Home | History | Annotate | Download | only in Analysis
      1 //===- LazyValueInfo.cpp - Value constraint analysis ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interface for lazy computation of value constraint
     11 // information.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Analysis/LazyValueInfo.h"
     16 #include "llvm/ADT/DenseSet.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/Analysis/ConstantFolding.h"
     19 #include "llvm/Analysis/ValueTracking.h"
     20 #include "llvm/IR/CFG.h"
     21 #include "llvm/IR/ConstantRange.h"
     22 #include "llvm/IR/Constants.h"
     23 #include "llvm/IR/DataLayout.h"
     24 #include "llvm/IR/Instructions.h"
     25 #include "llvm/IR/IntrinsicInst.h"
     26 #include "llvm/IR/PatternMatch.h"
     27 #include "llvm/IR/ValueHandle.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 #include "llvm/Target/TargetLibraryInfo.h"
     31 #include <map>
     32 #include <stack>
     33 using namespace llvm;
     34 using namespace PatternMatch;
     35 
     36 #define DEBUG_TYPE "lazy-value-info"
     37 
     38 char LazyValueInfo::ID = 0;
     39 INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info",
     40                 "Lazy Value Information Analysis", false, true)
     41 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
     42 INITIALIZE_PASS_END(LazyValueInfo, "lazy-value-info",
     43                 "Lazy Value Information Analysis", false, true)
     44 
     45 namespace llvm {
     46   FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
     47 }
     48 
     49 
     50 //===----------------------------------------------------------------------===//
     51 //                               LVILatticeVal
     52 //===----------------------------------------------------------------------===//
     53 
     54 /// LVILatticeVal - This is the information tracked by LazyValueInfo for each
     55 /// value.
     56 ///
     57 /// FIXME: This is basically just for bringup, this can be made a lot more rich
     58 /// in the future.
     59 ///
     60 namespace {
     61 class LVILatticeVal {
     62   enum LatticeValueTy {
     63     /// undefined - This Value has no known value yet.
     64     undefined,
     65 
     66     /// constant - This Value has a specific constant value.
     67     constant,
     68     /// notconstant - This Value is known to not have the specified value.
     69     notconstant,
     70 
     71     /// constantrange - The Value falls within this range.
     72     constantrange,
     73 
     74     /// overdefined - This value is not known to be constant, and we know that
     75     /// it has a value.
     76     overdefined
     77   };
     78 
     79   /// Val: This stores the current lattice value along with the Constant* for
     80   /// the constant if this is a 'constant' or 'notconstant' value.
     81   LatticeValueTy Tag;
     82   Constant *Val;
     83   ConstantRange Range;
     84 
     85 public:
     86   LVILatticeVal() : Tag(undefined), Val(nullptr), Range(1, true) {}
     87 
     88   static LVILatticeVal get(Constant *C) {
     89     LVILatticeVal Res;
     90     if (!isa<UndefValue>(C))
     91       Res.markConstant(C);
     92     return Res;
     93   }
     94   static LVILatticeVal getNot(Constant *C) {
     95     LVILatticeVal Res;
     96     if (!isa<UndefValue>(C))
     97       Res.markNotConstant(C);
     98     return Res;
     99   }
    100   static LVILatticeVal getRange(ConstantRange CR) {
    101     LVILatticeVal Res;
    102     Res.markConstantRange(CR);
    103     return Res;
    104   }
    105 
    106   bool isUndefined() const     { return Tag == undefined; }
    107   bool isConstant() const      { return Tag == constant; }
    108   bool isNotConstant() const   { return Tag == notconstant; }
    109   bool isConstantRange() const { return Tag == constantrange; }
    110   bool isOverdefined() const   { return Tag == overdefined; }
    111 
    112   Constant *getConstant() const {
    113     assert(isConstant() && "Cannot get the constant of a non-constant!");
    114     return Val;
    115   }
    116 
    117   Constant *getNotConstant() const {
    118     assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
    119     return Val;
    120   }
    121 
    122   ConstantRange getConstantRange() const {
    123     assert(isConstantRange() &&
    124            "Cannot get the constant-range of a non-constant-range!");
    125     return Range;
    126   }
    127 
    128   /// markOverdefined - Return true if this is a change in status.
    129   bool markOverdefined() {
    130     if (isOverdefined())
    131       return false;
    132     Tag = overdefined;
    133     return true;
    134   }
    135 
    136   /// markConstant - Return true if this is a change in status.
    137   bool markConstant(Constant *V) {
    138     assert(V && "Marking constant with NULL");
    139     if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
    140       return markConstantRange(ConstantRange(CI->getValue()));
    141     if (isa<UndefValue>(V))
    142       return false;
    143 
    144     assert((!isConstant() || getConstant() == V) &&
    145            "Marking constant with different value");
    146     assert(isUndefined());
    147     Tag = constant;
    148     Val = V;
    149     return true;
    150   }
    151 
    152   /// markNotConstant - Return true if this is a change in status.
