Home | History | Annotate | Download | only in X86
      1 //===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the pass which will find  instructions  which
     11 // can be re-written as LEA instructions in order to reduce pipeline
     12 // delays for some models of the Intel Atom family.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "X86.h"
     17 #include "X86InstrInfo.h"
     18 #include "X86Subtarget.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/CodeGen/LiveVariables.h"
     21 #include "llvm/CodeGen/MachineFunctionPass.h"
     22 #include "llvm/CodeGen/MachineInstrBuilder.h"
     23 #include "llvm/CodeGen/MachineRegisterInfo.h"
     24 #include "llvm/CodeGen/Passes.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include "llvm/Target/TargetInstrInfo.h"
     28 using namespace llvm;
     29 
     30 #define DEBUG_TYPE "x86-fixup-LEAs"
     31 
     32 STATISTIC(NumLEAs, "Number of LEA instructions created");
     33 
     34 namespace {
     35 class FixupLEAPass : public MachineFunctionPass {
     36   enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
     37   static char ID;
     38   /// \brief Loop over all of the instructions in the basic block
     39   /// replacing applicable instructions with LEA instructions,
     40   /// where appropriate.
     41   bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);
     42 
     43   const char *getPassName() const override { return "X86 Atom LEA Fixup"; }
     44 
     45   /// \brief Given a machine register, look for the instruction
     46   /// which writes it in the current basic block. If found,
     47   /// try to replace it with an equivalent LEA instruction.
     48   /// If replacement succeeds, then also process the the newly created
     49   /// instruction.
     50   void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
     51                     MachineFunction::iterator MFI);
     52 
     53   /// \brief Given a memory access or LEA instruction
     54   /// whose address mode uses a base and/or index register, look for
     55   /// an opportunity to replace the instruction which sets the base or index
     56   /// register with an equivalent LEA instruction.
     57   void processInstruction(MachineBasicBlock::iterator &I,
     58                           MachineFunction::iterator MFI);
     59 
     60   /// \brief Given a LEA instruction which is unprofitable
     61   /// on Silvermont try to replace it with an equivalent ADD instruction
     62   void processInstructionForSLM(MachineBasicBlock::iterator &I,
     63                                 MachineFunction::iterator MFI);
     64 
     65   /// \brief Determine if an instruction references a machine register
     66   /// and, if so, whether it reads or writes the register.
     67   RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
     68 
     69   /// \brief Step backwards through a basic block, looking
     70   /// for an instruction which writes a register within
     71   /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
     72   MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
     73                                               MachineBasicBlock::iterator &I,
     74                                               MachineFunction::iterator MFI);
     75 
     76   /// \brief if an instruction can be converted to an
     77   /// equivalent LEA, insert the new instruction into the basic block
     78   /// and return a pointer to it. Otherwise, return zero.
     79   MachineInstr *postRAConvertToLEA(MachineFunction::iterator &MFI,
     80                                    MachineBasicBlock::iterator &MBBI) const;
     81 
     82 public:
     83   FixupLEAPass() : MachineFunctionPass(ID) {}
     84 
     85   /// \brief Loop over all of the basic blocks,
     86   /// replacing instructions by equivalent LEA instructions
     87   /// if needed and when possible.
     88   bool runOnMachineFunction(MachineFunction &MF) override;
     89 
     90 private:
     91   MachineFunction *MF;
     92   const TargetMachine *TM;
     93   const X86InstrInfo *TII; // Machine instruction info.
     94 };
     95 char FixupLEAPass::ID = 0;
     96 }
     97 
     98 MachineInstr *
     99 FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
    100                                  MachineBasicBlock::iterator &MBBI) const {
    101   MachineInstr *MI = MBBI;
    102   MachineInstr *NewMI;
    103   switch (MI->getOpcode()) {
    104   case X86::MOV32rr:
    105   case X86::MOV64rr: {
    106     const MachineOperand &Src = MI->getOperand(1);
    107     const MachineOperand &Dest = MI->getOperand(0);
    108     NewMI = BuildMI(*MF, MI->getDebugLoc(),
    109                     TII->get(MI->getOpcode() == X86::MOV32rr ? X86::LEA32r
    110                                                              : X86::LEA64r))
    111                 .addOperand(Dest)
    112                 .addOperand(Src)
    113                 .addImm(1)
    114                 .addReg(0)
    115                 .addImm(0)
    116                 .addReg(0);
    117     MFI->insert(MBBI, NewMI); // Insert the new inst
    118     return NewMI;
    119   }
    120   case X86::ADD64ri32:
    121   case X86::ADD64ri8:
    122   case X86::ADD64ri32_DB:
    123   case X86::ADD64ri8_DB:
    124   case X86::ADD32ri:
    125   case X86::ADD32ri8:
    126   case X86::ADD32ri_DB:
    127   case X86::ADD32ri8_DB:
    128   case X86::ADD16ri:
    129   case X86::ADD16ri8:
    130   case X86::ADD16ri_DB:
    131   case X86::ADD16ri8_DB:
    132     if (!MI->getOperand(2).isImm()) {
    133       // convertToThreeAddress will call getImm()
    134       // which requires isImm() to be true
    135       return nullptr;
    136     }
    137     break;
    138   case X86::ADD16rr:
    139   case X86::ADD16rr_DB:
    140     if (MI->getOperand(1).getReg() != MI->getOperand(2).getReg()) {
    141       // if src1 != src2, then convertToThreeAddress will
    142       // need to create a Virtual register, which we cannot do
    143       // after register allocation.
