Home | History | Annotate | Download | only in X86
      1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the X86 implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "X86InstrInfo.h"
     15 #include "X86.h"
     16 #include "X86InstrBuilder.h"
     17 #include "X86MachineFunctionInfo.h"
     18 #include "X86Subtarget.h"
     19 #include "X86TargetMachine.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/CodeGen/LiveVariables.h"
     22 #include "llvm/CodeGen/MachineConstantPool.h"
     23 #include "llvm/CodeGen/MachineDominators.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineInstrBuilder.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/CodeGen/StackMaps.h"
     28 #include "llvm/IR/DerivedTypes.h"
     29 #include "llvm/IR/LLVMContext.h"
     30 #include "llvm/MC/MCAsmInfo.h"
     31 #include "llvm/MC/MCExpr.h"
     32 #include "llvm/MC/MCInst.h"
     33 #include "llvm/Support/CommandLine.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/ErrorHandling.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 #include "llvm/Target/TargetOptions.h"
     38 #include <limits>
     39 
     40 using namespace llvm;
     41 
     42 #define DEBUG_TYPE "x86-instr-info"
     43 
     44 #define GET_INSTRINFO_CTOR_DTOR
     45 #include "X86GenInstrInfo.inc"
     46 
     47 static cl::opt<bool>
     48 NoFusing("disable-spill-fusing",
     49          cl::desc("Disable fusing of spill code into instructions"));
     50 static cl::opt<bool>
     51 PrintFailedFusing("print-failed-fuse-candidates",
     52                   cl::desc("Print instructions that the allocator wants to"
     53                            " fuse, but the X86 backend currently can't"),
     54                   cl::Hidden);
     55 static cl::opt<bool>
     56 ReMatPICStubLoad("remat-pic-stub-load",
     57                  cl::desc("Re-materialize load from stub in PIC mode"),
     58                  cl::init(false), cl::Hidden);
     59 
     60 enum {
     61   // Select which memory operand is being unfolded.
     62   // (stored in bits 0 - 3)
     63   TB_INDEX_0    = 0,
     64   TB_INDEX_1    = 1,
     65   TB_INDEX_2    = 2,
     66   TB_INDEX_3    = 3,
     67   TB_INDEX_MASK = 0xf,
     68 
     69   // Do not insert the reverse map (MemOp -> RegOp) into the table.
     70   // This may be needed because there is a many -> one mapping.
     71   TB_NO_REVERSE   = 1 << 4,
     72 
     73   // Do not insert the forward map (RegOp -> MemOp) into the table.
     74   // This is needed for Native Client, which prohibits branch
     75   // instructions from using a memory operand.
     76   TB_NO_FORWARD   = 1 << 5,
     77 
     78   TB_FOLDED_LOAD  = 1 << 6,
     79   TB_FOLDED_STORE = 1 << 7,
     80 
     81   // Minimum alignment required for load/store.
     82   // Used for RegOp->MemOp conversion.
     83   // (stored in bits 8 - 15)
     84   TB_ALIGN_SHIFT = 8,
     85   TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT,
     86   TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT,
     87   TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT,
     88   TB_ALIGN_64    =   64 << TB_ALIGN_SHIFT,
     89   TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT
     90 };
     91 
     92 struct X86OpTblEntry {
     93   uint16_t RegOp;
     94   uint16_t MemOp;
     95   uint16_t Flags;
     96 };
     97 
     98 // Pin the vtable to this file.