    153   bool markNotConstant(Constant *V) {
    154     assert(V && "Marking constant with NULL");
    155     if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
    156       return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
    157     if (isa<UndefValue>(V))
    158       return false;
    159 
    160     assert((!isConstant() || getConstant() != V) &&
    161            "Marking constant !constant with same value");
    162     assert((!isNotConstant() || getNotConstant() == V) &&
    163            "Marking !constant with different value");
    164     assert(isUndefined() || isConstant());
    165     Tag = notconstant;
    166     Val = V;
    167     return true;
    168   }
    169 
    170   /// markConstantRange - Return true if this is a change in status.
    171   bool markConstantRange(const ConstantRange NewR) {
    172     if (isConstantRange()) {
    173       if (NewR.isEmptySet())
    174         return markOverdefined();
    175 
    176       bool changed = Range != NewR;
    177       Range = NewR;
    178       return changed;
    179     }
    180 
    181     assert(isUndefined());
    182     if (NewR.isEmptySet())
    183       return markOverdefined();
    184 
    185     Tag = constantrange;
    186     Range = NewR;
    187     return true;
    188   }
    189 
    190   /// mergeIn - Merge the specified lattice value into this one, updating this
    191   /// one and returning true if anything changed.
    192   bool mergeIn(const LVILatticeVal &RHS) {
    193     if (RHS.isUndefined() || isOverdefined()) return false;
    194     if (RHS.isOverdefined()) return markOverdefined();
    195 
    196     if (isUndefined()) {
    197       Tag = RHS.Tag;
    198       Val = RHS.Val;
    199       Range = RHS.Range;
    200       return true;
    201     }
    202 
    203     if (isConstant()) {
    204       if (RHS.isConstant()) {
    205         if (Val == RHS.Val)
    206           return false;
    207         return markOverdefined();
    208       }
    209 
    210       if (RHS.isNotConstant()) {
    211         if (Val == RHS.Val)
    212           return markOverdefined();
    213 
    214         // Unless we can prove that the two Constants are different, we must
    215         // move to overdefined.
    216         // FIXME: use DataLayout/TargetLibraryInfo for smarter constant folding.
    217         if (ConstantInt *Res = dyn_cast<ConstantInt>(
    218                 ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
    219                                                 getConstant(),
    220                                                 RHS.getNotConstant())))
    221           if (Res->isOne())
    222             return markNotConstant(RHS.getNotConstant());
    223 
    224         return markOverdefined();
    225       }
    226 
    227       // RHS is a ConstantRange, LHS is a non-integer Constant.
    228 
    229       // FIXME: consider the case where RHS is a range [1, 0) and LHS is
    230       // a function. The correct result is to pick up RHS.
    231 
    232       return markOverdefined();
    233     }
    234 
    235     if (isNotConstant()) {
    236       if (RHS.isConstant()) {
    237         if (Val == RHS.Val)
    238           return markOverdefined();
    239 
    240         // Unless we can prove that the two Constants are different, we must
    241         // move to overdefined.
    242         // FIXME: use DataLayout/TargetLibraryInfo for smarter constant folding.
    243         if (ConstantInt *Res = dyn_cast<ConstantInt>(
    244                 ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
    245                                                 getNotConstant(),
    246                                                 RHS.getConstant())))
    247           if (Res->isOne())
    248             return false;
    249 
    250         return markOverdefined();
    251       }
    252 
    253       if (RHS.isNotConstant()) {
    254         if (Val == RHS.Val)
    255           return false;
    256         return markOverdefined();
    257       }
    258 
    259       return markOverdefined();
    260     }
    261 
    262     assert(isConstantRange() && "New LVILattice type?");
    263     if (!RHS.isConstantRange())
    264       return markOverdefined();
    265 
    266     ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
    267     if (NewR.isFullSet())
    268       return markOverdefined();
    269     return markConstantRange(NewR);
    270   }
    271 };
    272 
    273 } // end anonymous namespace.
    274 
    275 namespace llvm {
    276 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
    277     LLVM_ATTRIBUTE_USED;
    278 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
    279   if (Val.isUndefined())
    280     return OS << "undefined";
    281   if (Val.isOverdefined())
    282     return OS << "overdefined";
    283 
    284   if (Val.isNotConstant())
    285     return OS << "notconstant<" << *Val.getNotConstant() << '>';
    286   else if (Val.isConstantRange())
    287     return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
    288               << Val.getConstantRange().getUpper() << '>';
    289   return OS << "constant<" << *Val.getConstant() << '>';
    290 }
    291 }
    292 
    293 //===----------------------------------------------------------------------===//
    294 //                          LazyValueInfoCache Decl
    295 //===----------------------------------------------------------------------===//
    296 
    297 namespace {
    298   /// LVIValueHandle - A callback value handle updates the cache when
    299   /// values are erased.
    300   class LazyValueInfoCache;
    301   struct LVIValueHandle : public CallbackVH {
    302     LazyValueInfoCache *Parent;
    303 
    304     LVIValueHandle(Value *V, LazyValueInfoCache *P)
    305       : CallbackVH(V), Parent(P) { }
    306 
    307     void deleted() override;
    308     void allUsesReplacedWith(Value *V) override {
    309       deleted();
    310     }
    311   };
    312 }
    313 
    314 namespace {
    315   /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which
    316   /// maintains information about queries across the clients' queries.
