1 //===-- LiveInterval.cpp - Live Interval Representation -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveRange and LiveInterval classes. Given some 11 // numbering of each the machine instructions an interval [i, j) is said to be a 12 // live range for register v if there is no instruction with number j' >= j 13 // such that v is live at j' and there is no instruction with number i' < i such 14 // that v is live at i'. In this implementation ranges can have holes, 15 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each 16 // individual segment is represented as an instance of LiveRange::Segment, 17 // and the whole range is represented as an instance of LiveRange. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/CodeGen/LiveInterval.h" 22 #include "RegisterCoalescer.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Target/TargetRegisterInfo.h" 31 #include <algorithm> 32 using namespace llvm; 33 34 LiveRange::iterator LiveRange::find(SlotIndex Pos) { 35 // This algorithm is basically std::upper_bound. 36 // Unfortunately, std::upper_bound cannot be used with mixed types until we 37 // adopt C++0x. Many libraries can do it, but not all. 38 if (empty() || Pos >= endIndex()) 39 return end(); 40 iterator I = begin(); 41 size_t Len = size(); 42 do { 43 size_t Mid = Len >> 1; 44 if (Pos < I[Mid].end) 45 Len = Mid; 46 else 47 I += Mid + 1, Len -= Mid + 1; 48 } while (Len); 49 return I; 50 } 51 52 VNInfo *LiveRange::createDeadDef(SlotIndex Def, 53 VNInfo::Allocator &VNInfoAllocator) { 54 assert(!Def.isDead() && "Cannot define a value at the dead slot"); 55 iterator I = find(Def); 56 if (I == end()) { 57 VNInfo *VNI = getNextValue(Def, VNInfoAllocator); 58 segments.push_back(Segment(Def, Def.getDeadSlot(), VNI)); 59 return VNI; 60 } 61 if (SlotIndex::isSameInstr(Def, I->start)) { 62 assert(I->valno->def == I->start && "Inconsistent existing value def"); 63 64 // It is possible to have both normal and early-clobber defs of the same 65 // register on an instruction. It doesn't make a lot of sense, but it is 66 // possible to specify in inline assembly. 67 // 68 // Just convert everything to early-clobber. 69 Def = std::min(Def, I->start); 70 if (Def != I->start) 71 I->start = I->valno->def = Def; 72 return I->valno; 73 } 74 assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def"); 75 VNInfo *VNI = getNextValue(Def, VNInfoAllocator); 76 segments.insert(I, Segment(Def, Def.getDeadSlot(), VNI)); 77 return VNI; 78 } 79 80 // overlaps - Return true if the intersection of the two live ranges is 81 // not empty. 82 // 83 // An example for overlaps(): 84 // 85 // 0: A = ... 86 // 4: B = ... 87 // 8: C = A + B ;; last use of A 88 // 89 // The live ranges should look like: 90 // 91 // A = [3, 11) 92 // B = [7, x) 93 // C = [11, y) 94 // 95 // A->overlaps(C) should return false since we want to be able to join 96 // A and C. 97 // 98 bool LiveRange::overlapsFrom(const LiveRange& other, 99 const_iterator StartPos) const { 100 assert(!empty() && "empty range"); 101 const_iterator i = begin(); 102 const_iterator ie = end(); 103 const_iterator j = StartPos; 104 const_iterator je = other.end(); 105 106 assert((StartPos->start <= i->start || StartPos == other.begin()) && 107 StartPos != other.end() && "Bogus start position hint!"); 108 109 if (i->start < j->start) { 110 i = std::upper_bound(i, ie, j->start); 111 if (i != begin()) --i; 112 } else if (j->start < i->start) { 113 ++StartPos; 114 if (StartPos != other.end() && StartPos->start <= i->start) { 115 assert(StartPos < other.end() && i < end()); 116 j = std::upper_bound(j, je, i->start); 117 if (j != other.begin()) --j; 118 } 119 } else { 120 return true; 121 } 122 123 if (j == je) return false; 124 125 while (i != ie) { 126 if (i->start > j->start) { 127 std::swap(i, j); 128 std::swap(ie, je); 129 } 130 131 if (i->end > j->start) 132 return true; 133 ++i; 134 } 135 136 return false; 137 } 138 139 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP, 140 const SlotIndexes &Indexes) const { 141 assert(!empty() && "empty range"); 142 if (Other.empty()) 143 return false; 144 145 // Use binary searches to find initial positions. 