     99 void X86InstrInfo::anchor() {}
    100 
    101 X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
    102     : X86GenInstrInfo(
    103           (STI.is64Bit() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32),
    104           (STI.is64Bit() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32)),
    105       Subtarget(STI), RI(STI) {
    106 
    107   static const X86OpTblEntry OpTbl2Addr[] = {
    108     { X86::ADC32ri,     X86::ADC32mi,    0 },
    109     { X86::ADC32ri8,    X86::ADC32mi8,   0 },
    110     { X86::ADC32rr,     X86::ADC32mr,    0 },
    111     { X86::ADC64ri32,   X86::ADC64mi32,  0 },
    112     { X86::ADC64ri8,    X86::ADC64mi8,   0 },
    113     { X86::ADC64rr,     X86::ADC64mr,    0 },
    114     { X86::ADD16ri,     X86::ADD16mi,    0 },
    115     { X86::ADD16ri8,    X86::ADD16mi8,   0 },
    116     { X86::ADD16ri_DB,  X86::ADD16mi,    TB_NO_REVERSE },
    117     { X86::ADD16ri8_DB, X86::ADD16mi8,   TB_NO_REVERSE },
    118     { X86::ADD16rr,     X86::ADD16mr,    0 },
    119     { X86::ADD16rr_DB,  X86::ADD16mr,    TB_NO_REVERSE },
    120     { X86::ADD32ri,     X86::ADD32mi,    0 },
    121     { X86::ADD32ri8,    X86::ADD32mi8,   0 },
    122     { X86::ADD32ri_DB,  X86::ADD32mi,    TB_NO_REVERSE },
    123     { X86::ADD32ri8_DB, X86::ADD32mi8,   TB_NO_REVERSE },
    124     { X86::ADD32rr,     X86::ADD32mr,    0 },
    125     { X86::ADD32rr_DB,  X86::ADD32mr,    TB_NO_REVERSE },
    126     { X86::ADD64ri32,   X86::ADD64mi32,  0 },
    127     { X86::ADD64ri8,    X86::ADD64mi8,   0 },
    128     { X86::ADD64ri32_DB,X86::ADD64mi32,  TB_NO_REVERSE },
    129     { X86::ADD64ri8_DB, X86::ADD64mi8,   TB_NO_REVERSE },
    130     { X86::ADD64rr,     X86::ADD64mr,    0 },
    131     { X86::ADD64rr_DB,  X86::ADD64mr,    TB_NO_REVERSE },
    132     { X86::ADD8ri,      X86::ADD8mi,     0 },
    133     { X86::ADD8rr,      X86::ADD8mr,     0 },
    134     { X86::AND16ri,     X86::AND16mi,    0 },
    135     { X86::AND16ri8,    X86::AND16mi8,   0 },
    136     { X86::AND16rr,     X86::AND16mr,    0 },
    137     { X86::AND32ri,     X86::AND32mi,    0 },
    138     { X86::AND32ri8,    X86::AND32mi8,   0 },
    139     { X86::AND32rr,     X86::AND32mr,    0 },
    140     { X86::AND64ri32,   X86::AND64mi32,  0 },
    141     { X86::AND64ri8,    X86::AND64mi8,   0 },
    142     { X86::AND64rr,     X86::AND64mr,    0 },
    143     { X86::AND8ri,      X86::AND8mi,     0 },
    144     { X86::AND8rr,      X86::AND8mr,     0 },
    145     { X86::DEC16r,      X86::DEC16m,     0 },
    146     { X86::DEC32r,      X86::DEC32m,     0 },
    147     { X86::DEC64_16r,   X86::DEC64_16m,  0 },
    148     { X86::DEC64_32r,   X86::DEC64_32m,  0 },
    149     { X86::DEC64r,      X86::DEC64m,     0 },
    150     { X86::DEC8r,       X86::DEC8m,      0 },
    151     { X86::INC16r,      X86::INC16m,     0 },
    152     { X86::INC32r,      X86::INC32m,     0 },
    153     { X86::INC64_16r,   X86::INC64_16m,  0 },
    154     { X86::INC64_32r,   X86::INC64_32m,  0 },
    155     { X86::INC64r,      X86::INC64m,     0 },
    156     { X86::INC8r,       X86::INC8m,      0 },
    157     { X86::NEG16r,      X86::NEG16m,     0 },
    158     { X86::NEG32r,      X86::NEG32m,     0 },