    317   class LazyValueInfoCache {
    318     /// ValueCacheEntryTy - This is all of the cached block information for
    319     /// exactly one Value*.  The entries are sorted by the BasicBlock* of the
    320     /// entries, allowing us to do a lookup with a binary search.
    321     typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy;
    322 
    323     /// ValueCache - This is all of the cached information for all values,
    324     /// mapped from Value* to key information.
    325     std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache;
    326 
    327     /// OverDefinedCache - This tracks, on a per-block basis, the set of
    328     /// values that are over-defined at the end of that block.  This is required
    329     /// for cache updating.
    330     typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
    331     DenseSet<OverDefinedPairTy> OverDefinedCache;
    332 
    333     /// SeenBlocks - Keep track of all blocks that we have ever seen, so we
    334     /// don't spend time removing unused blocks from our caches.
    335     DenseSet<AssertingVH<BasicBlock> > SeenBlocks;
    336 
    337     /// BlockValueStack - This stack holds the state of the value solver
    338     /// during a query.  It basically emulates the callstack of the naive
    339     /// recursive value lookup process.
    340     std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
    341 
    342     friend struct LVIValueHandle;
    343 
    344     /// OverDefinedCacheUpdater - A helper object that ensures that the
    345     /// OverDefinedCache is updated whenever solveBlockValue returns.
    346     struct OverDefinedCacheUpdater {
    347       LazyValueInfoCache *Parent;
    348       Value *Val;
    349       BasicBlock *BB;
    350       LVILatticeVal &BBLV;
    351 
    352       OverDefinedCacheUpdater(Value *V, BasicBlock *B, LVILatticeVal &LV,
    353                        LazyValueInfoCache *P)
    354         : Parent(P), Val(V), BB(B), BBLV(LV) { }
    355 
    356       bool markResult(bool changed) {
    357         if (changed && BBLV.isOverdefined())
    358           Parent->OverDefinedCache.insert(std::make_pair(BB, Val));
    359         return changed;
    360       }
    361     };
    362 
    363 
    364 
    365     LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
    366     bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
    367                       LVILatticeVal &Result);
    368     bool hasBlockValue(Value *Val, BasicBlock *BB);
    369 
    370     // These methods process one work item and may add more. A false value
    371     // returned means that the work item was not completely processed and must
    372     // be revisited after going through the new items.
    373     bool solveBlockValue(Value *Val, BasicBlock *BB);
    374     bool solveBlockValueNonLocal(LVILatticeVal &BBLV,
    375                                  Value *Val, BasicBlock *BB);
    376     bool solveBlockValuePHINode(LVILatticeVal &BBLV,
    377                                 PHINode *PN, BasicBlock *BB);
    378     bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
    379                                       Instruction *BBI, BasicBlock *BB);
    380 
    381     void solve();
    382 
    383     ValueCacheEntryTy &lookup(Value *V) {
    384       return ValueCache[LVIValueHandle(V, this)];
    385     }
    386 
    387   public:
    388     /// getValueInBlock - This is the query interface to determine the lattice
    389     /// value for the specified Value* at the end of the specified block.
    390     LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB);
    391 
    392     /// getValueOnEdge - This is the query interface to determine the lattice
    393     /// value for the specified Value* that is true on the specified edge.
    394     LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB);
    395 
    396     /// threadEdge - This is the update interface to inform the cache that an
    397     /// edge from PredBB to OldSucc has been threaded to be from PredBB to
    398     /// NewSucc.
    399     void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
    400 
    401     /// eraseBlock - This is part of the update interface to inform the cache
    402     /// that a block has been deleted.
    403     void eraseBlock(BasicBlock *BB);
    404 
    405     /// clear - Empty the cache.
    406     void clear() {
    407       SeenBlocks.clear();
    408       ValueCache.clear();
    409       OverDefinedCache.clear();
    410     }
    411   };
    412 } // end anonymous namespace
    413 
    414 void LVIValueHandle::deleted() {
    415   typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
    416 
    417   SmallVector<OverDefinedPairTy, 4> ToErase;
    418   for (DenseSet<OverDefinedPairTy>::iterator
    419        I = Parent->OverDefinedCache.begin(),
    420        E = Parent->OverDefinedCache.end();
    421        I != E; ++I) {
    422     if (I->second == getValPtr())
    423       ToErase.push_back(*I);
    424   }
    425 
    426   for (SmallVectorImpl<OverDefinedPairTy>::iterator I = ToErase.begin(),
    427        E = ToErase.end(); I != E; ++I)
    428     Parent->OverDefinedCache.erase(*I);
    429 
    430   // This erasure deallocates *this, so it MUST happen after we're done
    431   // using any and all members of *this.
    432   Parent->ValueCache.erase(*this);
    433 }
    434 
    435 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
    436   // Shortcut if we have never seen this block.
