Home | History | Annotate | Download | only in IterativeSolvers
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2012 Giacomo Po <gpo (at) ucla.edu>
      5 // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 
     12 #ifndef EIGEN_MINRES_H_
     13 #define EIGEN_MINRES_H_
     14 
     15 
     16 namespace Eigen {
     17 
     18     namespace internal {
     19 
     20         /** \internal Low-level MINRES algorithm
     21          * \param mat The matrix A
     22          * \param rhs The right hand side vector b
     23          * \param x On input and initial solution, on output the computed solution.
     24          * \param precond A right preconditioner being able to efficiently solve for an
     25          *                approximation of Ax=b (regardless of b)
     26          * \param iters On input the max number of iteration, on output the number of performed iterations.
     27          * \param tol_error On input the tolerance error, on output an estimation of the relative error.
     28          */
     29         template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
     30         EIGEN_DONT_INLINE
     31         void minres(const MatrixType& mat, const Rhs& rhs, Dest& x,
     32                     const Preconditioner& precond, int& iters,
     33                     typename Dest::RealScalar& tol_error)
     34         {
     35             using std::sqrt;
     36             typedef typename Dest::RealScalar RealScalar;
     37             typedef typename Dest::Scalar Scalar;
     38             typedef Matrix<Scalar,Dynamic,1> VectorType;
     39 
     40             // initialize
     41             const int maxIters(iters);  // initialize maxIters to iters
     42             const int N(mat.cols());    // the size of the matrix
     43             const RealScalar rhsNorm2(rhs.squaredNorm());
     44             const RealScalar threshold2(tol_error*tol_error*rhsNorm2); // convergence threshold (compared to residualNorm2)
     45 
     46             // Initialize preconditioned Lanczos
     47 //            VectorType v_old(N); // will be initialized inside loop
     48             VectorType v( VectorType::Zero(N) ); //initialize v
     49             VectorType v_new(rhs-mat*x); //initialize v_new
     50             RealScalar residualNorm2(v_new.squaredNorm());
     51 //            VectorType w(N); // will be initialized inside loop
     52             VectorType w_new(precond.solve(v_new)); // initialize w_new
     53 //            RealScalar beta; // will be initialized inside loop
     54             RealScalar beta_new2(v_new.dot(w_new));
     55             eigen_assert(beta_new2 >= 0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
     56             RealScalar beta_new(sqrt(beta_new2));
     57             const RealScalar beta_one(beta_new);
     58             v_new /= beta_new;
     59             w_new /= beta_new;
     60             // Initialize other variables
     61             RealScalar c(1.0); // the cosine of the Givens rotation
     62             RealScalar c_old(1.0);
     63             RealScalar s(0.0); // the sine of the Givens rotation
     64             RealScalar s_old(0.0); // the sine of the Givens rotation
     65 //            VectorType p_oold(N); // will be initialized in loop
     66             VectorType p_old(VectorType::Zero(N)); // initialize p_old=0
     67             VectorType p(p_old); // initialize p=0
     68             RealScalar eta(1.0);
     69 
     70             iters = 0; // reset iters
     71             while ( iters < maxIters ){
     72 
     73                 // Preconditioned Lanczos
     74                 /* Note that there are 4 variants on the Lanczos algorithm. These are
     75                  * described in Paige, C. C. (1972). Computational variants of
     76                  * the Lanczos method for the eigenproblem. IMA Journal of Applied
     77                  * Mathematics, 10(3), 373381. The current implementation corresponds
     78                  * to the case A(2,7) in the paper. It also corresponds to
     79                  * algorithm 6.14 in Y. Saad, Iterative Methods for Sparse Linear
     80                  * Systems, 2003 p.173. For the preconditioned version see
     81                  * A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM (1987).