    159     { X86::NEG64r,      X86::NEG64m,     0 },
    160     { X86::NEG8r,       X86::NEG8m,      0 },
    161     { X86::NOT16r,      X86::NOT16m,     0 },
    162     { X86::NOT32r,      X86::NOT32m,     0 },
    163     { X86::NOT64r,      X86::NOT64m,     0 },
    164     { X86::NOT8r,       X86::NOT8m,      0 },
    165     { X86::OR16ri,      X86::OR16mi,     0 },
    166     { X86::OR16ri8,     X86::OR16mi8,    0 },
    167     { X86::OR16rr,      X86::OR16mr,     0 },
    168     { X86::OR32ri,      X86::OR32mi,     0 },
    169     { X86::OR32ri8,     X86::OR32mi8,    0 },
    170     { X86::OR32rr,      X86::OR32mr,     0 },
    171     { X86::OR64ri32,    X86::OR64mi32,   0 },
    172     { X86::OR64ri8,     X86::OR64mi8,    0 },
    173     { X86::OR64rr,      X86::OR64mr,     0 },
    174     { X86::OR8ri,       X86::OR8mi,      0 },
    175     { X86::OR8rr,       X86::OR8mr,      0 },
    176     { X86::ROL16r1,     X86::ROL16m1,    0 },
    177     { X86::ROL16rCL,    X86::ROL16mCL,   0 },
    178     { X86::ROL16ri,     X86::ROL16mi,    0 },
    179     { X86::ROL32r1,     X86::ROL32m1,    0 },
    180     { X86::ROL32rCL,    X86::ROL32mCL,   0 },
    181     { X86::ROL32ri,     X86::ROL32mi,    0 },
    182     { X86::ROL64r1,     X86::ROL64m1,    0 },
    183     { X86::ROL64rCL,    X86::ROL64mCL,   0 },
    184     { X86::ROL64ri,     X86::ROL64mi,    0 },
    185     { X86::ROL8r1,      X86::ROL8m1,     0 },
    186     { X86::ROL8rCL,     X86::ROL8mCL,    0 },
    187     { X86::ROL8ri,      X86::ROL8mi,     0 },
    188     { X86::ROR16r1,     X86::ROR16m1,    0 },
    189     { X86::ROR16rCL,    X86::ROR16mCL,   0 },
    190     { X86::ROR16ri,     X86::ROR16mi,    0 },
    191     { X86::ROR32r1,     X86::ROR32m1,    0 },
    192     { X86::ROR32rCL,    X86::ROR32mCL,   0 },
    193     { X86::ROR32ri,     X86::ROR32mi,    0 },
    194     { X86::ROR64r1,     X86::ROR64m1,    0 },
    195     { X86::ROR64rCL,    X86::ROR64mCL,   0 },
    196     { X86::ROR64ri,     X86::ROR64mi,    0 },
    197     { X86::ROR8r1,      X86::ROR8m1,     0 },
    198     { X86::ROR8rCL,     X86::ROR8mCL,    0 },
    199     { X86::ROR8ri,      X86::ROR8mi,     0 },
    200     { X86::SAR16r1,     X86::SAR16m1,    0 },
    201     { X86::SAR16rCL,    X86::SAR16mCL,   0 },
    202     { X86::SAR16ri,     X86::SAR16mi,    0 },
    203     { X86::SAR32r1,     X86::SAR32m1,    0 },
    204     { X86::SAR32rCL,    X86::SAR32mCL,   0 },
    205     { X86::SAR32ri,     X86::SAR32mi,    0 },
    206     { X86::SAR64r1,     X86::SAR64m1,    0 },
    207     { X86::SAR64rCL,    X86::SAR64mCL,   0 },
    208     { X86::SAR64ri,     X86::SAR64mi,    0 },
    209     { X86::SAR8r1,      X86::SAR8m1,     0 },
    210     { X86::SAR8rCL,     X86::SAR8mCL,    0 },
    211     { X86::SAR8ri,      X86::SAR8mi,     0 },
    212     { X86::SBB32ri,     X86::SBB32mi,    0 },
    213     { X86::SBB32ri8,    X86::SBB32mi8,   0 },
    214     { X86::SBB32rr,     X86::SBB32mr,    0 },
    215     { X86::SBB64ri32,   X86::SBB64mi32,  0 },
    216     { X86::SBB64ri8,    X86::SBB64mi8,   0 },
    217     { X86::SBB64rr,     X86::SBB64mr,    0 },
    218     { X86::SHL16rCL,    X86::SHL16mCL,   0 },