    437   DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
    438   if (I == SeenBlocks.end())
    439     return;
    440   SeenBlocks.erase(I);
    441 
    442   SmallVector<OverDefinedPairTy, 4> ToErase;
    443   for (DenseSet<OverDefinedPairTy>::iterator  I = OverDefinedCache.begin(),
    444        E = OverDefinedCache.end(); I != E; ++I) {
    445     if (I->first == BB)
    446       ToErase.push_back(*I);
    447   }
    448 
    449   for (SmallVectorImpl<OverDefinedPairTy>::iterator I = ToErase.begin(),
    450        E = ToErase.end(); I != E; ++I)
    451     OverDefinedCache.erase(*I);
    452 
    453   for (std::map<LVIValueHandle, ValueCacheEntryTy>::iterator
    454        I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
    455     I->second.erase(BB);
    456 }
    457 
    458 void LazyValueInfoCache::solve() {
    459   while (!BlockValueStack.empty()) {
    460     std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
    461     if (solveBlockValue(e.second, e.first)) {
    462       assert(BlockValueStack.top() == e);
    463       BlockValueStack.pop();
    464     }
    465   }
    466 }
    467 
    468 bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) {
    469   // If already a constant, there is nothing to compute.
    470   if (isa<Constant>(Val))
    471     return true;
    472 
    473   LVIValueHandle ValHandle(Val, this);
    474   std::map<LVIValueHandle, ValueCacheEntryTy>::iterator I =
    475     ValueCache.find(ValHandle);
    476   if (I == ValueCache.end()) return false;
    477   return I->second.count(BB);
    478 }
    479 
    480 LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) {
    481   // If already a constant, there is nothing to compute.
    482   if (Constant *VC = dyn_cast<Constant>(Val))
    483     return LVILatticeVal::get(VC);
    484 
    485   SeenBlocks.insert(BB);
    486   return lookup(Val)[BB];
    487 }
    488 
    489 bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
    490   if (isa<Constant>(Val))
    491     return true;
    492 
    493   ValueCacheEntryTy &Cache = lookup(Val);
    494   SeenBlocks.insert(BB);
    495   LVILatticeVal &BBLV = Cache[BB];
    496 
    497   // OverDefinedCacheUpdater is a helper object that will update
    498   // the OverDefinedCache for us when this method exits.  Make sure to
    499   // call markResult on it as we exist, passing a bool to indicate if the
    500   // cache needs updating, i.e. if we have solve a new value or not.
    501   OverDefinedCacheUpdater ODCacheUpdater(Val, BB, BBLV, this);
    502 
    503   // If we've already computed this block's value, return it.
    504   if (!BBLV.isUndefined()) {
    505     DEBUG(dbgs() << "  reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n');
    506 
    507     // Since we're reusing a cached value here, we don't need to update the
    508     // OverDefinedCahce.  The cache will have been properly updated
    509     // whenever the cached value was inserted.
    510     ODCacheUpdater.markResult(false);
    511     return true;
    512   }
    513 
    514   // Otherwise, this is the first time we're seeing this block.  Reset the
    515   // lattice value to overdefined, so that cycles will terminate and be
    516   // conservatively correct.
    517   BBLV.markOverdefined();
    518 
    519   Instruction *BBI = dyn_cast<Instruction>(Val);
    520   if (!BBI || BBI->getParent() != BB) {
    521     return ODCacheUpdater.markResult(solveBlockValueNonLocal(BBLV, Val, BB));
    522   }
    523 
    524   if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
    525     return ODCacheUpdater.markResult(solveBlockValuePHINode(BBLV, PN, BB));
    526   }
    527 
    528   if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) {
    529     BBLV = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType()));
    530     return ODCacheUpdater.markResult(true);
    531   }
    532 
    533   // We can only analyze the definitions of certain classes of instructions
    534   // (integral binops and casts at the moment), so bail if this isn't one.
    535   LVILatticeVal Result;
    536   if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) ||
    537      !BBI->getType()->isIntegerTy()) {
    538     DEBUG(dbgs() << " compute BB '" << BB->getName()
    539                  << "' - overdefined because inst def found.\n");
    540     BBLV.markOverdefined();
    541     return ODCacheUpdater.markResult(true);
    542   }
    543 
    544   // FIXME: We're currently limited to binops with a constant RHS.  This should
    545   // be improved.
    546   BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
    547   if (BO && !isa<ConstantInt>(BO->getOperand(1))) {
    548     DEBUG(dbgs() << " compute BB '" << BB->getName()
    549                  << "' - overdefined because inst def found.\n");
    550 
    551     BBLV.markOverdefined();
    552     return ODCacheUpdater.markResult(true);
    553   }
    554 
    555   return ODCacheUpdater.markResult(solveBlockValueConstantRange(BBLV, BBI, BB));
    556 }
    557 
    558 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
    559   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
    560     return L->getPointerAddressSpace() == 0 &&
    561         GetUnderlyingObject(L->getPointerOperand()) == Ptr;
    562   }
    563   if (StoreInst *S = dyn_cast<StoreInst>(I)) {
    564     return S->getPointerAddressSpace() == 0 &&
    565         GetUnderlyingObject(S->getPointerOperand()) == Ptr;
    566   }
    567   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
    568     if (MI->isVolatile()) return false;
    569 
    570     // FIXME: check whether it has a valuerange that excludes zero?