146 const_iterator I = find(Other.beginIndex()); 147 const_iterator IE = end(); 148 if (I == IE) 149 return false; 150 const_iterator J = Other.find(I->start); 151 const_iterator JE = Other.end(); 152 if (J == JE) 153 return false; 154 155 for (;;) { 156 // J has just been advanced to satisfy: 157 assert(J->end >= I->start); 158 // Check for an overlap. 159 if (J->start < I->end) { 160 // I and J are overlapping. Find the later start. 161 SlotIndex Def = std::max(I->start, J->start); 162 // Allow the overlap if Def is a coalescable copy. 163 if (Def.isBlock() || 164 !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) 165 return true; 166 } 167 // Advance the iterator that ends first to check for more overlaps. 168 if (J->end > I->end) { 169 std::swap(I, J); 170 std::swap(IE, JE); 171 } 172 // Advance J until J->end >= I->start. 173 do 174 if (++J == JE) 175 return false; 176 while (J->end < I->start); 177 } 178 } 179 180 /// overlaps - Return true if the live range overlaps an interval specified 181 /// by [Start, End). 182 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const { 183 assert(Start < End && "Invalid range"); 184 const_iterator I = std::lower_bound(begin(), end(), End); 185 return I != begin() && (--I)->end > Start; 186 } 187 188 189 /// ValNo is dead, remove it. If it is the largest value number, just nuke it 190 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so 191 /// it can be nuked later. 192 void LiveRange::markValNoForDeletion(VNInfo *ValNo) { 193 if (ValNo->id == getNumValNums()-1) { 194 do { 195 valnos.pop_back(); 196 } while (!valnos.empty() && valnos.back()->isUnused()); 197 } else { 198 ValNo->markUnused(); 199 } 200 } 201 202 /// RenumberValues - Renumber all values in order of appearance and delete the 203 /// remaining unused values. 204 void LiveRange::RenumberValues() { 205 SmallPtrSet<VNInfo*, 8> Seen; 206 valnos.clear(); 207 for (const_iterator I = begin(), E = end(); I != E; ++I) { 208 VNInfo *VNI = I->valno; 209 if (!Seen.insert(VNI)) 210 continue; 211 assert(!VNI->isUnused() && "Unused valno used by live segment"); 212 VNI->id = (unsigned)valnos.size(); 213 valnos.push_back(VNI); 214 } 215 } 216 217 /// This method is used when we want to extend the segment specified by I to end 218 /// at the specified endpoint. To do this, we should merge and eliminate all 219 /// segments that this will overlap with. The iterator is not invalidated. 220 void LiveRange::extendSegmentEndTo(iterator I, SlotIndex NewEnd) { 221 assert(I != end() && "Not a valid segment!"); 222 VNInfo *ValNo = I->valno; 223 224 // Search for the first segment that we can't merge with. 225 iterator MergeTo = std::next(I); 226 for (; MergeTo != end() && NewEnd >= MergeTo->end; ++MergeTo) { 227 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 228 } 229 230 // If NewEnd was in the middle of a segment, make sure to get its endpoint. 231 I->end = std::max(NewEnd, std::prev(MergeTo)->end); 232 233 // If the newly formed segment now touches the segment after it and if they 234 // have the same value number, merge the two segments into one segment. 235 if (MergeTo != end() && MergeTo->start <= I->end && 236 MergeTo->valno == ValNo) { 237 I->end = MergeTo->end; 238 ++MergeTo; 239 } 240 241 // Erase any dead segments. 