Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 
     12 template<typename MatrixType> void product_extra(const MatrixType& m)
     13 {
     14   typedef typename MatrixType::Index Index;
     15   typedef typename MatrixType::Scalar Scalar;
     16   typedef Matrix<Scalar, 1, Dynamic> RowVectorType;
     17   typedef Matrix<Scalar, Dynamic, 1> ColVectorType;
     18   typedef Matrix<Scalar, Dynamic, Dynamic,
     19                          MatrixType::Flags&RowMajorBit> OtherMajorMatrixType;
     20 
     21   Index rows = m.rows();
     22   Index cols = m.cols();
     23 
     24   MatrixType m1 = MatrixType::Random(rows, cols),
     25              m2 = MatrixType::Random(rows, cols),
     26              m3(rows, cols),
     27              mzero = MatrixType::Zero(rows, cols),
     28              identity = MatrixType::Identity(rows, rows),
     29              square = MatrixType::Random(rows, rows),
     30              res = MatrixType::Random(rows, rows),
     31              square2 = MatrixType::Random(cols, cols),
     32              res2 = MatrixType::Random(cols, cols);
     33   RowVectorType v1 = RowVectorType::Random(rows), vrres(rows);
     34   ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
     35   OtherMajorMatrixType tm1 = m1;
     36 
     37   Scalar s1 = internal::random<Scalar>(),
     38          s2 = internal::random<Scalar>(),
     39          s3 = internal::random<Scalar>();
     40 
     41   VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(),                 m1 * m2.adjoint().eval());
     42   VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(),   m1.adjoint().eval() * square.adjoint().eval());
     43   VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2,                 m1.adjoint().eval() * m2);
     44   VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2,          (s1 * m1.adjoint()).eval() * m2);
     45   VERIFY_IS_APPROX(m3.noalias() = ((s1 * m1).adjoint()) * m2,        (numext::conj(s1) * m1.adjoint()).eval() * m2);
     46   VERIFY_IS_APPROX(m3.noalias() = (- m1.adjoint() * s1) * (s3 * m2), (- m1.adjoint()  * s1).eval() * (s3 * m2).eval());
     47   VERIFY_IS_APPROX(m3.noalias() = (s2 * m1.adjoint() * s1) * m2,     (s2 * m1.adjoint()  * s1).eval() * m2);
     48   VERIFY_IS_APPROX(m3.noalias() = (-m1*s2) * s1*m2.adjoint(),        (-m1*s2).eval() * (s1*m2.adjoint()).eval());
     49 
     50   // a very tricky case where a scale factor has to be automatically conjugated:
     51   VERIFY_IS_APPROX( m1.adjoint() * (s1*m2).conjugate(), (m1.adjoint()).eval() * ((s1*m2).conjugate()).eval());
     52 
     53 
     54   // test all possible conjugate combinations for the four matrix-vector product cases:
     55 
     56   VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2),
     57                    (-m1.conjugate()*s2).eval() * (s1 * vc2).eval());
     58   VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()),
     59                    (-m1*s2).eval() * (s1 * vc2.conjugate()).eval());
     60   VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()),
     61                    (-m1.conjugate()*s2).eval() * (s1 * vc2.conjugate()).eval());
     62 
     63   VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2),
     64                    (s1 * vc2.transpose()).eval() * (-m1.adjoint()*s2).eval());
     65   VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2),
     66                    (s1 * vc2.adjoint()).eval() * (-m1.transpose()*s2).eval());
     67   VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2),
     68                    (s1 * vc2.adjoint()).eval() * (-m1.adjoint()*s2).eval());
     69 
     70   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()),
     71                    (-m1.adjoint()*s2).eval() * (s1 * v1.transpose()).eval());
     72   VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()),
     73                    (-m1.transpose()*s2).eval() * (s1 * v1.adjoint()).eval());
     74   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
     75                    (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
     76 
     77   VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2),
     78                    (s1 * v1).eval() * (-m1.conjugate()*s2).eval());
     79   VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2),
     80                    (s1 * v1.conjugate()).eval() * (-m1*s2).eval());