    571     ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
    572     if (!Len || Len->isZero()) return false;
    573 
    574     if (MI->getDestAddressSpace() == 0)
    575       if (GetUnderlyingObject(MI->getRawDest()) == Ptr)
    576         return true;
    577     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
    578       if (MTI->getSourceAddressSpace() == 0)
    579         if (GetUnderlyingObject(MTI->getRawSource()) == Ptr)
    580           return true;
    581   }
    582   return false;
    583 }
    584 
    585 bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
    586                                                  Value *Val, BasicBlock *BB) {
    587   LVILatticeVal Result;  // Start Undefined.
    588 
    589   // If this is a pointer, and there's a load from that pointer in this BB,
    590   // then we know that the pointer can't be NULL.
    591   bool NotNull = false;
    592   if (Val->getType()->isPointerTy()) {
    593     if (isKnownNonNull(Val)) {
    594       NotNull = true;
    595     } else {
    596       Value *UnderlyingVal = GetUnderlyingObject(Val);
    597       // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
    598       // inside InstructionDereferencesPointer either.
    599       if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, nullptr, 1)) {
    600         for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
    601              BI != BE; ++BI) {
    602           if (InstructionDereferencesPointer(BI, UnderlyingVal)) {
    603             NotNull = true;
    604             break;
    605           }
    606         }
    607       }
    608     }
    609   }
    610 
    611   // If this is the entry block, we must be asking about an argument.  The
    612   // value is overdefined.
    613   if (BB == &BB->getParent()->getEntryBlock()) {
    614     assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
    615     if (NotNull) {
    616       PointerType *PTy = cast<PointerType>(Val->getType());
    617       Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
    618     } else {
    619       Result.markOverdefined();
    620     }
    621     BBLV = Result;
    622     return true;
    623   }
    624 
    625   // Loop over all of our predecessors, merging what we know from them into
    626   // result.
    627   bool EdgesMissing = false;
    628   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    629     LVILatticeVal EdgeResult;
    630     EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
    631     if (EdgesMissing)
    632       continue;
    633 
    634     Result.mergeIn(EdgeResult);
    635 
    636     // If we hit overdefined, exit early.  The BlockVals entry is already set
    637     // to overdefined.
    638     if (Result.isOverdefined()) {
    639       DEBUG(dbgs() << " compute BB '" << BB->getName()
    640             << "' - overdefined because of pred.\n");
    641       // If we previously determined that this is a pointer that can't be null
    642       // then return that rather than giving up entirely.
    643       if (NotNull) {
    644         PointerType *PTy = cast<PointerType>(Val->getType());
    645         Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
    646       }
    647 
    648       BBLV = Result;
    649       return true;
    650     }
    651   }
    652   if (EdgesMissing)
    653     return false;
    654 
    655   // Return the merged value, which is more precise than 'overdefined'.
    656   assert(!Result.isOverdefined());
    657   BBLV = Result;
    658   return true;
    659 }
    660 
    661 bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
    662                                                 PHINode *PN, BasicBlock *BB) {
    663   LVILatticeVal Result;  // Start Undefined.
    664 
    665   // Loop over all of our predecessors, merging what we know from them into
    666   // result.
    667   bool EdgesMissing = false;
    668   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    669     BasicBlock *PhiBB = PN->getIncomingBlock(i);
    670     Value *PhiVal = PN->getIncomingValue(i);
    671     LVILatticeVal EdgeResult;
    672     EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult);
    673     if (EdgesMissing)
    674       continue;
    675 
    676     Result.mergeIn(EdgeResult);
    677 
    678     // If we hit overdefined, exit early.  The BlockVals entry is already set
    679     // to overdefined.
    680     if (Result.isOverdefined()) {
    681       DEBUG(dbgs() << " compute BB '" << BB->getName()
    682             << "' - overdefined because of pred.\n");
    683 
    684       BBLV = Result;
    685       return true;
    686     }
    687   }
    688   if (EdgesMissing)
    689     return false;
    690 
    691   // Return the merged value, which is more precise than 'overdefined'.
    692   assert(!Result.isOverdefined() && "Possible PHI in entry block?");
    693   BBLV = Result;
    694   return true;
    695 }
    696 
    697 bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
    698                                                       Instruction *BBI,
    699                                                       BasicBlock *BB) {
    700   // Figure out the range of the LHS.  If that fails, bail.
    701   if (!hasBlockValue(BBI->getOperand(0), BB)) {
    702     BlockValueStack.push(std::make_pair(BB, BBI->getOperand(0)));
    703     return false;
    704   }
    705 
    706   LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
    707   if (!LHSVal.isConstantRange()) {
    708     BBLV.markOverdefined();
    709     return true;
    710   }
    711 
    712   ConstantRange LHSRange = LHSVal.getConstantRange();
    713   ConstantRange RHSRange(1);
    714   IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
    715   if (isa<BinaryOperator>(BBI)) {
    716     if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) {
    717       RHSRange = ConstantRange(RHS->getValue());
    718     } else {
    719       BBLV.markOverdefined();
    720       return true;
    721     }
    722   }
    723 
    724   // NOTE: We're currently limited by the set of operations that ConstantRange
    725   // can evaluate symbolically.  Enhancing that set will allows us to analyze
    726   // more definitions.