    144       return nullptr;
    145     }
    146   }
    147   return TII->convertToThreeAddress(MFI, MBBI, nullptr);
    148 }
    149 
    150 FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
    151 
    152 bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
    153   MF = &Func;
    154   TM = &Func.getTarget();
    155   const X86Subtarget &ST = TM->getSubtarget<X86Subtarget>();
    156   if (!ST.LEAusesAG() && !ST.slowLEA())
    157     return false;
    158 
    159   TII = static_cast<const X86InstrInfo *>(TM->getInstrInfo());
    160 
    161   DEBUG(dbgs() << "Start X86FixupLEAs\n";);
    162   // Process all basic blocks.
    163   for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
    164     processBasicBlock(Func, I);
    165   DEBUG(dbgs() << "End X86FixupLEAs\n";);
    166 
    167   return true;
    168 }
    169 
    170 FixupLEAPass::RegUsageState
    171 FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
    172   RegUsageState RegUsage = RU_NotUsed;
    173   MachineInstr *MI = I;
    174 
    175   for (unsigned int i = 0; i < MI->getNumOperands(); ++i) {
    176     MachineOperand &opnd = MI->getOperand(i);
    177     if (opnd.isReg() && opnd.getReg() == p.getReg()) {
    178       if (opnd.isDef())
    179         return RU_Write;
    180       RegUsage = RU_Read;
    181     }
    182   }
    183   return RegUsage;
    184 }
    185 
    186 /// getPreviousInstr - Given a reference to an instruction in a basic
    187 /// block, return a reference to the previous instruction in the block,
    188 /// wrapping around to the last instruction of the block if the block
    189 /// branches to itself.
    190 static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
    191                                     MachineFunction::iterator MFI) {
    192   if (I == MFI->begin()) {
    193     if (MFI->isPredecessor(MFI)) {
    194       I = --MFI->end();
    195       return true;
    196     } else
    197       return false;
    198   }
    199   --I;
    200   return true;
    201 }
    202 
    203 MachineBasicBlock::iterator
    204 FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
    205                               MachineFunction::iterator MFI) {
    206   int InstrDistance = 1;
    207   MachineBasicBlock::iterator CurInst;
    208   static const int INSTR_DISTANCE_THRESHOLD = 5;
    209 
    210   CurInst = I;
    211   bool Found;
    212   Found = getPreviousInstr(CurInst, MFI);
    213   while (Found && I != CurInst) {
    214     if (CurInst->isCall() || CurInst->isInlineAsm())
    215       break;
    216     if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
    217       break; // too far back to make a difference
    218     if (usesRegister(p, CurInst) == RU_Write) {
    219       return CurInst;
    220     }
    221     InstrDistance += TII->getInstrLatency(TM->getInstrItineraryData(), CurInst);
    222     Found = getPreviousInstr(CurInst, MFI);
    223   }
    224   return nullptr;
    225 }
    226 
    227 void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
    228                                       MachineFunction::iterator MFI) {
    229   // Process a load, store, or LEA instruction.
