Home | History | Annotate | Download | only in fio
      1 #ifndef FIO_STAT_H
      2 #define FIO_STAT_H
      3 
      4 #include "iolog.h"
      5 
      6 struct group_run_stats {
      7 	uint64_t max_run[DDIR_RWDIR_CNT], min_run[DDIR_RWDIR_CNT];
      8 	uint64_t max_bw[DDIR_RWDIR_CNT], min_bw[DDIR_RWDIR_CNT];
      9 	uint64_t io_kb[DDIR_RWDIR_CNT];
     10 	uint64_t agg[DDIR_RWDIR_CNT];
     11 	uint32_t kb_base;
     12 	uint32_t unit_base;
     13 	uint32_t groupid;
     14 	uint32_t unified_rw_rep;
     15 };
     16 
     17 /*
     18  * How many depth levels to log
     19  */
     20 #define FIO_IO_U_MAP_NR	7
     21 #define FIO_IO_U_LAT_U_NR 10
     22 #define FIO_IO_U_LAT_M_NR 12
     23 
     24 /*
     25  * Aggregate clat samples to report percentile(s) of them.
     26  *
     27  * EXECUTIVE SUMMARY
     28  *
     29  * FIO_IO_U_PLAT_BITS determines the maximum statistical error on the
     30  * value of resulting percentiles. The error will be approximately
     31  * 1/2^(FIO_IO_U_PLAT_BITS+1) of the value.
     32  *
     33  * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the maximum
     34  * range being tracked for latency samples. The maximum value tracked
     35  * accurately will be 2^(GROUP_NR + PLAT_BITS -1) microseconds.
     36  *
     37  * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the memory
     38  * requirement of storing those aggregate counts. The memory used will
     39  * be (FIO_IO_U_PLAT_GROUP_NR * 2^FIO_IO_U_PLAT_BITS) * sizeof(int)
     40  * bytes.
     41  *
     42  * FIO_IO_U_PLAT_NR is the total number of buckets.
     43  *
     44  * DETAILS
     45  *
     46  * Suppose the clat varies from 0 to 999 (usec), the straightforward
     47  * method is to keep an array of (999 + 1) buckets, in which a counter
     48  * keeps the count of samples which fall in the bucket, e.g.,
     49  * {[0],[1],...,[999]}. However this consumes a huge amount of space,
     50  * and can be avoided if an approximation is acceptable.
     51  *
     52  * One such method is to let the range of the bucket to be greater
     53  * than one. This method has low accuracy when the value is small. For
     54  * example, let the buckets be {[0,99],[100,199],...,[900,999]}, and
     55  * the represented value of each bucket be the mean of the range. Then
     56  * a value 0 has an round-off error of 49.5. To improve on this, we
     57  * use buckets with non-uniform ranges, while bounding the error of
     58  * each bucket within a ratio of the sample value. A simple example
     59  * would be when error_bound = 0.005, buckets are {
     60  * {[0],[1],...,[99]}, {[100,101],[102,103],...,[198,199]},..,
     61  * {[900,909],[910,919]...}  }. The total range is partitioned into
     62  * groups with different ranges, then buckets with uniform ranges. An
     63  * upper bound of the error is (range_of_bucket/2)/value_of_bucket
     64  *
     65  * For better efficiency, we implement this using base two. We group
     66  * samples by their Most Significant Bit (MSB), extract the next M bit
     67  * of them as an index within the group, and discard the rest of the
     68  * bits.
     69  *
     70  * E.g., assume a sample 'x' whose MSB is bit n (starting from bit 0),
     71  * and use M bit for indexing
     72  *
     73  *        | n |    M bits   | bit (n-M-1) ... bit 0 |
     74  *
     75  * Because x is at least 2^n, and bit 0 to bit (n-M-1) is at most
     76  * (2^(n-M) - 1), discarding bit 0 to (n-M-1) makes the round-off
     77  * error
     78  *
     79  *           2^(n-M)-1    2^(n-M)    1
     80  *      e <= --------- <= ------- = ---
     81  *             2^n          2^n     2^M
     82  *
     83  * Furthermore, we use "mean" of the range to represent the bucket,
     84  * the error e can be lowered by half to 1 / 2^(M+1). By using M bits
     85  * as the index, each group must contains 2^M buckets.