242 segments.erase(std::next(I), MergeTo); 243 } 244 245 246 /// This method is used when we want to extend the segment specified by I to 247 /// start at the specified endpoint. To do this, we should merge and eliminate 248 /// all segments that this will overlap with. 249 LiveRange::iterator 250 LiveRange::extendSegmentStartTo(iterator I, SlotIndex NewStart) { 251 assert(I != end() && "Not a valid segment!"); 252 VNInfo *ValNo = I->valno; 253 254 // Search for the first segment that we can't merge with. 255 iterator MergeTo = I; 256 do { 257 if (MergeTo == begin()) { 258 I->start = NewStart; 259 segments.erase(MergeTo, I); 260 return I; 261 } 262 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 263 --MergeTo; 264 } while (NewStart <= MergeTo->start); 265 266 // If we start in the middle of another segment, just delete a range and 267 // extend that segment. 268 if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { 269 MergeTo->end = I->end; 270 } else { 271 // Otherwise, extend the segment right after. 272 ++MergeTo; 273 MergeTo->start = NewStart; 274 MergeTo->end = I->end; 275 } 276 277 segments.erase(std::next(MergeTo), std::next(I)); 278 return MergeTo; 279 } 280 281 LiveRange::iterator LiveRange::addSegmentFrom(Segment S, iterator From) { 282 SlotIndex Start = S.start, End = S.end; 283 iterator it = std::upper_bound(From, end(), Start); 284 285 // If the inserted segment starts in the middle or right at the end of 286 // another segment, just extend that segment to contain the segment of S. 287 if (it != begin()) { 288 iterator B = std::prev(it); 289 if (S.valno == B->valno) { 290 if (B->start <= Start && B->end >= Start) { 291 extendSegmentEndTo(B, End); 292 return B; 293 } 294 } else { 295 // Check to make sure that we are not overlapping two live segments with 296 // different valno's. 297 assert(B->end <= Start && 298 "Cannot overlap two segments with differing ValID's" 299 " (did you def the same reg twice in a MachineInstr?)"); 300 } 301 } 302 303 // Otherwise, if this segment ends in the middle of, or right next to, another 304 // segment, merge it into that segment. 305 if (it != end()) { 306 if (S.valno == it->valno) { 307 if (it->start <= End) { 308 it = extendSegmentStartTo(it, Start); 309 310 // If S is a complete superset of a segment, we may need to grow its 311 // endpoint as well. 312 if (End > it->end) 313 extendSegmentEndTo(it, End); 314 return it; 315 } 316 } else { 317 // Check to make sure that we are not overlapping two live segments with 318 // different valno's. 319 assert(it->start >= End && 320 "Cannot overlap two segments with differing ValID's"); 321 } 322 } 323 324 // Otherwise, this is just a new segment that doesn't interact with anything. 325 // Insert it. 326 return segments.insert(it, S); 327 } 328 329 /// extendInBlock - If this range is live before Kill in the basic 330 /// block that starts at StartIdx, extend it to be live up to Kill and return 331 /// the value. If there is no live range before Kill, return NULL. 332 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { 333 if (empty()) 334 return nullptr; 335 iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot()); 336 if (I == begin()) 337 return nullptr; 338 --I; 339 if (I->end <= StartIdx) 340 return nullptr; 341 if (I->end < Kill) 342 extendSegmentEndTo(I, Kill); 343 return I->valno; 344 } 345 346 /// Remove the specified segment from this range. Note that the segment must 347 /// be in a single Segment in its entirety. 348 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End, 349 bool RemoveDeadValNo) { 350 // Find the Segment containing this span. 351 iterator I = find(Start); 352 assert(I != end() && "Segment is not in range!"); 353 assert(I->containsInterval(Start, End) 354 && "Segment is not entirely in range!"); 355 356 // If the span we are removing is at the start of the Segment, adjust it. 357 VNInfo *ValNo = I->valno; 358 if (I->start == Start) { 359 if (I->end == End) { 360 if (RemoveDeadValNo) { 361 // Check if val# is dead. 362 bool isDead = true; 363 for (const_iterator II = begin(), EE = end(); II != EE; ++II) 364 if (II != I && II->valno == ValNo) { 365 isDead = false; 366 break; 367 } 368 if (isDead) { 369 // Now that ValNo is dead, remove it. 370 markValNoForDeletion(ValNo); 371 } 372 } 373 374 segments.erase(I); // Removed the whole Segment. 