Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #include "main.h"
     12 #include <Eigen/Geometry>
     13 #include <Eigen/LU>
     14 #include <Eigen/QR>
     15 
     16 template<typename HyperplaneType> void hyperplane(const HyperplaneType& _plane)
     17 {
     18   /* this test covers the following files:
     19      Hyperplane.h
     20   */
     21   typedef typename HyperplaneType::Index Index;
     22   const Index dim = _plane.dim();
     23   enum { Options = HyperplaneType::Options };
     24   typedef typename HyperplaneType::Scalar Scalar;
     25   typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, 1> VectorType;
     26   typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime,
     27                          HyperplaneType::AmbientDimAtCompileTime> MatrixType;
     28 
     29   VectorType p0 = VectorType::Random(dim);
     30   VectorType p1 = VectorType::Random(dim);
     31 
     32   VectorType n0 = VectorType::Random(dim).normalized();
     33   VectorType n1 = VectorType::Random(dim).normalized();
     34 
     35   HyperplaneType pl0(n0, p0);
     36   HyperplaneType pl1(n1, p1);
     37   HyperplaneType pl2 = pl1;
     38 
     39   Scalar s0 = internal::random<Scalar>();
     40   Scalar s1 = internal::random<Scalar>();
     41 
     42   VERIFY_IS_APPROX( n1.dot(n1), Scalar(1) );
     43 
     44   VERIFY_IS_MUCH_SMALLER_THAN( pl0.absDistance(p0), Scalar(1) );
     45   VERIFY_IS_APPROX( pl1.signedDistance(p1 + n1 * s0), s0 );
     46   VERIFY_IS_MUCH_SMALLER_THAN( pl1.signedDistance(pl1.projection(p0)), Scalar(1) );
     47   VERIFY_IS_MUCH_SMALLER_THAN( pl1.absDistance(p1 +  pl1.normal().unitOrthogonal() * s1), Scalar(1) );
     48 
     49   // transform
     50   if (!NumTraits<Scalar>::IsComplex)
     51   {
     52     MatrixType rot = MatrixType::Random(dim,dim).householderQr().householderQ();
     53     DiagonalMatrix<Scalar,HyperplaneType::AmbientDimAtCompileTime> scaling(VectorType::Random());
     54     Translation<Scalar,HyperplaneType::AmbientDimAtCompileTime> translation(VectorType::Random());
     55 
     56     pl2 = pl1;
     57     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot).absDistance(rot * p1), Scalar(1) );
     58     pl2 = pl1;
     59     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot,Isometry).absDistance(rot * p1), Scalar(1) );
     60     pl2 = pl1;
     61     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling).absDistance((rot*scaling) * p1), Scalar(1) );
     62     pl2 = pl1;
     63     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling*translation)
     64                                  .absDistance((rot*scaling*translation) * p1), Scalar(1) );
     65     pl2 = pl1;
     66     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*translation,Isometry)
     67                                  .absDistance((rot*translation) * p1), Scalar(1) );
     68   }
     69 
     70   // casting
     71   const int Dim = HyperplaneType::AmbientDimAtCompileTime;
     72   typedef typename GetDifferentType<Scalar>::type OtherScalar;
     73   Hyperplane<OtherScalar,Dim,Options> hp1f = pl1.template cast<OtherScalar>();
     74   VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),pl1);
     75   Hyperplane<Scalar,Dim,Options> hp1d = pl1.template cast<Scalar>();
     76   VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),pl1);
     77 }
     78 
     79 template<typename Scalar> void lines()
     80 {
     81   using std::abs;
     82   typedef Hyperplane<Scalar, 2> HLine;
     83   typedef ParametrizedLine<Scalar, 2> PLine;
     84   typedef Matrix<Scalar,2,1> Vector;
     85   typedef Matrix<Scalar,3,1> CoeffsType;
     86 
     87   for(int i = 0; i < 10; i++)
     88   {
     89     Vector center = Vector::Random();
     90     Vector u = Vector::Random();
     91     Vector v = Vector::Random();
     92     Scalar a = internal::random<Scalar>();
     93     while (abs(a-1) < 1e-4) a = internal::random<Scalar>();
     94     while (u.norm() < 1e-4) u = Vector::Random();
     95     while (v.norm() < 1e-4) v = Vector::Random();
     96 
     97     HLine line_u = HLine::Through(center + u, center + a*u);
     98     HLine line_v = HLine::Through(center + v, center + a*v);
     99 
    100     // the line equations should be normalized so that a^2+b^2=1
    101     VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1));
    102     VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1));
    103 
    104     Vector result = line_u.intersection(line_v);
    105 
    106     // the lines should intersect at the point we called "center"
    107     VERIFY_IS_APPROX(result, center);
    108 
    109     // check conversions between two types of lines
    110     PLine pl(line_u); // gcc 3.3 will commit suicide if we don't name this variable
    111     CoeffsType converted_coeffs = HLine(pl).coeffs();
    112     converted_coeffs *= (line_u.coeffs()[0])/(converted_coeffs[0]);
    113     VERIFY(line_u.coeffs().isApprox(converted_coeffs));
    114   }
    115 }
    116 
    117 template<typename Scalar> void hyperplane_alignment()
    118 {
    119   typedef Hyperplane<Scalar,3,AutoAlign> Plane3a;
    120   typedef Hyperplane<Scalar,3,DontAlign> Plane3u;
    121 
    122   EIGEN_ALIGN16 Scalar array1[4];
    123   EIGEN_ALIGN16 Scalar array2[4];
    124   EIGEN_ALIGN16 Scalar array3[4+1];
    125   Scalar* array3u = array3+1;
    126 
    127   Plane3a *p1 = ::new(reinterpret_cast<void*>(array1)) Plane3a;
    128   Plane3u *p2 = ::new(reinterpret_cast<void*>(array2)) Plane3u;
    129   Plane3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Plane3u;
    130 
    131   p1->coeffs().setRandom();
    132   *p2 = *p1;
    133   *p3 = *p1;
    134 
    135   VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs());
    136   VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs());
    137 
    138   #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY
    139   if(internal::packet_traits<Scalar>::Vectorizable)
    140     VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Plane3a));
    141   #endif
    142 }
    143 
    144 
    145 void test_geo_hyperplane()
    146 {
    147   for(int i = 0; i < g_repeat; i++) {
    148     CALL_SUBTEST_1( hyperplane(Hyperplane<float,2>()) );
    149     CALL_SUBTEST_2( hyperplane(Hyperplane<float,3>()) );
    150     CALL_SUBTEST_2( hyperplane(Hyperplane<float,3,DontAlign>()) );
    151     CALL_SUBTEST_2( hyperplane_alignment<float>() );
    152     CALL_SUBTEST_3( hyperplane(Hyperplane<double,4>()) );
    153     CALL_SUBTEST_4( hyperplane(Hyperplane<std::complex<double>,5>()) );
    154     CALL_SUBTEST_1( lines<float>() );
    155     CALL_SUBTEST_3( lines<double>() );
    156   }
    157 }
    158