    727   LVILatticeVal Result;
    728   switch (BBI->getOpcode()) {
    729   case Instruction::Add:
    730     Result.markConstantRange(LHSRange.add(RHSRange));
    731     break;
    732   case Instruction::Sub:
    733     Result.markConstantRange(LHSRange.sub(RHSRange));
    734     break;
    735   case Instruction::Mul:
    736     Result.markConstantRange(LHSRange.multiply(RHSRange));
    737     break;
    738   case Instruction::UDiv:
    739     Result.markConstantRange(LHSRange.udiv(RHSRange));
    740     break;
    741   case Instruction::Shl:
    742     Result.markConstantRange(LHSRange.shl(RHSRange));
    743     break;
    744   case Instruction::LShr:
    745     Result.markConstantRange(LHSRange.lshr(RHSRange));
    746     break;
    747   case Instruction::Trunc:
    748     Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth()));
    749     break;
    750   case Instruction::SExt:
    751     Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth()));
    752     break;
    753   case Instruction::ZExt:
    754     Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth()));
    755     break;
    756   case Instruction::BitCast:
    757     Result.markConstantRange(LHSRange);
    758     break;
    759   case Instruction::And:
    760     Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
    761     break;
    762   case Instruction::Or:
    763     Result.markConstantRange(LHSRange.binaryOr(RHSRange));
    764     break;
    765 
    766   // Unhandled instructions are overdefined.
    767   default:
    768     DEBUG(dbgs() << " compute BB '" << BB->getName()
    769                  << "' - overdefined because inst def found.\n");
    770     Result.markOverdefined();
    771     break;
    772   }
    773 
    774   BBLV = Result;
    775   return true;
    776 }
    777 
    778 /// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
    779 /// Val is not constrained on the edge.
    780 static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
    781                               BasicBlock *BBTo, LVILatticeVal &Result) {
    782   // TODO: Handle more complex conditionals.  If (v == 0 || v2 < 1) is false, we
    783   // know that v != 0.
    784   if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
    785     // If this is a conditional branch and only one successor goes to BBTo, then
    786     // we maybe able to infer something from the condition.
    787     if (BI->isConditional() &&
    788         BI->getSuccessor(0) != BI->getSuccessor(1)) {
    789       bool isTrueDest = BI->getSuccessor(0) == BBTo;
    790       assert(BI->getSuccessor(!isTrueDest) == BBTo &&
    791              "BBTo isn't a successor of BBFrom");
    792 
    793       // If V is the condition of the branch itself, then we know exactly what
    794       // it is.
    795       if (BI->getCondition() == Val) {
    796         Result = LVILatticeVal::get(ConstantInt::get(
    797                               Type::getInt1Ty(Val->getContext()), isTrueDest));
    798         return true;
    799       }
    800 
    801       // If the condition of the branch is an equality comparison, we may be
    802       // able to infer the value.
    803       ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition());
    804       if (ICI && isa<Constant>(ICI->getOperand(1))) {
    805         if (ICI->isEquality() && ICI->getOperand(0) == Val) {
    806           // We know that V has the RHS constant if this is a true SETEQ or
    807           // false SETNE.
    808           if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
    809             Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
    810           else
    811             Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
    812           return true;
    813         }
    814 
    815         // Recognize the range checking idiom that InstCombine produces.
    816         // (X-C1) u< C2 --> [C1, C1+C2)
    817         ConstantInt *NegOffset = nullptr;
    818         if (ICI->getPredicate() == ICmpInst::ICMP_ULT)
    819           match(ICI->getOperand(0), m_Add(m_Specific(Val),
    820                                           m_ConstantInt(NegOffset)));
    821 
    822         ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1));
    823         if (CI && (ICI->getOperand(0) == Val || NegOffset)) {
    824           // Calculate the range of values that would satisfy the comparison.
    825           ConstantRange CmpRange(CI->getValue());
    826           ConstantRange TrueValues =
    827             ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange);
    828 
    829           if (NegOffset) // Apply the offset from above.
    830             TrueValues = TrueValues.subtract(NegOffset->getValue());
    831 
    832           // If we're interested in the false dest, invert the condition.
    833           if (!isTrueDest) TrueValues = TrueValues.inverse();
    834 
    835           Result = LVILatticeVal::getRange(TrueValues);
    836           return true;
    837         }
    838       }
    839     }
    840   }
    841 
    842   // If the edge was formed by a switch on the value, then we may know exactly
    843   // what it is.
    844   if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
    845     if (SI->getCondition() != Val)
    846       return false;
    847 
    848     bool DefaultCase = SI->getDefaultDest() == BBTo;
    849     unsigned BitWidth = Val->getType()->getIntegerBitWidth();
    850     ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
    851 
    852     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
    853          i != e; ++i) {
    854       ConstantRange EdgeVal(i.getCaseValue()->getValue());
    855       if (DefaultCase) {
    856         // It is possible that the default destination is the destination of
    857         // some cases. There is no need to perform difference for those cases.
    858         if (i.getCaseSuccessor() != BBTo)
    859           EdgesVals = EdgesVals.difference(EdgeVal);
    860       } else if (i.getCaseSuccessor() == BBTo)
    861         EdgesVals = EdgesVals.unionWith(EdgeVal);
    862     }
    863     Result = LVILatticeVal::getRange(EdgesVals);
    864     return true;
    865   }
    866   return false;
    867 }
    868 
    869 /// \brief Compute the value of Val on the edge BBFrom -> BBTo, or the value at
    870 /// the basic block if the edge does not constraint Val.