    219     { X86::SHL16ri,     X86::SHL16mi,    0 },
    220     { X86::SHL32rCL,    X86::SHL32mCL,   0 },
    221     { X86::SHL32ri,     X86::SHL32mi,    0 },
    222     { X86::SHL64rCL,    X86::SHL64mCL,   0 },
    223     { X86::SHL64ri,     X86::SHL64mi,    0 },
    224     { X86::SHL8rCL,     X86::SHL8mCL,    0 },
    225     { X86::SHL8ri,      X86::SHL8mi,     0 },
    226     { X86::SHLD16rrCL,  X86::SHLD16mrCL, 0 },
    227     { X86::SHLD16rri8,  X86::SHLD16mri8, 0 },
    228     { X86::SHLD32rrCL,  X86::SHLD32mrCL, 0 },
    229     { X86::SHLD32rri8,  X86::SHLD32mri8, 0 },
    230     { X86::SHLD64rrCL,  X86::SHLD64mrCL, 0 },
    231     { X86::SHLD64rri8,  X86::SHLD64mri8, 0 },
    232     { X86::SHR16r1,     X86::SHR16m1,    0 },
    233     { X86::SHR16rCL,    X86::SHR16mCL,   0 },
    234     { X86::SHR16ri,     X86::SHR16mi,    0 },
    235     { X86::SHR32r1,     X86::SHR32m1,    0 },
    236     { X86::SHR32rCL,    X86::SHR32mCL,   0 },
    237     { X86::SHR32ri,     X86::SHR32mi,    0 },
    238     { X86::SHR64r1,     X86::SHR64m1,    0 },
    239     { X86::SHR64rCL,    X86::SHR64mCL,   0 },
    240     { X86::SHR64ri,     X86::SHR64mi,    0 },
    241     { X86::SHR8r1,      X86::SHR8m1,     0 },
    242     { X86::SHR8rCL,     X86::SHR8mCL,    0 },
    243     { X86::SHR8ri,      X86::SHR8mi,     0 },
    244     { X86::SHRD16rrCL,  X86::SHRD16mrCL, 0 },
    245     { X86::SHRD16rri8,  X86::SHRD16mri8, 0 },
    246     { X86::SHRD32rrCL,  X86::SHRD32mrCL, 0 },
    247     { X86::SHRD32rri8,  X86::SHRD32mri8, 0 },
    248     { X86::SHRD64rrCL,  X86::SHRD64mrCL, 0 },
    249     { X86::SHRD64rri8,  X86::SHRD64mri8, 0 },
    250     { X86::SUB16ri,     X86::SUB16mi,    0 },
    251     { X86::SUB16ri8,    X86::SUB16mi8,   0 },
    252     { X86::SUB16rr,     X86::SUB16mr,    0 },
    253     { X86::SUB32ri,     X86::SUB32mi,    0 },
    254     { X86::SUB32ri8,    X86::SUB32mi8,   0 },
    255     { X86::SUB32rr,     X86::SUB32mr,    0 },
    256     { X86::SUB64ri32,   X86::SUB64mi32,  0 },
    257     { X86::SUB64ri8,    X86::SUB64mi8,   0 },
    258     { X86::SUB64rr,     X86::SUB64mr,    0 },
    259     { X86::SUB8ri,      X86::SUB8mi,     0 },
    260     { X86::SUB8rr,      X86::SUB8mr,     0 },
    261     { X86::XOR16ri,     X86::XOR16mi,    0 },
    262     { X86::XOR16ri8,    X86::XOR16mi8,   0 },
    263     { X86::XOR16rr,     X86::XOR16mr,    0 },
    264     { X86::XOR32ri,     X86::XOR32mi,    0 },
    265     { X86::XOR32ri8,    X86::XOR32mi8,   0 },
    266     { X86::XOR32rr,     X86::XOR32mr,    0 },
    267     { X86::XOR64ri32,   X86::XOR64mi32,  0 },
    268     { X86::XOR64ri8,    X86::XOR64mi8,   0 },
    269     { X86::XOR64rr,     X86::XOR64mr,    0 },
    270     { X86::XOR8ri,      X86::XOR8mi,     0 },
    271     { X86::XOR8rr,      X86::XOR8mr,     0 }
    272   };
    273 
    274   for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
    275     unsigned RegOp = OpTbl2Addr[i].RegOp;
    276     unsigned MemOp = OpTbl2Addr[i].MemOp;
    277     unsigned Flags = OpTbl2Addr[i].Flags;
    278     AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
    279                   RegOp, MemOp,
    280                   // Index 0, folded load and store, no alignment requirement.