     81   VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2),
     82                    (s1 * v1.conjugate()).eval() * (-m1.conjugate()*s2).eval());
     83 
     84   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
     85                    (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
     86 
     87   // test the vector-matrix product with non aligned starts
     88   Index i = internal::random<Index>(0,m1.rows()-2);
     89   Index j = internal::random<Index>(0,m1.cols()-2);
     90   Index r = internal::random<Index>(1,m1.rows()-i);
     91   Index c = internal::random<Index>(1,m1.cols()-j);
     92   Index i2 = internal::random<Index>(0,m1.rows()-1);
     93   Index j2 = internal::random<Index>(0,m1.cols()-1);
     94 
     95   VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0,j,m1.rows(),c), m1.col(j2).adjoint().eval() * m1.block(0,j,m1.rows(),c).eval());
     96   VERIFY_IS_APPROX(m1.block(i,0,r,m1.cols()) * m1.row(i2).adjoint(), m1.block(i,0,r,m1.cols()).eval() * m1.row(i2).adjoint().eval());
     97 
     98   // regression test
     99   MatrixType tmp = m1 * m1.adjoint() * s1;
    100   VERIFY_IS_APPROX(tmp, m1 * m1.adjoint() * s1);
    101 }
    102 
    103 // Regression test for bug reported at http://forum.kde.org/viewtopic.php?f=74&t=96947
    104 void mat_mat_scalar_scalar_product()
    105 {
    106   Eigen::Matrix2Xd dNdxy(2, 3);
    107   dNdxy << -0.5, 0.5, 0,
    108            -0.3, 0, 0.3;
    109   double det = 6.0, wt = 0.5;
    110   VERIFY_IS_APPROX(dNdxy.transpose()*dNdxy*det*wt, det*wt*dNdxy.transpose()*dNdxy);
    111 }
    112 
    113 void zero_sized_objects()
    114 {
    115   // Bug 127
    116   //
    117   // a product of the form lhs*rhs with
    118   //
    119   // lhs:
    120   // rows = 1, cols = 4
    121   // RowsAtCompileTime = 1, ColsAtCompileTime = -1
    122   // MaxRowsAtCompileTime = 1, MaxColsAtCompileTime = 5
    123   //
    124   // rhs:
    125   // rows = 4, cols = 0
    126   // RowsAtCompileTime = -1, ColsAtCompileTime = -1
    127   // MaxRowsAtCompileTime = 5, MaxColsAtCompileTime = 1
    128   //
    129   // was failing on a runtime assertion, because it had been mis-compiled as a dot product because Product.h was using the
    130   // max-sizes to detect size 1 indicating vectors, and that didn't account for 0-sized object with max-size 1.
    131 
    132   Matrix<float,1,Dynamic,RowMajor,1,5> a(1,4);
    133   Matrix<float,Dynamic,Dynamic,ColMajor,5,1> b(4,0);
    134   a*b;
    135 }
    136 
    137 void unaligned_objects()
    138 {
    139   // Regression test for the bug reported here:
    140   // http://forum.kde.org/viewtopic.php?f=74&t=107541
    141   // Recall the matrix*vector kernel avoid unaligned loads by loading two packets and then reassemble then.
    142   // There was a mistake in the computation of the valid range for fully unaligned objects: in some rare cases,
    143   // memory was read outside the allocated matrix memory. Though the values were not used, this might raise segfault.
    144   for(int m=450;m<460;++m)
    145   {
    146     for(int n=8;n<12;++n)
    147     {
    148       MatrixXf M(m, n);
    149       VectorXf v1(n), r1(500);
    150       RowVectorXf v2(m), r2(16);
    151 
    152       M.setRandom();
    153       v1.setRandom();
    154       v2.setRandom();
    155       for(int o=0; o<4; ++o)
    156       {
    157         r1.segment(o,m).noalias() = M * v1;
    158         VERIFY_IS_APPROX(r1.segment(o,m), M * MatrixXf(v1));
    159         r2.segment(o,n).noalias() = v2 * M;
    160         VERIFY_IS_APPROX(r2.segment(o,n), MatrixXf(v2) * M);
    161       }
    162     }
    163   }
    164 }
    165 
    166 void test_product_extra()
    167 {
    168   for(int i = 0; i < g_repeat; i++) {
    169     CALL_SUBTEST_1( product_extra(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    170     CALL_SUBTEST_2( product_extra(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    171     CALL_SUBTEST_2( mat_mat_scalar_scalar_product() );
    172     CALL_SUBTEST_3( product_extra(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
    173     CALL_SUBTEST_4( product_extra(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
    174   }
    175   CALL_SUBTEST_5( zero_sized_objects() );
    176   CALL_SUBTEST_6( unaligned_objects() );
    177 }
    178