375 } else 376 I->start = End; 377 return; 378 } 379 380 // Otherwise if the span we are removing is at the end of the Segment, 381 // adjust the other way. 382 if (I->end == End) { 383 I->end = Start; 384 return; 385 } 386 387 // Otherwise, we are splitting the Segment into two pieces. 388 SlotIndex OldEnd = I->end; 389 I->end = Start; // Trim the old segment. 390 391 // Insert the new one. 392 segments.insert(std::next(I), Segment(End, OldEnd, ValNo)); 393 } 394 395 /// removeValNo - Remove all the segments defined by the specified value#. 396 /// Also remove the value# from value# list. 397 void LiveRange::removeValNo(VNInfo *ValNo) { 398 if (empty()) return; 399 iterator I = end(); 400 iterator E = begin(); 401 do { 402 --I; 403 if (I->valno == ValNo) 404 segments.erase(I); 405 } while (I != E); 406 // Now that ValNo is dead, remove it. 407 markValNoForDeletion(ValNo); 408 } 409 410 void LiveRange::join(LiveRange &Other, 411 const int *LHSValNoAssignments, 412 const int *RHSValNoAssignments, 413 SmallVectorImpl<VNInfo *> &NewVNInfo) { 414 verify(); 415 416 // Determine if any of our values are mapped. This is uncommon, so we want 417 // to avoid the range scan if not. 418 bool MustMapCurValNos = false; 419 unsigned NumVals = getNumValNums(); 420 unsigned NumNewVals = NewVNInfo.size(); 421 for (unsigned i = 0; i != NumVals; ++i) { 422 unsigned LHSValID = LHSValNoAssignments[i]; 423 if (i != LHSValID || 424 (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { 425 MustMapCurValNos = true; 426 break; 427 } 428 } 429 430 // If we have to apply a mapping to our base range assignment, rewrite it now. 431 if (MustMapCurValNos && !empty()) { 432 // Map the first live range. 433 434 iterator OutIt = begin(); 435 OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; 436 for (iterator I = std::next(OutIt), E = end(); I != E; ++I) { 437 VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; 438 assert(nextValNo && "Huh?"); 439 440 // If this live range has the same value # as its immediate predecessor, 441 // and if they are neighbors, remove one Segment. This happens when we 442 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. 443 if (OutIt->valno == nextValNo && OutIt->end == I->start) { 444 OutIt->end = I->end; 445 } else { 446 // Didn't merge. Move OutIt to the next segment, 447 ++OutIt; 448 OutIt->valno = nextValNo; 449 if (OutIt != I) { 450 OutIt->start = I->start; 451 OutIt->end = I->end; 452 } 453 } 454 } 455 // If we merge some segments, chop off the end. 456 ++OutIt; 457 segments.erase(OutIt, end()); 458 } 459 460 // Rewrite Other values before changing the VNInfo ids. 461 // This can leave Other in an invalid state because we're not coalescing 462 // touching segments that now have identical values. That's OK since Other is 463 // not supposed to be valid after calling join(); 464 for (iterator I = Other.begin(), E = Other.end(); I != E; ++I) 465 I->valno = NewVNInfo[RHSValNoAssignments[I->valno->id]]; 466 467 // Update val# info. Renumber them and make sure they all belong to this 468 // LiveRange now. Also remove dead val#'s. 469 unsigned NumValNos = 0; 470 for (unsigned i = 0; i < NumNewVals; ++i) { 471 VNInfo *VNI = NewVNInfo[i]; 472 if (VNI) { 473 if (NumValNos >= NumVals) 474 valnos.push_back(VNI); 475 else 476 valnos[NumValNos] = VNI; 477 VNI->id = NumValNos++; // Renumber val#. 