    871 bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
    872                                       BasicBlock *BBTo, LVILatticeVal &Result) {
    873   // If already a constant, there is nothing to compute.
    874   if (Constant *VC = dyn_cast<Constant>(Val)) {
    875     Result = LVILatticeVal::get(VC);
    876     return true;
    877   }
    878 
    879   if (getEdgeValueLocal(Val, BBFrom, BBTo, Result)) {
    880     if (!Result.isConstantRange() ||
    881       Result.getConstantRange().getSingleElement())
    882       return true;
    883 
    884     // FIXME: this check should be moved to the beginning of the function when
    885     // LVI better supports recursive values. Even for the single value case, we
    886     // can intersect to detect dead code (an empty range).
    887     if (!hasBlockValue(Val, BBFrom)) {
    888       BlockValueStack.push(std::make_pair(BBFrom, Val));
    889       return false;
    890     }
    891 
    892     // Try to intersect ranges of the BB and the constraint on the edge.
    893     LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
    894     if (!InBlock.isConstantRange())
    895       return true;
    896 
    897     ConstantRange Range =
    898       Result.getConstantRange().intersectWith(InBlock.getConstantRange());
    899     Result = LVILatticeVal::getRange(Range);
    900     return true;
    901   }
    902 
    903   if (!hasBlockValue(Val, BBFrom)) {
    904     BlockValueStack.push(std::make_pair(BBFrom, Val));
    905     return false;
    906   }
    907 
    908   // if we couldn't compute the value on the edge, use the value from the BB
    909   Result = getBlockValue(Val, BBFrom);
    910   return true;
    911 }
    912 
    913 LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) {
    914   DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
    915         << BB->getName() << "'\n");
    916 
    917   BlockValueStack.push(std::make_pair(BB, V));
    918   solve();
    919   LVILatticeVal Result = getBlockValue(V, BB);
    920 
    921   DEBUG(dbgs() << "  Result = " << Result << "\n");
    922   return Result;
    923 }
    924 
    925 LVILatticeVal LazyValueInfoCache::
    926 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) {
    927   DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
    928         << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
    929 
    930   LVILatticeVal Result;
    931   if (!getEdgeValue(V, FromBB, ToBB, Result)) {
    932     solve();
    933     bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result);
    934     (void)WasFastQuery;
    935     assert(WasFastQuery && "More work to do after problem solved?");
    936   }
    937 
    938   DEBUG(dbgs() << "  Result = " << Result << "\n");
    939   return Result;
    940 }
    941 
    942 void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
    943                                     BasicBlock *NewSucc) {
    944   // When an edge in the graph has been threaded, values that we could not
    945   // determine a value for before (i.e. were marked overdefined) may be possible
    946   // to solve now.  We do NOT try to proactively update these values.  Instead,
    947   // we clear their entries from the cache, and allow lazy updating to recompute
    948   // them when needed.
    949 
    950   // The updating process is fairly simple: we need to dropped cached info
    951   // for all values that were marked overdefined in OldSucc, and for those same
    952   // values in any successor of OldSucc (except NewSucc) in which they were
    953   // also marked overdefined.
    954   std::vector<BasicBlock*> worklist;
    955   worklist.push_back(OldSucc);
    956 
    957   DenseSet<Value*> ClearSet;
    958   for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(),
    959        E = OverDefinedCache.end(); I != E; ++I) {
    960     if (I->first == OldSucc)
    961       ClearSet.insert(I->second);
    962   }
    963 
    964   // Use a worklist to perform a depth-first search of OldSucc's successors.
    965   // NOTE: We do not need a visited list since any blocks we have already
    966   // visited will have had their overdefined markers cleared already, and we
    967   // thus won't loop to their successors.
    968   while (!worklist.empty()) {
    969     BasicBlock *ToUpdate = worklist.back();
    970     worklist.pop_back();
    971 
    972     // Skip blocks only accessible through NewSucc.
    973     if (ToUpdate == NewSucc) continue;
    974 
    975     bool changed = false;
    976     for (DenseSet<Value*>::iterator I = ClearSet.begin(), E = ClearSet.end();
    977          I != E; ++I) {
    978       // If a value was marked overdefined in OldSucc, and is here too...
    979       DenseSet<OverDefinedPairTy>::iterator OI =
    980         OverDefinedCache.find(std::make_pair(ToUpdate, *I));
    981       if (OI == OverDefinedCache.end()) continue;
    982 
    983       // Remove it from the caches.
    984       ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)];
    985       ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate);
    986 
    987       assert(CI != Entry.end() && "Couldn't find entry to update?");
    988       Entry.erase(CI);
    989       OverDefinedCache.erase(OI);
    990 
    991       // If we removed anything, then we potentially need to update
    992       // blocks successors too.
    993       changed = true;
    994     }
    995 
    996     if (!changed) continue;
    997 
    998     worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
    999   }
   1000 }
   1001 
   1002 //===----------------------------------------------------------------------===//
   1003 //                            LazyValueInfo Impl
   1004 //===----------------------------------------------------------------------===//
   1005 
   1006 /// getCache - This lazily constructs the LazyValueInfoCache.