    230   MachineInstr *MI = I;
    231   int opcode = MI->getOpcode();
    232   const MCInstrDesc &Desc = MI->getDesc();
    233   int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags, opcode);
    234   if (AddrOffset >= 0) {
    235     AddrOffset += X86II::getOperandBias(Desc);
    236     MachineOperand &p = MI->getOperand(AddrOffset + X86::AddrBaseReg);
    237     if (p.isReg() && p.getReg() != X86::ESP) {
    238       seekLEAFixup(p, I, MFI);
    239     }
    240     MachineOperand &q = MI->getOperand(AddrOffset + X86::AddrIndexReg);
    241     if (q.isReg() && q.getReg() != X86::ESP) {
    242       seekLEAFixup(q, I, MFI);
    243     }
    244   }
    245 }
    246 
    247 void FixupLEAPass::seekLEAFixup(MachineOperand &p,
    248                                 MachineBasicBlock::iterator &I,
    249                                 MachineFunction::iterator MFI) {
    250   MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
    251   if (MBI) {
    252     MachineInstr *NewMI = postRAConvertToLEA(MFI, MBI);
    253     if (NewMI) {
    254       ++NumLEAs;
    255       DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
    256       // now to replace with an equivalent LEA...
    257       DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
    258       MFI->erase(MBI);
    259       MachineBasicBlock::iterator J =
    260           static_cast<MachineBasicBlock::iterator>(NewMI);
    261       processInstruction(J, MFI);
    262     }
    263   }
    264 }
    265 
    266 void FixupLEAPass::processInstructionForSLM(MachineBasicBlock::iterator &I,
    267                                             MachineFunction::iterator MFI) {
    268   MachineInstr *MI = I;
    269   const int opcode = MI->getOpcode();
    270   if (opcode != X86::LEA16r && opcode != X86::LEA32r && opcode != X86::LEA64r &&
    271       opcode != X86::LEA64_32r)
    272     return;
    273   if (MI->getOperand(5).getReg() != 0 || !MI->getOperand(4).isImm() ||
    274       !TII->isSafeToClobberEFLAGS(*MFI, I))
    275     return;
    276   const unsigned DstR = MI->getOperand(0).getReg();
    277   const unsigned SrcR1 = MI->getOperand(1).getReg();
    278   const unsigned SrcR2 = MI->getOperand(3).getReg();
    279   if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
    280     return;
    281   if (MI->getOperand(2).getImm() > 1)
    282     return;
    283   int addrr_opcode, addri_opcode;
    284   switch (opcode) {
    285   case X86::LEA16r:
    286     addrr_opcode = X86::ADD16rr;
    287     addri_opcode = X86::ADD16ri;
    288     break;
    289   case X86::LEA32r:
    290     addrr_opcode = X86::ADD32rr;
    291     addri_opcode = X86::ADD32ri;
    292     break;
    293   case X86::LEA64_32r:
    294   case X86::LEA64r:
    295     addrr_opcode = X86::ADD64rr;
    296     addri_opcode = X86::ADD64ri32;
    297     break;
    298   default:
    299     assert(false && "Unexpected LEA instruction");
    300   }
    301   DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
    302   DEBUG(dbgs() << "FixLEA: Replaced by: ";);
    303   MachineInstr *NewMI = nullptr;
    304   const MachineOperand &Dst = MI->getOperand(0);
    305   // Make ADD instruction for two registers writing to LEA's destination
    306   if (SrcR1 != 0 && SrcR2 != 0) {
    307     const MachineOperand &Src1 = MI->getOperand(SrcR1 == DstR ? 1 : 3);
    308     const MachineOperand &Src2 = MI->getOperand(SrcR1 == DstR ? 3 : 1);
    309     NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addrr_opcode))
    310                 .addOperand(Dst)
    311                 .addOperand(Src1)
    312                 .addOperand(Src2);
    313     MFI->insert(I, NewMI);
    314     DEBUG(NewMI->dump(););
    315   }
    316   // Make ADD instruction for immediate
    317   if (MI->getOperand(4).getImm() != 0) {
    318     const MachineOperand &SrcR = MI->getOperand(SrcR1 == DstR ? 1 : 3);
    319     NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addri_opcode))
    320                 .addOperand(Dst)
    321                 .addOperand(SrcR)
    322                 .addImm(MI->getOperand(4).getImm());
    323     MFI->insert(I, NewMI);
    324     DEBUG(NewMI->dump(););
    325   }
    326   if (NewMI) {
    327     MFI->erase(I);
    328     I = static_cast<MachineBasicBlock::iterator>(NewMI);
    329   }
    330 }
    331 
    332 bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
    333                                      MachineFunction::iterator MFI) {
    334 
    335   for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
    336     if (TM->getSubtarget<X86Subtarget>().isSLM())
    337       processInstructionForSLM(I, MFI);
    338     else
    339       processInstruction(I, MFI);
    340   }
    341   return false;
    342 }
    343