Home | History | Annotate | Download | only in AArch64
      1 //===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 // When profitable, replace GPR targeting i64 instructions with their
     10 // AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined
     11 // as minimizing the number of cross-class register copies.
     12 //===----------------------------------------------------------------------===//
     13 
     14 //===----------------------------------------------------------------------===//
     15 // TODO: Graph based predicate heuristics.
     16 // Walking the instruction list linearly will get many, perhaps most, of
     17 // the cases, but to do a truly thorough job of this, we need a more
     18 // wholistic approach.
     19 //
     20 // This optimization is very similar in spirit to the register allocator's
     21 // spill placement, only here we're determining where to place cross-class
     22 // register copies rather than spills. As such, a similar approach is
     23 // called for.
     24 //
     25 // We want to build up a set of graphs of all instructions which are candidates
     26 // for transformation along with instructions which generate their inputs and
     27 // consume their outputs. For each edge in the graph, we assign a weight
     28 // based on whether there is a copy required there (weight zero if not) and
     29 // the block frequency of the block containing the defining or using
     30 // instruction, whichever is less. Our optimization is then a graph problem
     31 // to minimize the total weight of all the graphs, then transform instructions
     32 // and add or remove copy instructions as called for to implement the
     33 // solution.
     34 //===----------------------------------------------------------------------===//
     35 
     36 #include "AArch64.h"
     37 #include "AArch64InstrInfo.h"
     38 #include "AArch64RegisterInfo.h"
     39 #include "llvm/ADT/Statistic.h"
     40 #include "llvm/CodeGen/MachineFunctionPass.h"
     41 #include "llvm/CodeGen/MachineFunction.h"
     42 #include "llvm/CodeGen/MachineInstr.h"
     43 #include "llvm/CodeGen/MachineInstrBuilder.h"
     44 #include "llvm/CodeGen/MachineRegisterInfo.h"
     45 #include "llvm/Support/CommandLine.h"
     46 #include "llvm/Support/Debug.h"
     47 #include "llvm/Support/raw_ostream.h"
     48 using namespace llvm;
     49 
     50 #define DEBUG_TYPE "aarch64-simd-scalar"
     51 
     52 // Allow forcing all i64 operations with equivalent SIMD instructions to use
     53 // them. For stress-testing the transformation function.
     54 static cl::opt<bool>
     55 TransformAll("aarch64-simd-scalar-force-all",
     56              cl::desc("Force use of AdvSIMD scalar instructions everywhere"),
     57              cl::init(false), cl::Hidden);
     58 
     59 STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used");
     60 STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted");
     61 STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted");
     62 
     63 namespace {
     64 class AArch64AdvSIMDScalar : public MachineFunctionPass {
     65   MachineRegisterInfo *MRI;
     66   const AArch64InstrInfo *TII;
     67 
     68 private:
     69   // isProfitableToTransform - Predicate function to determine whether an
     70   // instruction should be transformed to its equivalent AdvSIMD scalar
     71   // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
     72   bool isProfitableToTransform(const MachineInstr *MI) const;
     73 
     74   // transformInstruction - Perform the transformation of an instruction
     75   // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
     76   // to be the correct register class, minimizing cross-class copies.
     77   void transformInstruction(MachineInstr *MI);
     78 
     79   // processMachineBasicBlock - Main optimzation loop.
     80   bool processMachineBasicBlock(MachineBasicBlock *MBB);
     81 
     82 public:
     83   static char ID; // Pass identification, replacement for typeid.
