Home | History | Annotate | Download | only in eigen2
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra. Eigen itself is part of the KDE project.
      3 //
      4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 
     12 // check minor separately in order to avoid the possible creation of a zero-sized
     13 // array. Comes from a compilation error with gcc-3.4 or gcc-4 with -ansi -pedantic.
     14 // Another solution would be to declare the array like this: T m_data[Size==0?1:Size]; in ei_matrix_storage
     15 // but this is probably not bad to raise such an error at compile time...
     16 template<typename Scalar, int _Rows, int _Cols> struct CheckMinor
     17 {
     18     typedef Matrix<Scalar, _Rows, _Cols> MatrixType;
     19     CheckMinor(MatrixType& m1, int r1, int c1)
     20     {
     21         int rows = m1.rows();
     22         int cols = m1.cols();
     23 
     24         Matrix<Scalar, Dynamic, Dynamic> mi = m1.minor(0,0).eval();
     25         VERIFY_IS_APPROX(mi, m1.block(1,1,rows-1,cols-1));
     26         mi = m1.minor(r1,c1);
     27         VERIFY_IS_APPROX(mi.transpose(), m1.transpose().minor(c1,r1));
     28         //check operator(), both constant and non-constant, on minor()
     29         m1.minor(r1,c1)(0,0) = m1.minor(0,0)(0,0);
     30     }
     31 };
     32 
     33 template<typename Scalar> struct CheckMinor<Scalar,1,1>
     34 {
     35     typedef Matrix<Scalar, 1, 1> MatrixType;
     36     CheckMinor(MatrixType&, int, int) {}
     37 };
     38 
     39 template<typename MatrixType> void submatrices(const MatrixType& m)
     40 {
     41   /* this test covers the following files:
     42      Row.h Column.h Block.h Minor.h DiagonalCoeffs.h
     43   */
     44   typedef typename MatrixType::Scalar Scalar;
     45   typedef typename MatrixType::RealScalar RealScalar;
     46   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
     47   typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
     48   int rows = m.rows();
     49   int cols = m.cols();
     50 
     51   MatrixType m1 = MatrixType::Random(rows, cols),
     52              m2 = MatrixType::Random(rows, cols),
     53              m3(rows, cols),
     54              mzero = MatrixType::Zero(rows, cols),
     55              ones = MatrixType::Ones(rows, cols),
     56              identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
     57                               ::Identity(rows, rows),
     58              square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
     59                               ::Random(rows, rows);
     60   VectorType v1 = VectorType::Random(rows),
     61              v2 = VectorType::Random(rows),
     62              v3 = VectorType::Random(rows),
     63              vzero = VectorType::Zero(rows);
     64 
     65   Scalar s1 = ei_random<Scalar>();
     66 
     67   int r1 = ei_random<int>(0,rows-1);
     68   int r2 = ei_random<int>(r1,rows-1);
     69   int c1 = ei_random<int>(0,cols-1);
     70   int c2 = ei_random<int>(c1,cols-1);
     71 
     72   //check row() and col()
     73   VERIFY_IS_APPROX(m1.col(c1).transpose(), m1.transpose().row(c1));
     74   VERIFY_IS_APPROX(square.row(r1).eigen2_dot(m1.col(c1)), (square.lazy() * m1.conjugate())(r1,c1));
     75   //check operator(), both constant and non-constant, on row() and col()
     76   m1.row(r1) += s1 * m1.row(r2);
     77   m1.col(c1) += s1 * m1.col(c2);
     78 
     79   //check block()
     80   Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1);
     81   RowVectorType br1(m1.block(r1,0,1,cols));
     82   VectorType bc1(m1.block(0,c1,rows,1));
     83   VERIFY_IS_APPROX(b1, m1.block(r1,c1,1,1));
     84   VERIFY_IS_APPROX(m1.row(r1), br1);
     85   VERIFY_IS_APPROX(m1.col(c1), bc1);
     86   //check operator(), both constant and non-constant, on block()
     87   m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1);
     88   m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0);
     89 
     90   //check minor()
     91   CheckMinor<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> checkminor(m1,r1,c1);
     92 
     93   //check diagonal()
     94   VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal());
     95   m2.diagonal() = 2 * m1.diagonal();
     96   m2.diagonal()[0] *= 3;
     97   VERIFY_IS_APPROX(m2.diagonal()[0], static_cast<Scalar>(6) * m1.diagonal()[0]);
     98 
     99   enum {
    100     BlockRows = EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::RowsAtCompileTime,2),
    101     BlockCols = EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::ColsAtCompileTime,5)
    102   };
    103   if (rows>=5 && cols>=8)
    104   {
    105     // test fixed block() as lvalue
    106     m1.template block<BlockRows,BlockCols>(1,1) *= s1;
    107     // test operator() on fixed block() both as constant and non-constant
    108     m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2);
    109     // check that fixed block() and block() agree
    110     Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3);
    111     VERIFY_IS_APPROX(b, m1.block(3,3,BlockRows,BlockCols));
    112   }
    113 
    114   if (rows>2)
    115   {
    116     // test sub vectors
    117     VERIFY_IS_APPROX(v1.template start<2>(), v1.block(0,0,2,1));
    118     VERIFY_IS_APPROX(v1.template start<2>(), v1.start(2));
    119     VERIFY_IS_APPROX(v1.template start<2>(), v1.segment(0,2));
    120     VERIFY_IS_APPROX(v1.template start<2>(), v1.template segment<2>(0));
    121     int i = rows-2;
    122     VERIFY_IS_APPROX(v1.template end<2>(), v1.block(i,0,2,1));
    123     VERIFY_IS_APPROX(v1.template end<2>(), v1.end(2));
    124     VERIFY_IS_APPROX(v1.template end<2>(), v1.segment(i,2));
    125     VERIFY_IS_APPROX(v1.template end<2>(), v1.template segment<2>(i));
    126     i = ei_random(0,rows-2);
    127     VERIFY_IS_APPROX(v1.segment(i,2), v1.template segment<2>(i));
    128   }
    129 
    130   // stress some basic stuffs with block matrices
    131   VERIFY(ei_real(ones.col(c1).sum()) == RealScalar(rows));
    132   VERIFY(ei_real(ones.row(r1).sum()) == RealScalar(cols));
    133 
    134   VERIFY(ei_real(ones.col(c1).eigen2_dot(ones.col(c2))) == RealScalar(rows));
    135   VERIFY(ei_real(ones.row(r1).eigen2_dot(ones.row(r2))) == RealScalar(cols));
    136 }
    137 
    138 void test_eigen2_submatrices()
    139 {
    140   for(int i = 0; i < g_repeat; i++) {
    141     CALL_SUBTEST_1( submatrices(Matrix<float, 1, 1>()) );
    142     CALL_SUBTEST_2( submatrices(Matrix4d()) );
    143     CALL_SUBTEST_3( submatrices(MatrixXcf(3, 3)) );
    144     CALL_SUBTEST_4( submatrices(MatrixXi(8, 12)) );
    145     CALL_SUBTEST_5( submatrices(MatrixXcd(20, 20)) );
    146     CALL_SUBTEST_6( submatrices(MatrixXf(20, 20)) );
    147   }
    148 }
    149