     86  *
     87  * E.g. Let M (FIO_IO_U_PLAT_BITS) be 6
     88  *      Error bound is 1/2^(6+1) = 0.0078125 (< 1%)
     89  *
     90  *	Group	MSB	#discarded	range of		#buckets
     91  *			error_bits	value
     92  *	----------------------------------------------------------------
     93  *	0*	0~5	0		[0,63]			64
     94  *	1*	6	0		[64,127]		64
     95  *	2	7	1		[128,255]		64
     96  *	3	8	2		[256,511]		64
     97  *	4	9	3		[512,1023]		64
     98  *	...	...	...		[...,...]		...
     99  *	18	23	17		[8838608,+inf]**	64
    100  *
    101  *  * Special cases: when n < (M-1) or when n == (M-1), in both cases,
    102  *    the value cannot be rounded off. Use all bits of the sample as
    103  *    index.
    104  *
    105  *  ** If a sample's MSB is greater than 23, it will be counted as 23.
    106  */
    107 
    108 #define FIO_IO_U_PLAT_BITS 6
    109 #define FIO_IO_U_PLAT_VAL (1 << FIO_IO_U_PLAT_BITS)
    110 #define FIO_IO_U_PLAT_GROUP_NR 19
    111 #define FIO_IO_U_PLAT_NR (FIO_IO_U_PLAT_GROUP_NR * FIO_IO_U_PLAT_VAL)
    112 #define FIO_IO_U_LIST_MAX_LEN 20 /* The size of the default and user-specified
    113 					list of percentiles */
    114 
    115 #define MAX_PATTERN_SIZE	512
    116 #define FIO_JOBNAME_SIZE	128
    117 #define FIO_JOBDESC_SIZE	256
    118 #define FIO_VERROR_SIZE		128
    119 
    120 struct thread_stat {
    121 	char name[FIO_JOBNAME_SIZE];
    122 	char verror[FIO_VERROR_SIZE];
    123 	uint32_t error;
    124 	uint32_t thread_number;
    125 	uint32_t groupid;
    126 	uint32_t pid;
    127 	char description[FIO_JOBDESC_SIZE];
    128 	uint32_t members;
    129 	uint32_t unified_rw_rep;
    130 
    131 	/*
    132 	 * bandwidth and latency stats
    133 	 */
    134 	struct io_stat clat_stat[DDIR_RWDIR_CNT]; /* completion latency */
    135 	struct io_stat slat_stat[DDIR_RWDIR_CNT]; /* submission latency */
    136 	struct io_stat lat_stat[DDIR_RWDIR_CNT]; /* total latency */
    137 	struct io_stat bw_stat[DDIR_RWDIR_CNT]; /* bandwidth stats */
    138 	struct io_stat iops_stat[DDIR_RWDIR_CNT]; /* IOPS stats */
    139 
    140 	/*
    141 	 * fio system usage accounting
    142 	 */
    143 	uint64_t usr_time;
    144 	uint64_t sys_time;
    145 	uint64_t ctx;
    146 	uint64_t minf, majf;
    147 
    148 	/*
    149 	 * IO depth and latency stats
    150 	 */
    151 	uint64_t clat_percentiles;
    152 	uint64_t percentile_precision;
    153 	fio_fp64_t percentile_list[FIO_IO_U_LIST_MAX_LEN];
    154 
    155 	uint32_t io_u_map[FIO_IO_U_MAP_NR];
    156 	uint32_t io_u_submit[FIO_IO_U_MAP_NR];
    157 	uint32_t io_u_complete[FIO_IO_U_MAP_NR];
    158 	uint32_t io_u_lat_u[FIO_IO_U_LAT_U_NR];
    159 	uint32_t io_u_lat_m[FIO_IO_U_LAT_M_NR];
    160 	uint32_t io_u_plat[DDIR_RWDIR_CNT][FIO_IO_U_PLAT_NR];
    161 	uint64_t total_io_u[3];
    162 	uint64_t short_io_u[3];
    163 	uint64_t total_submit;
    164 	uint64_t total_complete;
    165 
    166 	uint64_t io_bytes[DDIR_RWDIR_CNT];