     82                  */
     83                 const RealScalar beta(beta_new);
     84 //                v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter
     85                 const VectorType v_old(v); // NOT SURE IF CREATING v_old EVERY ITERATION IS EFFICIENT
     86                 v = v_new; // update
     87 //                w = w_new; // update
     88                 const VectorType w(w_new); // NOT SURE IF CREATING w EVERY ITERATION IS EFFICIENT
     89                 v_new.noalias() = mat*w - beta*v_old; // compute v_new
     90                 const RealScalar alpha = v_new.dot(w);
     91                 v_new -= alpha*v; // overwrite v_new
     92                 w_new = precond.solve(v_new); // overwrite w_new
     93                 beta_new2 = v_new.dot(w_new); // compute beta_new
     94                 eigen_assert(beta_new2 >= 0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
     95                 beta_new = sqrt(beta_new2); // compute beta_new
     96                 v_new /= beta_new; // overwrite v_new for next iteration
     97                 w_new /= beta_new; // overwrite w_new for next iteration
     98 
     99                 // Givens rotation
    100                 const RealScalar r2 =s*alpha+c*c_old*beta; // s, s_old, c and c_old are still from previous iteration
    101                 const RealScalar r3 =s_old*beta; // s, s_old, c and c_old are still from previous iteration
    102                 const RealScalar r1_hat=c*alpha-c_old*s*beta;
    103                 const RealScalar r1 =sqrt( std::pow(r1_hat,2) + std::pow(beta_new,2) );
    104                 c_old = c; // store for next iteration
    105                 s_old = s; // store for next iteration
    106                 c=r1_hat/r1; // new cosine
    107                 s=beta_new/r1; // new sine
    108 
    109                 // Update solution
    110 //                p_oold = p_old;
    111                 const VectorType p_oold(p_old); // NOT SURE IF CREATING p_oold EVERY ITERATION IS EFFICIENT
    112                 p_old = p;
    113                 p.noalias()=(w-r2*p_old-r3*p_oold) /r1; // IS NOALIAS REQUIRED?
    114                 x += beta_one*c*eta*p;
    115                 residualNorm2 *= s*s;
    116 
    117                 if ( residualNorm2 < threshold2){
    118                     break;
    119                 }
    120 
    121                 eta=-s*eta; // update eta
    122                 iters++; // increment iteration number (for output purposes)
    123             }
    124             tol_error = std::sqrt(residualNorm2 / rhsNorm2); // return error. Note that this is the estimated error. The real error |Ax-b|/|b| may be slightly larger
    125         }
    126 
    127     }
    128 
    129     template< typename _MatrixType, int _UpLo=Lower,
    130     typename _Preconditioner = IdentityPreconditioner>
    131 //    typename _Preconditioner = IdentityPreconditioner<typename _MatrixType::Scalar> > // preconditioner must be positive definite
    132     class MINRES;
    133 
    134     namespace internal {
    135 
    136         template< typename _MatrixType, int _UpLo, typename _Preconditioner>
    137         struct traits<MINRES<_MatrixType,_UpLo,_Preconditioner> >
    138         {
    139             typedef _MatrixType MatrixType;
    140             typedef _Preconditioner Preconditioner;
    141         };
    142 
    143     }
    144 
    145     /** \ingroup IterativeLinearSolvers_Module
    146      * \brief A minimal residual solver for sparse symmetric problems
    147      *
    148      * This class allows to solve for A.x = b sparse linear problems using the MINRES algorithm
    149      * of Paige and Saunders (1975). The sparse matrix A must be symmetric (possibly indefinite).
    150      * The vectors x and b can be either dense or sparse.
    151      *
    152      * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
    153      * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
    154      *               or Upper. Default is Lower.
    155      * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
    156      *
    157      * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
    158      * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
    159      * and NumTraits<Scalar>::epsilon() for the tolerance.
    160      *
    161      * This class can be used as the direct solver classes. Here is a typical usage example:
    162      * \code
    163      * int n = 10000;
    164      * VectorXd x(n), b(n);
    165      * SparseMatrix<double> A(n,n);
    166      * // fill A and b
    167      * MINRES<SparseMatrix<double> > mr;
    168      * mr.compute(A);
    169      * x = mr.solve(b);
    170      * std::cout << "#iterations:     " << mr.iterations() << std::endl;
    171      * std::cout << "estimated error: " << mr.error()      << std::endl;
    172      * // update b, and solve again
    173      * x = mr.solve(b);
    174      * \endcode
    175      *
    176      * By default the iterations start with x=0 as an initial guess of the solution.
    177      * One can control the start using the solveWithGuess() method. Here is a step by
    178      * step execution example starting with a random guess and printing the evolution
    179      * of the estimated error:
    180      * * \code
    181      * x = VectorXd::Random(n);
    182      * mr.setMaxIterations(1);
    183      * int i = 0;
    184      * do {
    185      *   x = mr.solveWithGuess(b,x);
    186      *   std::cout << i << " : " << mr.error() << std::endl;
    187      *   ++i;
    188      * } while (mr.info()!=Success && i<100);
    189      * \endcode
    190      * Note that such a step by step excution is slightly slower.