     84   explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID) {}
     85 
     86   bool runOnMachineFunction(MachineFunction &F) override;
     87 
     88   const char *getPassName() const override {
     89     return "AdvSIMD Scalar Operation Optimization";
     90   }
     91 
     92   void getAnalysisUsage(AnalysisUsage &AU) const override {
     93     AU.setPreservesCFG();
     94     MachineFunctionPass::getAnalysisUsage(AU);
     95   }
     96 };
     97 char AArch64AdvSIMDScalar::ID = 0;
     98 } // end anonymous namespace
     99 
    100 static bool isGPR64(unsigned Reg, unsigned SubReg,
    101                     const MachineRegisterInfo *MRI) {
    102   if (SubReg)
    103     return false;
    104   if (TargetRegisterInfo::isVirtualRegister(Reg))
    105     return MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::GPR64RegClass);
    106   return AArch64::GPR64RegClass.contains(Reg);
    107 }
    108 
    109 static bool isFPR64(unsigned Reg, unsigned SubReg,
    110                     const MachineRegisterInfo *MRI) {
    111   if (TargetRegisterInfo::isVirtualRegister(Reg))
    112     return (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR64RegClass) &&
    113             SubReg == 0) ||
    114            (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR128RegClass) &&
    115             SubReg == AArch64::dsub);
    116   // Physical register references just check the register class directly.
    117   return (AArch64::FPR64RegClass.contains(Reg) && SubReg == 0) ||
    118          (AArch64::FPR128RegClass.contains(Reg) && SubReg == AArch64::dsub);
    119 }
    120 
    121 // getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64
    122 // copy instruction. Return zero_reg if the instruction is not a copy.
    123 static unsigned getSrcFromCopy(const MachineInstr *MI,
    124                                const MachineRegisterInfo *MRI,
    125                                unsigned &SubReg) {
    126   SubReg = 0;
    127   // The "FMOV Xd, Dn" instruction is the typical form.
    128   if (MI->getOpcode() == AArch64::FMOVDXr ||
    129       MI->getOpcode() == AArch64::FMOVXDr)
    130     return MI->getOperand(1).getReg();
    131   // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see
    132   // these at this stage, but it's easy to check for.
    133   if (MI->getOpcode() == AArch64::UMOVvi64 && MI->getOperand(2).getImm() == 0) {
    134     SubReg = AArch64::dsub;
    135     return MI->getOperand(1).getReg();
    136   }
    137   // Or just a plain COPY instruction. This can be directly to/from FPR64,
    138   // or it can be a dsub subreg reference to an FPR128.
    139   if (MI->getOpcode() == AArch64::COPY) {
    140     if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
    141                 MRI) &&
    142         isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI))
    143       return MI->getOperand(1).getReg();
    144     if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
    145                 MRI) &&
    146         isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(),
    147                 MRI)) {
    148       SubReg = MI->getOperand(1).getSubReg();
    149       return MI->getOperand(1).getReg();
    150     }
    151   }
    152 
    153   // Otherwise, this is some other kind of instruction.
    154   return 0;
    155 }
    156 
    157 // getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent
    158 // that we're considering transforming to, return that AdvSIMD opcode. For all
    159 // others, return the original opcode.
    160 static int getTransformOpcode(unsigned Opc) {
    161   switch (Opc) {
    162   default:
    163     break;
    164   // FIXME: Lots more possibilities.
    165   case AArch64::ADDXrr:
    166     return AArch64::ADDv1i64;
    167   case AArch64::SUBXrr:
    168     return AArch64::SUBv1i64;
    169   }
    170   // No AdvSIMD equivalent, so just return the original opcode.
    171   return Opc;
    172 }
    173 
    174 static bool isTransformable(const MachineInstr *MI) {
    175   int Opc = MI->getOpcode();
    176   return Opc != getTransformOpcode(Opc);
    177 }
    178 
    179 // isProfitableToTransform - Predicate function to determine whether an
    180 // instruction should be transformed to its equivalent AdvSIMD scalar
    181 // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
    182 bool
    183 AArch64AdvSIMDScalar::isProfitableToTransform(const MachineInstr *MI) const {
    184   // If this instruction isn't eligible to be transformed (no SIMD equivalent),
    185   // early exit since that's the common case.
    186   if (!isTransformable(MI))
    187     return false;
    188 
    189   // Count the number of copies we'll need to add and approximate the number
    190   // of copies that a transform will enable us to remove.