   1007 static LazyValueInfoCache &getCache(void *&PImpl) {
   1008   if (!PImpl)
   1009     PImpl = new LazyValueInfoCache();
   1010   return *static_cast<LazyValueInfoCache*>(PImpl);
   1011 }
   1012 
   1013 bool LazyValueInfo::runOnFunction(Function &F) {
   1014   if (PImpl)
   1015     getCache(PImpl).clear();
   1016 
   1017   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
   1018   DL = DLP ? &DLP->getDataLayout() : nullptr;
   1019   TLI = &getAnalysis<TargetLibraryInfo>();
   1020 
   1021   // Fully lazy.
   1022   return false;
   1023 }
   1024 
   1025 void LazyValueInfo::getAnalysisUsage(AnalysisUsage &AU) const {
   1026   AU.setPreservesAll();
   1027   AU.addRequired<TargetLibraryInfo>();
   1028 }
   1029 
   1030 void LazyValueInfo::releaseMemory() {
   1031   // If the cache was allocated, free it.
   1032   if (PImpl) {
   1033     delete &getCache(PImpl);
   1034     PImpl = nullptr;
   1035   }
   1036 }
   1037 
   1038 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) {
   1039   LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB);
   1040 
   1041   if (Result.isConstant())
   1042     return Result.getConstant();
   1043   if (Result.isConstantRange()) {
   1044     ConstantRange CR = Result.getConstantRange();
   1045     if (const APInt *SingleVal = CR.getSingleElement())
   1046       return ConstantInt::get(V->getContext(), *SingleVal);
   1047   }
   1048   return nullptr;
   1049 }
   1050 
   1051 /// getConstantOnEdge - Determine whether the specified value is known to be a
   1052 /// constant on the specified edge.  Return null if not.
   1053 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
   1054                                            BasicBlock *ToBB) {
   1055   LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
   1056 
   1057   if (Result.isConstant())
   1058     return Result.getConstant();
   1059   if (Result.isConstantRange()) {
   1060     ConstantRange CR = Result.getConstantRange();
   1061     if (const APInt *SingleVal = CR.getSingleElement())
   1062       return ConstantInt::get(V->getContext(), *SingleVal);
   1063   }
   1064   return nullptr;
   1065 }
   1066 
   1067 /// getPredicateOnEdge - Determine whether the specified value comparison
   1068 /// with a constant is known to be true or false on the specified CFG edge.
   1069 /// Pred is a CmpInst predicate.
   1070 LazyValueInfo::Tristate
   1071 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
   1072                                   BasicBlock *FromBB, BasicBlock *ToBB) {
   1073   LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
   1074 
   1075   // If we know the value is a constant, evaluate the conditional.
   1076   Constant *Res = nullptr;
   1077   if (Result.isConstant()) {
   1078     Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, DL,
   1079                                           TLI);
   1080     if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
   1081       return ResCI->isZero() ? False : True;
   1082     return Unknown;
   1083   }
   1084 
   1085   if (Result.isConstantRange()) {
   1086     ConstantInt *CI = dyn_cast<ConstantInt>(C);
   1087     if (!CI) return Unknown;
   1088 
   1089     ConstantRange CR = Result.getConstantRange();
   1090     if (Pred == ICmpInst::ICMP_EQ) {
   1091       if (!CR.contains(CI->getValue()))
   1092         return False;
   1093 
   1094       if (CR.isSingleElement() && CR.contains(CI->getValue()))
   1095         return True;
   1096     } else if (Pred == ICmpInst::ICMP_NE) {
   1097       if (!CR.contains(CI->getValue()))
   1098         return True;
   1099 
   1100       if (CR.isSingleElement() && CR.contains(CI->getValue()))
   1101         return False;
   1102     }
   1103 
   1104     // Handle more complex predicates.
   1105     ConstantRange TrueValues =
   1106         ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue());
   1107     if (TrueValues.contains(CR))
   1108       return True;
   1109     if (TrueValues.inverse().contains(CR))
   1110       return False;
   1111     return Unknown;
   1112   }
   1113 
   1114   if (Result.isNotConstant()) {
   1115     // If this is an equality comparison, we can try to fold it knowing that
   1116     // "V != C1".
   1117     if (Pred == ICmpInst::ICMP_EQ) {
   1118       // !C1 == C -> false iff C1 == C.
   1119       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
   1120                                             Result.getNotConstant(), C, DL,
   1121                                             TLI);
   1122       if (Res->isNullValue())
   1123         return False;
   1124     } else if (Pred == ICmpInst::ICMP_NE) {
   1125       // !C1 != C -> true iff C1 == C.
   1126       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
   1127                                             Result.getNotConstant(), C, DL,
   1128                                             TLI);
   1129       if (Res->isNullValue())
   1130         return True;
   1131     }
   1132     return Unknown;
   1133   }
   1134 
   1135   return Unknown;
   1136 }
   1137 
   1138 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
   1139                                BasicBlock *NewSucc) {
   1140   if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc);
   1141 }
   1142 
   1143 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
   1144   if (PImpl) getCache(PImpl).eraseBlock(BB);
   1145 }
   1146