478 } 479 } 480 if (NumNewVals < NumVals) 481 valnos.resize(NumNewVals); // shrinkify 482 483 // Okay, now insert the RHS live segments into the LHS. 484 LiveRangeUpdater Updater(this); 485 for (iterator I = Other.begin(), E = Other.end(); I != E; ++I) 486 Updater.add(*I); 487 } 488 489 /// Merge all of the segments in RHS into this live range as the specified 490 /// value number. The segments in RHS are allowed to overlap with segments in 491 /// the current range, but only if the overlapping segments have the 492 /// specified value number. 493 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS, 494 VNInfo *LHSValNo) { 495 LiveRangeUpdater Updater(this); 496 for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) 497 Updater.add(I->start, I->end, LHSValNo); 498 } 499 500 /// MergeValueInAsValue - Merge all of the live segments of a specific val# 501 /// in RHS into this live range as the specified value number. 502 /// The segments in RHS are allowed to overlap with segments in the 503 /// current range, it will replace the value numbers of the overlaped 504 /// segments with the specified value number. 505 void LiveRange::MergeValueInAsValue(const LiveRange &RHS, 506 const VNInfo *RHSValNo, 507 VNInfo *LHSValNo) { 508 LiveRangeUpdater Updater(this); 509 for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) 510 if (I->valno == RHSValNo) 511 Updater.add(I->start, I->end, LHSValNo); 512 } 513 514 /// MergeValueNumberInto - This method is called when two value nubmers 515 /// are found to be equivalent. This eliminates V1, replacing all 516 /// segments with the V1 value number with the V2 value number. This can 517 /// cause merging of V1/V2 values numbers and compaction of the value space. 518 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { 519 assert(V1 != V2 && "Identical value#'s are always equivalent!"); 520 521 // This code actually merges the (numerically) larger value number into the 522 // smaller value number, which is likely to allow us to compactify the value 523 // space. The only thing we have to be careful of is to preserve the 524 // instruction that defines the result value. 525 526 // Make sure V2 is smaller than V1. 527 if (V1->id < V2->id) { 528 V1->copyFrom(*V2); 529 std::swap(V1, V2); 530 } 531 532 // Merge V1 segments into V2. 533 for (iterator I = begin(); I != end(); ) { 534 iterator S = I++; 535 if (S->valno != V1) continue; // Not a V1 Segment. 536 537 // Okay, we found a V1 live range. If it had a previous, touching, V2 live 538 // range, extend it. 539 if (S != begin()) { 540 iterator Prev = S-1; 541 if (Prev->valno == V2 && Prev->end == S->start) { 542 Prev->end = S->end; 543 544 // Erase this live-range. 545 segments.erase(S); 546 I = Prev+1; 547 S = Prev; 548 } 549 } 550 551 // Okay, now we have a V1 or V2 live range that is maximally merged forward. 552 // Ensure that it is a V2 live-range. 553 S->valno = V2; 554 555 // If we can merge it into later V2 segments, do so now. We ignore any 556 // following V1 segments, as they will be merged in subsequent iterations 557 // of the loop. 558 if (I != end()) { 559 if (I->start == S->end && I->valno == V2) { 560 S->end = I->end; 561 segments.erase(I); 562 I = S+1; 563 } 564 } 565 } 566 567 // Now that V1 is dead, remove it. 568 markValNoForDeletion(V1); 569 570 return V2; 571 } 572 573 unsigned LiveInterval::getSize() const { 574 unsigned Sum = 0; 575 for (const_iterator I = begin(), E = end(); I != E; ++I) 576 Sum += I->start.distance(I->end); 577 return Sum; 578 } 579 580 raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) { 581 return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")"; 582 } 583 584 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 585 void LiveRange::Segment::dump() const { 586 dbgs() << *this << "\n"; 587 } 588 #endif 589 590 void LiveRange::print(raw_ostream &OS) const { 591 if (empty()) 592 OS << "EMPTY"; 593 else { 594 for (const_iterator I = begin(), E = end(); I != E; ++I) { 595 OS << *I; 596 assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo"); 597 } 598 } 599 600 // Print value number info. 601 if (getNumValNums()) { 602 OS << " "; 603 unsigned vnum = 0; 604 for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; 605 ++i, ++vnum) { 606 const VNInfo *vni = *i; 607 if (vnum) OS << " "; 608 OS << vnum << "@"; 609 if (vni->isUnused()) { 610 OS << "x"; 611 } else { 612 OS << vni->def; 613 if (vni->isPHIDef()) 614 OS << "-phi"; 615 } 616 } 617 } 618 } 619 620 void LiveInterval::print(raw_ostream &OS) const { 621 OS << PrintReg(reg) << ' '; 622 super::print(OS); 623 } 624 625 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 626 void LiveRange::dump() const { 627 dbgs() << *this << "\n"; 628 } 629 630 void LiveInterval::dump() const { 631 dbgs() << *this << "\n"; 632 } 633 #endif 634 635 #ifndef NDEBUG 636 void LiveRange::verify() const { 637 for (const_iterator I = begin(), E = end(); I != E; ++I) { 638 assert(I->start.isValid()); 639 assert(I->end.isValid()); 640 assert(I->start < I->end); 641 assert(I->valno != nullptr); 642 assert(I->valno->id < valnos.size()); 643 assert(I->valno == valnos[I->valno->id]); 644 if (std::next(I) != E) { 645 assert(I->end <= std::next(I)->start); 646 if (I->end == std::next(I)->start) 647 assert(I->valno != std::next(I)->valno); 648 } 649 } 650 } 651 #endif 652 653 654 //===----------------------------------------------------------------------===// 655 // LiveRangeUpdater class 656 //===----------------------------------------------------------------------===// 657 // 658 // The LiveRangeUpdater class always maintains these invariants: 659 // 660 // - When LastStart is invalid, Spills is empty and the iterators are invalid. 661 // This is the initial state, and the state created by flush(). 662 // In this state, isDirty() returns false. 663 // 664 // Otherwise, segments are kept in three separate areas: 665 // 666 // 1. [begin; WriteI) at the front of LR. 667 // 2. [ReadI; end) at the back of LR. 668 // 3. Spills. 669 // 670 // - LR.begin() <= WriteI <= ReadI <= LR.end(). 671 // - Segments in all three areas are fully ordered and coalesced. 672 // - Segments in area 1 precede and can't coalesce with segments in area 2. 673 // - Segments in Spills precede and can't coalesce with segments in area 2. 674 // - No coalescing is possible between segments in Spills and segments in area 675 // 1, and there are no overlapping segments. 676 // 677 // The segments in Spills are not ordered with respect to the segments in area 678 // 1. They need to be merged. 679 // 680 // When they exist, Spills.back().start <= LastStart, 681 // and WriteI[-1].start <= LastStart. 682 683 void LiveRangeUpdater::print(raw_ostream &OS) const { 684 if (!isDirty()) { 685 if (LR) 686 OS << "Clean updater: " << *LR << '\n'; 687 else 688 OS << "Null updater.\n"; 689 return; 690 } 691 assert(LR && "Can't have null LR in dirty updater."); 692 OS << " updater with gap = " << (ReadI - WriteI) 693 << ", last start = " << LastStart 694 << ":\n Area 1:"; 695 for (LiveRange::const_iterator I = LR->begin(); I != WriteI; ++I) 696 OS << ' ' << *I; 697 OS << "\n Spills:"; 698 for (unsigned I = 0, E = Spills.size(); I != E; ++I) 699 OS << ' ' << Spills[I]; 700 OS << "\n Area 2:"; 701 for (LiveRange::const_iterator I = ReadI, E = LR->end(); I != E; ++I) 702 OS << ' ' << *I; 703 OS << '\n'; 704 } 705 706 void LiveRangeUpdater::dump() const 707 { 708 print(errs()); 709 } 710 711 // Determine if A and B should be coalesced. 712 static inline bool coalescable(const LiveRange::Segment &A, 713 const LiveRange::Segment &B) { 714 assert(A.start <= B.start && "Unordered live segments."); 715 if (A.end == B.start) 716 return A.valno == B.valno; 717 if (A.end < B.start) 718 return false; 719 assert(A.valno == B.valno && "Cannot overlap different values"); 720 return true; 721 } 722 723 void LiveRangeUpdater::add(LiveRange::Segment Seg) { 724 assert(LR && "Cannot add to a null destination"); 725 726 // Flush the state if Start moves backwards. 