    191   unsigned NumNewCopies = 3;
    192   unsigned NumRemovableCopies = 0;
    193 
    194   unsigned OrigSrc0 = MI->getOperand(1).getReg();
    195   unsigned OrigSrc1 = MI->getOperand(2).getReg();
    196   unsigned Src0 = 0, SubReg0;
    197   unsigned Src1 = 0, SubReg1;
    198   if (!MRI->def_empty(OrigSrc0)) {
    199     MachineRegisterInfo::def_instr_iterator Def =
    200         MRI->def_instr_begin(OrigSrc0);
    201     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
    202     Src0 = getSrcFromCopy(&*Def, MRI, SubReg0);
    203     // If the source was from a copy, we don't need to insert a new copy.
    204     if (Src0)
    205       --NumNewCopies;
    206     // If there are no other users of the original source, we can delete
    207     // that instruction.
    208     if (Src0 && MRI->hasOneNonDBGUse(OrigSrc0))
    209       ++NumRemovableCopies;
    210   }
    211   if (!MRI->def_empty(OrigSrc1)) {
    212     MachineRegisterInfo::def_instr_iterator Def =
    213         MRI->def_instr_begin(OrigSrc1);
    214     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
    215     Src1 = getSrcFromCopy(&*Def, MRI, SubReg1);
    216     if (Src1)
    217       --NumNewCopies;
    218     // If there are no other users of the original source, we can delete
    219     // that instruction.
    220     if (Src1 && MRI->hasOneNonDBGUse(OrigSrc1))
    221       ++NumRemovableCopies;
    222   }
    223 
    224   // If any of the uses of the original instructions is a cross class copy,
    225   // that's a copy that will be removable if we transform. Likewise, if
    226   // any of the uses is a transformable instruction, it's likely the tranforms
    227   // will chain, enabling us to save a copy there, too. This is an aggressive
    228   // heuristic that approximates the graph based cost analysis described above.
    229   unsigned Dst = MI->getOperand(0).getReg();
    230   bool AllUsesAreCopies = true;
    231   for (MachineRegisterInfo::use_instr_nodbg_iterator
    232            Use = MRI->use_instr_nodbg_begin(Dst),
    233            E = MRI->use_instr_nodbg_end();
    234        Use != E; ++Use) {
    235     unsigned SubReg;
    236     if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(&*Use))
    237       ++NumRemovableCopies;
    238     // If the use is an INSERT_SUBREG, that's still something that can
    239     // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's
    240     // preferable to have it use the FPR64 in most cases, as if the source
    241     // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely.
    242     // Ditto for a lane insert.
    243     else if (Use->getOpcode() == AArch64::INSERT_SUBREG ||
    244              Use->getOpcode() == AArch64::INSvi64gpr)
    245       ;
    246     else
    247       AllUsesAreCopies = false;
    248   }
    249   // If all of the uses of the original destination register are copies to
    250   // FPR64, then we won't end up having a new copy back to GPR64 either.
    251   if (AllUsesAreCopies)
    252     --NumNewCopies;
    253 
    254   // If a transform will not increase the number of cross-class copies required,
    255   // return true.
    256   if (NumNewCopies <= NumRemovableCopies)
    257     return true;
    258 
    259   // Finally, even if we otherwise wouldn't transform, check if we're forcing
    260   // transformation of everything.
    261   return TransformAll;
    262 }
    263 
    264 static MachineInstr *insertCopy(const AArch64InstrInfo *TII, MachineInstr *MI,
    265                                 unsigned Dst, unsigned Src, bool IsKill) {
    266   MachineInstrBuilder MIB =
    267       BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AArch64::COPY),
    268               Dst)
    269           .addReg(Src, getKillRegState(IsKill));
    270   DEBUG(dbgs() << "    adding copy: " << *MIB);
    271   ++NumCopiesInserted;
    272   return MIB;
    273 }
    274 
    275 // transformInstruction - Perform the transformation of an instruction
    276 // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
    277 // to be the correct register class, minimizing cross-class copies.
    278 void AArch64AdvSIMDScalar::transformInstruction(MachineInstr *MI) {
    279   DEBUG(dbgs() << "Scalar transform: " << *MI);
    280 
    281   MachineBasicBlock *MBB = MI->getParent();
    282   int OldOpc = MI->getOpcode();
    283   int NewOpc = getTransformOpcode(OldOpc);
    284   assert(OldOpc != NewOpc && "transform an instruction to itself?!");
    285 
    286   // Check if we need a copy for the source registers.