    191      *
    192      * \sa class ConjugateGradient, BiCGSTAB, SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
    193      */
    194     template< typename _MatrixType, int _UpLo, typename _Preconditioner>
    195     class MINRES : public IterativeSolverBase<MINRES<_MatrixType,_UpLo,_Preconditioner> >
    196     {
    197 
    198         typedef IterativeSolverBase<MINRES> Base;
    199         using Base::mp_matrix;
    200         using Base::m_error;
    201         using Base::m_iterations;
    202         using Base::m_info;
    203         using Base::m_isInitialized;
    204     public:
    205         typedef _MatrixType MatrixType;
    206         typedef typename MatrixType::Scalar Scalar;
    207         typedef typename MatrixType::Index Index;
    208         typedef typename MatrixType::RealScalar RealScalar;
    209         typedef _Preconditioner Preconditioner;
    210 
    211         enum {UpLo = _UpLo};
    212 
    213     public:
    214 
    215         /** Default constructor. */
    216         MINRES() : Base() {}
    217 
    218         /** Initialize the solver with matrix \a A for further \c Ax=b solving.
    219          *
    220          * This constructor is a shortcut for the default constructor followed
    221          * by a call to compute().
    222          *
    223          * \warning this class stores a reference to the matrix A as well as some
    224          * precomputed values that depend on it. Therefore, if \a A is changed
    225          * this class becomes invalid. Call compute() to update it with the new
    226          * matrix A, or modify a copy of A.
    227          */
    228         MINRES(const MatrixType& A) : Base(A) {}
    229 
    230         /** Destructor. */
    231         ~MINRES(){}
    232 
    233         /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
    234          * \a x0 as an initial solution.
    235          *
    236          * \sa compute()
    237          */
    238         template<typename Rhs,typename Guess>
    239         inline const internal::solve_retval_with_guess<MINRES, Rhs, Guess>
    240         solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
    241         {
    242             eigen_assert(m_isInitialized && "MINRES is not initialized.");
    243             eigen_assert(Base::rows()==b.rows()
    244                          && "MINRES::solve(): invalid number of rows of the right hand side matrix b");
    245             return internal::solve_retval_with_guess
    246             <MINRES, Rhs, Guess>(*this, b.derived(), x0);
    247         }
    248 
    249         /** \internal */
    250         template<typename Rhs,typename Dest>
    251         void _solveWithGuess(const Rhs& b, Dest& x) const
    252         {
    253             m_iterations = Base::maxIterations();
    254             m_error = Base::m_tolerance;
    255 
    256             for(int j=0; j<b.cols(); ++j)
    257             {
    258                 m_iterations = Base::maxIterations();
    259                 m_error = Base::m_tolerance;
    260 
    261                 typename Dest::ColXpr xj(x,j);
    262                 internal::minres(mp_matrix->template selfadjointView<UpLo>(), b.col(j), xj,
    263                                  Base::m_preconditioner, m_iterations, m_error);
    264             }
    265 
    266             m_isInitialized = true;
    267             m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
    268         }
    269 
    270         /** \internal */
    271         template<typename Rhs,typename Dest>
    272         void _solve(const Rhs& b, Dest& x) const
    273         {
    274             x.setZero();
    275             _solveWithGuess(b,x);
    276         }
    277 
    278     protected:
    279 
    280     };
    281 
    282     namespace internal {
    283 
    284         template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs>
    285         struct solve_retval<MINRES<_MatrixType,_UpLo,_Preconditioner>, Rhs>
    286         : solve_retval_base<MINRES<_MatrixType,_UpLo,_Preconditioner>, Rhs>
    287         {
    288             typedef MINRES<_MatrixType,_UpLo,_Preconditioner> Dec;
    289             EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
    290 
    291             template<typename Dest> void evalTo(Dest& dst) const
    292             {
    293                 dec()._solve(rhs(),dst);
    294             }
    295         };
    296 
    297     } // end namespace internal
    298 
    299 } // end namespace Eigen
    300 
    301 #endif // EIGEN_MINRES_H
    302 
    303