727 if (!LastStart.isValid() || LastStart > Seg.start) { 728 if (isDirty()) 729 flush(); 730 // This brings us to an uninitialized state. Reinitialize. 731 assert(Spills.empty() && "Leftover spilled segments"); 732 WriteI = ReadI = LR->begin(); 733 } 734 735 // Remember start for next time. 736 LastStart = Seg.start; 737 738 // Advance ReadI until it ends after Seg.start. 739 LiveRange::iterator E = LR->end(); 740 if (ReadI != E && ReadI->end <= Seg.start) { 741 // First try to close the gap between WriteI and ReadI with spills. 742 if (ReadI != WriteI) 743 mergeSpills(); 744 // Then advance ReadI. 745 if (ReadI == WriteI) 746 ReadI = WriteI = LR->find(Seg.start); 747 else 748 while (ReadI != E && ReadI->end <= Seg.start) 749 *WriteI++ = *ReadI++; 750 } 751 752 assert(ReadI == E || ReadI->end > Seg.start); 753 754 // Check if the ReadI segment begins early. 755 if (ReadI != E && ReadI->start <= Seg.start) { 756 assert(ReadI->valno == Seg.valno && "Cannot overlap different values"); 757 // Bail if Seg is completely contained in ReadI. 758 if (ReadI->end >= Seg.end) 759 return; 760 // Coalesce into Seg. 761 Seg.start = ReadI->start; 762 ++ReadI; 763 } 764 765 // Coalesce as much as possible from ReadI into Seg. 766 while (ReadI != E && coalescable(Seg, *ReadI)) { 767 Seg.end = std::max(Seg.end, ReadI->end); 768 ++ReadI; 769 } 770 771 // Try coalescing Spills.back() into Seg. 772 if (!Spills.empty() && coalescable(Spills.back(), Seg)) { 773 Seg.start = Spills.back().start; 774 Seg.end = std::max(Spills.back().end, Seg.end); 775 Spills.pop_back(); 776 } 777 778 // Try coalescing Seg into WriteI[-1]. 779 if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) { 780 WriteI[-1].end = std::max(WriteI[-1].end, Seg.end); 781 return; 782 } 783 784 // Seg doesn't coalesce with anything, and needs to be inserted somewhere. 785 if (WriteI != ReadI) { 786 *WriteI++ = Seg; 787 return; 788 } 789 790 // Finally, append to LR or Spills. 791 if (WriteI == E) { 792 LR->segments.push_back(Seg); 793 WriteI = ReadI = LR->end(); 794 } else 795 Spills.push_back(Seg); 796 } 797 798 // Merge as many spilled segments as possible into the gap between WriteI 799 // and ReadI. Advance WriteI to reflect the inserted instructions. 800 void LiveRangeUpdater::mergeSpills() { 801 // Perform a backwards merge of Spills and [SpillI;WriteI). 802 size_t GapSize = ReadI - WriteI; 803 size_t NumMoved = std::min(Spills.size(), GapSize); 804 LiveRange::iterator Src = WriteI; 805 LiveRange::iterator Dst = Src + NumMoved; 806 LiveRange::iterator SpillSrc = Spills.end(); 807 LiveRange::iterator B = LR->begin(); 808 809 // This is the new WriteI position after merging spills. 810 WriteI = Dst; 811 812 // Now merge Src and Spills backwards. 813 while (Src != Dst) { 814 if (Src != B && Src[-1].start > SpillSrc[-1].start) 815 *--Dst = *--Src; 816 else 817 *--Dst = *--SpillSrc; 818 } 819 assert(NumMoved == size_t(Spills.end() - SpillSrc)); 820 Spills.erase(SpillSrc, Spills.end()); 821 } 822 823 void LiveRangeUpdater::flush() { 824 if (!isDirty()) 825 return; 826 // Clear the dirty state. 827 LastStart = SlotIndex(); 828 829 assert(LR && "Cannot add to a null destination"); 830 831 // Nothing to merge? 832 if (Spills.empty()) { 833 LR->segments.erase(WriteI, ReadI); 834 LR->verify(); 835 return; 836 } 837 838 // Resize the WriteI - ReadI gap to match Spills. 839 size_t GapSize = ReadI - WriteI; 840 if (GapSize < Spills.size()) { 841 // The gap is too small. Make some room. 842 size_t WritePos = WriteI - LR->begin(); 843 LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment()); 844 // This also invalidated ReadI, but it is recomputed below. 