    287   unsigned OrigSrc0 = MI->getOperand(1).getReg();
    288   unsigned OrigSrc1 = MI->getOperand(2).getReg();
    289   unsigned Src0 = 0, SubReg0;
    290   unsigned Src1 = 0, SubReg1;
    291   if (!MRI->def_empty(OrigSrc0)) {
    292     MachineRegisterInfo::def_instr_iterator Def =
    293         MRI->def_instr_begin(OrigSrc0);
    294     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
    295     Src0 = getSrcFromCopy(&*Def, MRI, SubReg0);
    296     // If there are no other users of the original source, we can delete
    297     // that instruction.
    298     if (Src0 && MRI->hasOneNonDBGUse(OrigSrc0)) {
    299       assert(Src0 && "Can't delete copy w/o a valid original source!");
    300       Def->eraseFromParent();
    301       ++NumCopiesDeleted;
    302     }
    303   }
    304   if (!MRI->def_empty(OrigSrc1)) {
    305     MachineRegisterInfo::def_instr_iterator Def =
    306         MRI->def_instr_begin(OrigSrc1);
    307     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
    308     Src1 = getSrcFromCopy(&*Def, MRI, SubReg1);
    309     // If there are no other users of the original source, we can delete
    310     // that instruction.
    311     if (Src1 && MRI->hasOneNonDBGUse(OrigSrc1)) {
    312       assert(Src1 && "Can't delete copy w/o a valid original source!");
    313       Def->eraseFromParent();
    314       ++NumCopiesDeleted;
    315     }
    316   }
    317   // If we weren't able to reference the original source directly, create a
    318   // copy.
    319   if (!Src0) {
    320     SubReg0 = 0;
    321     Src0 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
    322     insertCopy(TII, MI, Src0, OrigSrc0, true);
    323   }
    324   if (!Src1) {
    325     SubReg1 = 0;
    326     Src1 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
    327     insertCopy(TII, MI, Src1, OrigSrc1, true);
    328   }
    329 
    330   // Create a vreg for the destination.
    331   // FIXME: No need to do this if the ultimate user expects an FPR64.
    332   // Check for that and avoid the copy if possible.
    333   unsigned Dst = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
    334 
    335   // For now, all of the new instructions have the same simple three-register
    336   // form, so no need to special case based on what instruction we're
    337   // building.
    338   BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(NewOpc), Dst)
    339       .addReg(Src0, getKillRegState(true), SubReg0)
    340       .addReg(Src1, getKillRegState(true), SubReg1);
    341 
    342   // Now copy the result back out to a GPR.
    343   // FIXME: Try to avoid this if all uses could actually just use the FPR64
    344   // directly.
    345   insertCopy(TII, MI, MI->getOperand(0).getReg(), Dst, true);
    346 
    347   // Erase the old instruction.
    348   MI->eraseFromParent();
    349 
    350   ++NumScalarInsnsUsed;
    351 }
    352 
    353 // processMachineBasicBlock - Main optimzation loop.
    354 bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) {
    355   bool Changed = false;
    356   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
    357     MachineInstr *MI = I;
    358     ++I;
    359     if (isProfitableToTransform(MI)) {
    360       transformInstruction(MI);
    361       Changed = true;
    362     }
    363   }
    364   return Changed;
    365 }
    366 
    367 // runOnMachineFunction - Pass entry point from PassManager.
    368 bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) {
    369   bool Changed = false;
    370   DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n");
    371 
    372   const TargetMachine &TM = mf.getTarget();
    373   MRI = &mf.getRegInfo();
    374   TII = static_cast<const AArch64InstrInfo *>(TM.getInstrInfo());
    375 
    376   // Just check things on a one-block-at-a-time basis.
    377   for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I)
    378     if (processMachineBasicBlock(I))
    379       Changed = true;
    380   return Changed;
    381 }
    382 
    383 // createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine
    384 // to add the pass to the PassManager.
    385 FunctionPass *llvm::createAArch64AdvSIMDScalar() {
    386   return new AArch64AdvSIMDScalar();
    387 }
    388