    281                   Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
    282   }
    283 
    284   static const X86OpTblEntry OpTbl0[] = {
    285     { X86::BT16ri8,     X86::BT16mi8,       TB_FOLDED_LOAD },
    286     { X86::BT32ri8,     X86::BT32mi8,       TB_FOLDED_LOAD },
    287     { X86::BT64ri8,     X86::BT64mi8,       TB_FOLDED_LOAD },
    288     { X86::CALL32r,     X86::CALL32m,       TB_FOLDED_LOAD },
    289     { X86::CALL64r,     X86::CALL64m,       TB_FOLDED_LOAD },
    290     { X86::CMP16ri,     X86::CMP16mi,       TB_FOLDED_LOAD },
    291     { X86::CMP16ri8,    X86::CMP16mi8,      TB_FOLDED_LOAD },
    292     { X86::CMP16rr,     X86::CMP16mr,       TB_FOLDED_LOAD },
    293     { X86::CMP32ri,     X86::CMP32mi,       TB_FOLDED_LOAD },
    294     { X86::CMP32ri8,    X86::CMP32mi8,      TB_FOLDED_LOAD },
    295     { X86::CMP32rr,     X86::CMP32mr,       TB_FOLDED_LOAD },
    296     { X86::CMP64ri32,   X86::CMP64mi32,     TB_FOLDED_LOAD },
    297     { X86::CMP64ri8,    X86::CMP64mi8,      TB_FOLDED_LOAD },
    298     { X86::CMP64rr,     X86::CMP64mr,       TB_FOLDED_LOAD },
    299     { X86::CMP8ri,      X86::CMP8mi,        TB_FOLDED_LOAD },
    300     { X86::CMP8rr,      X86::CMP8mr,        TB_FOLDED_LOAD },
    301     { X86::DIV16r,      X86::DIV16m,        TB_FOLDED_LOAD },
    302     { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD },
    303     { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD },
    304     { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD },
    305     { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE },
    306     { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD },
    307     { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD },
    308     { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD },
    309     { X86::IDIV8r,      X86::IDIV8m,        TB_FOLDED_LOAD },
    310     { X86::IMUL16r,     X86::IMUL16m,       TB_FOLDED_LOAD },
    311     { X86::IMUL32r,     X86::IMUL32m,       TB_FOLDED_LOAD },
    312     { X86::IMUL64r,     X86::IMUL64m,       TB_FOLDED_LOAD },
    313     { X86::IMUL8r,      X86::IMUL8m,        TB_FOLDED_LOAD },
    314     { X86::JMP32r,      X86::JMP32m,        TB_FOLDED_LOAD },
    315     { X86::JMP64r,      X86::JMP64m,        TB_FOLDED_LOAD },
    316     { X86::MOV16ri,     X86::MOV16mi,       TB_FOLDED_STORE },
    317     { X86::MOV16rr,     X86::MOV16mr,       TB_FOLDED_STORE },
    318     { X86::MOV32ri,     X86::MOV32mi,       TB_FOLDED_STORE },
    319     { X86::MOV32rr,     X86::MOV32mr,       TB_FOLDED_STORE },
    320     { X86::MOV64ri32,   X86::MOV64mi32,     TB_FOLDED_STORE },
    321     { X86::MOV64rr,     X86::MOV64mr,       TB_FOLDED_STORE },
    322     { X86::MOV8ri,      X86::MOV8mi,        TB_FOLDED_STORE },
    323     { X86::MOV8rr,      X86::MOV8mr,        TB_FOLDED_STORE },
    324     { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
    325     { X86::MOVAPDrr,    X86::MOVAPDmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
    326     { X86::MOVAPSrr,    X86::MOVAPSmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
    327     { X86::MOVDQArr,    X86::MOVDQAmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
    328     { X86::MOVPDI2DIrr, X86::MOVPDI2DImr,   TB_FOLDED_STORE },
    329     { X86::MOVPQIto64rr,X86::MOVPQI2QImr,   TB_FOLDED_STORE },
    330     { X86::MOVSDto64rr, X86::MOVSDto64mr,   TB_FOLDED_STORE },
    331     { X86::MOVSS2DIrr,  X86::MOVSS2DImr,    TB_FOLDED_STORE },
    332     { X86::MOVUPDrr,    X86::MOVUPDmr,      TB_FOLDED_STORE },
    333     { X86::MOVUPSrr,    X86::MOVUPSmr,      TB_FOLDED_STORE },
    334     { X86::MUL16r,      X86::MUL16m,        TB_FOLDED_LOAD },