    167 	uint64_t runtime[DDIR_RWDIR_CNT];
    168 	uint64_t total_run_time;
    169 
    170 	/*
    171 	 * IO Error related stats
    172 	 */
    173 	uint16_t continue_on_error;
    174 	uint64_t total_err_count;
    175 	uint32_t first_error;
    176 
    177 	uint32_t kb_base;
    178 	uint32_t unit_base;
    179 
    180 	uint32_t latency_depth;
    181 	uint64_t latency_target;
    182 	fio_fp64_t latency_percentile;
    183 	uint64_t latency_window;
    184 };
    185 
    186 struct jobs_eta {
    187 	uint32_t nr_running;
    188 	uint32_t nr_ramp;
    189 	uint32_t nr_pending;
    190 	uint32_t nr_setting_up;
    191 	uint32_t files_open;
    192 	uint32_t m_rate[DDIR_RWDIR_CNT], t_rate[DDIR_RWDIR_CNT];
    193 	uint32_t m_iops[DDIR_RWDIR_CNT], t_iops[DDIR_RWDIR_CNT];
    194 	uint32_t rate[DDIR_RWDIR_CNT];
    195 	uint32_t iops[DDIR_RWDIR_CNT];
    196 	uint64_t elapsed_sec;
    197 	uint64_t eta_sec;
    198 	uint32_t is_pow2;
    199 	uint32_t unit_base;
    200 
    201 	/*
    202 	 * Network 'copy' of run_str[]
    203 	 */
    204 	uint32_t nr_threads;
    205 	uint8_t run_str[];
    206 };
    207 
    208 extern void stat_init(void);
    209 extern void stat_exit(void);
    210 
    211 extern struct json_object * show_thread_status(struct thread_stat *ts, struct group_run_stats *rs);
    212 extern void show_group_stats(struct group_run_stats *rs);
    213 extern int calc_thread_status(struct jobs_eta *je, int force);
    214 extern void display_thread_status(struct jobs_eta *je);
    215 extern void show_run_stats(void);
    216 extern void show_running_run_stats(void);
    217 extern void check_for_running_stats(void);
    218 extern void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src, int nr);
    219 extern void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src);
    220 extern void init_thread_stat(struct thread_stat *ts);
    221 extern void init_group_run_stat(struct group_run_stats *gs);
    222 extern void eta_to_str(char *str, unsigned long eta_sec);
    223 extern int calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max, double *mean, double *dev);
    224 extern unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr, fio_fp64_t *plist, unsigned int **output, unsigned int *maxv, unsigned int *minv);
    225 extern void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat);
    226 extern void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat);
    227 extern void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist);
    228 extern void reset_io_stats(struct thread_data *);
    229 
    230 static inline int usec_to_msec(unsigned long *min, unsigned long *max,
    231 			       double *mean, double *dev)
    232 {
    233 	if (*min > 1000 && *max > 1000 && *mean > 1000.0 && *dev > 1000.0) {
    234 		*min /= 1000;
    235 		*max /= 1000;
    236 		*mean /= 1000.0;
    237 		*dev /= 1000.0;
    238 		return 0;
    239 	}
    240 
    241 	return 1;
    242 }
    243 
    244 #endif
    245