU())
    362   VERIFY_RAISES_ASSERT(llt.solve(tmp))
    363   VERIFY_RAISES_ASSERT(llt.solveInPlace(&tmp))
    364 
    365   LDLT<MatrixType> ldlt;
    366   VERIFY_RAISES_ASSERT(ldlt.matrixL())
    367   VERIFY_RAISES_ASSERT(ldlt.permutationP())
    368   VERIFY_RAISES_ASSERT(ldlt.vectorD())
    369   VERIFY_RAISES_ASSERT(ldlt.isPositive())
    370   VERIFY_RAISES_ASSERT(ldlt.isNegative())
    371   VERIFY_RAISES_ASSERT(ldlt.solve(tmp))
    372   VERIFY_RAISES_ASSERT(ldlt.solveInPlace(&tmp))
    373 }
    374 
    375 void test_cholesky()
    376 {
    377   int s = 0;
    378   for(int i = 0; i < g_repeat; i++) {
    379     CALL_SUBTEST_1( cholesky(Matrix<double,1,1>()) );
    380     CALL_SUBTEST_3( cholesky(Matrix2d()) );
    381     CALL_SUBTEST_3( cholesky_bug241(Matrix2d()) );
    382     CALL_SUBTEST_3( cholesky_definiteness(Matrix2d()) );
    383     CALL_SUBTEST_4( cholesky(Matrix3f()) );
    384     CALL_SUBTEST_5( cholesky(Matrix4d()) );
    385     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);
    386     CALL_SUBTEST_2( cholesky(MatrixXd(s,s)) );
    387     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2);
    388     CALL_SUBTEST_6( cholesky_cplx(MatrixXcd(s,s)) );
    389   }
    390 
    391   CALL_SUBTEST_4( cholesky_verify_assert<Matrix3f>() );
    392   CALL_SUBTEST_7( cholesky_verify_assert<Matrix3d>() );
    393   CALL_SUBTEST_8( cholesky_verify_assert<MatrixXf>() );
    394   CALL_SUBTEST_2( cholesky_verify_assert<MatrixXd>() );
    395 
    396   // Test problem size constructors
    397   CALL_SUBTEST_9( LLT<MatrixXf>(10) );
    398   CALL_SUBTEST_9( LDLT<MatrixXf>(10) );
    399 
    400   TEST_SET_BUT_UNUSED_VARIABLE(s)
    401   TEST_SET_BUT_UNUSED_VARIABLE(nb_temporaries)
    402 }
    403