845 WriteI = LR->begin() + WritePos; 846 } else { 847 // Shrink the gap if necessary. 848 LR->segments.erase(WriteI + Spills.size(), ReadI); 849 } 850 ReadI = WriteI + Spills.size(); 851 mergeSpills(); 852 LR->verify(); 853 } 854 855 unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) { 856 // Create initial equivalence classes. 857 EqClass.clear(); 858 EqClass.grow(LI->getNumValNums()); 859 860 const VNInfo *used = nullptr, *unused = nullptr; 861 862 // Determine connections. 863 for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end(); 864 I != E; ++I) { 865 const VNInfo *VNI = *I; 866 // Group all unused values into one class. 867 if (VNI->isUnused()) { 868 if (unused) 869 EqClass.join(unused->id, VNI->id); 870 unused = VNI; 871 continue; 872 } 873 used = VNI; 874 if (VNI->isPHIDef()) { 875 const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 876 assert(MBB && "Phi-def has no defining MBB"); 877 // Connect to values live out of predecessors. 878 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 879 PE = MBB->pred_end(); PI != PE; ++PI) 880 if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI))) 881 EqClass.join(VNI->id, PVNI->id); 882 } else { 883 // Normal value defined by an instruction. Check for two-addr redef. 884 // FIXME: This could be coincidental. Should we really check for a tied 885 // operand constraint? 886 // Note that VNI->def may be a use slot for an early clobber def. 887 if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def)) 888 EqClass.join(VNI->id, UVNI->id); 889 } 890 } 891 892 // Lump all the unused values in with the last used value. 893 if (used && unused) 894 EqClass.join(used->id, unused->id); 895 896 EqClass.compress(); 897 return EqClass.getNumClasses(); 898 } 899 900 void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[], 901 MachineRegisterInfo &MRI) { 902 assert(LIV[0] && "LIV[0] must be set"); 903 LiveInterval &LI = *LIV[0]; 904 905 // Rewrite instructions. 906 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg), 907 RE = MRI.reg_end(); RI != RE;) { 908 MachineOperand &MO = *RI; 909 MachineInstr *MI = RI->getParent(); 910 ++RI; 911 // DBG_VALUE instructions don't have slot indexes, so get the index of the 912 // instruction before them. 913 // Normally, DBG_VALUE instructions are removed before this function is 914 // called, but it is not a requirement. 915 SlotIndex Idx; 916 if (MI->isDebugValue()) 917 Idx = LIS.getSlotIndexes()->getIndexBefore(MI); 918 else 919 Idx = LIS.getInstructionIndex(MI); 920 LiveQueryResult LRQ = LI.Query(Idx); 921 const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); 922 // In the case of an <undef> use that isn't tied to any def, VNI will be 923 // NULL. If the use is tied to a def, VNI will be the defined value. 924 if (!VNI) 925 continue; 926 MO.setReg(LIV[getEqClass(VNI)]->reg); 927 } 928 929 // Move runs to new intervals. 930 LiveInterval::iterator J = LI.begin(), E = LI.end(); 931 while (J != E && EqClass[J->valno->id] == 0) 932 ++J; 933 for (LiveInterval::iterator I = J; I != E; ++I) { 934 if (unsigned eq = EqClass[I->valno->id]) { 935 assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) && 936 "New intervals should be empty"); 937 LIV[eq]->segments.push_back(*I); 938 } else 939 *J++ = *I; 940 } 941 LI.segments.erase(J, E); 942 943 // Transfer VNInfos to their new owners and renumber them. 944 unsigned j = 0, e = LI.getNumValNums(); 945 while (j != e && EqClass[j] == 0) 946 ++j; 947 for (unsigned i = j; i != e; ++i) { 948 VNInfo *VNI = LI.getValNumInfo(i); 949 if (unsigned eq = EqClass[i]) { 950 VNI->id = LIV[eq]->getNumValNums(); 951 LIV[eq]->valnos.push_back(VNI); 952 } else { 953 VNI->id = j; 954 LI.valnos[j++] = VNI; 955 } 956 } 957 LI.valnos.resize(j); 958 } 959