    335     { X86::MUL32r,      X86::MUL32m,        TB_FOLDED_LOAD },
    336     { X86::MUL64r,      X86::MUL64m,        TB_FOLDED_LOAD },
    337     { X86::MUL8r,       X86::MUL8m,         TB_FOLDED_LOAD },
    338     { X86::SETAEr,      X86::SETAEm,        TB_FOLDED_STORE },
    339     { X86::SETAr,       X86::SETAm,         TB_FOLDED_STORE },
    340     { X86::SETBEr,      X86::SETBEm,        TB_FOLDED_STORE },
    341     { X86::SETBr,       X86::SETBm,         TB_FOLDED_STORE },
    342     { X86::SETEr,       X86::SETEm,         TB_FOLDED_STORE },
    343     { X86::SETGEr,      X86::SETGEm,        TB_FOLDED_STORE },
    344     { X86::SETGr,       X86::SETGm,         TB_FOLDED_STORE },
    345     { X86::SETLEr,      X86::SETLEm,        TB_FOLDED_STORE },
    346     { X86::SETLr,       X86::SETLm,         TB_FOLDED_STORE },
    347     { X86::SETNEr,      X86::SETNEm,        TB_FOLDED_STORE },
    348     { X86::SETNOr,      X86::SETNOm,        TB_FOLDED_STORE },
    349     { X86::SETNPr,      X86::SETNPm,        TB_FOLDED_STORE },
    350     { X86::SETNSr,      X86::SETNSm,        TB_FOLDED_STORE },
    351     { X86::SETOr,       X86::SETOm,         TB_FOLDED_STORE },
    352     { X86::SETPr,       X86::SETPm,         TB_FOLDED_STORE },
    353     { X86::SETSr,       X86::SETSm,         TB_FOLDED_STORE },
    354     { X86::TAILJMPr,    X86::TAILJMPm,      TB_FOLDED_LOAD },
    355     { X86::TAILJMPr64,  X86::TAILJMPm64,    TB_FOLDED_LOAD },
    356     { X86::TEST16ri,    X86::TEST16mi,      TB_FOLDED_LOAD },
    357     { X86::TEST32ri,    X86::TEST32mi,      TB_FOLDED_LOAD },
    358     { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD },
    359     { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD },
    360     // AVX 128-bit versions of foldable instructions
    361     { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE  },
    362     { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
    363     { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
    364     { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
    365     { X86::VMOVDQArr,   X86::VMOVDQAmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
    366     { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr,  TB_FOLDED_STORE },
    367     { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
    368     { X86::VMOVSDto64rr,X86::VMOVSDto64mr,  TB_FOLDED_STORE },
    369     { X86::VMOVSS2DIrr, X86::VMOVSS2DImr,   TB_FOLDED_STORE },
    370     { X86::VMOVUPDrr,   X86::VMOVUPDmr,     TB_FOLDED_STORE },
    371     { X86::VMOVUPSrr,   X86::VMOVUPSmr,     TB_FOLDED_STORE },
    372     // AVX 256-bit foldable instructions
    373     { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
    374     { X86::VMOVAPDYrr,  X86::VMOVAPDYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    375     { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    376     { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    377     { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE },
    378     { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE },
    379     // AVX-512 foldable instructions
    380     { X86::VMOVPDI2DIZrr,X86::VMOVPDI2DIZmr,  TB_FOLDED_STORE }
    381   };
    382 
    383   for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
    384     unsigned RegOp      = OpTbl0[i].RegOp;
    385     unsigned MemOp      = OpTbl0[i].MemOp;
    386     unsigned Flags      = OpTbl0[i].Flags;
    387     AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
    388                   RegOp, MemOp, TB_INDEX_0 | Flags);
    389   }
    390 
    391   static const X86OpTblEntry OpTbl1[] = {
    392     { X86::CMP16rr,         X86::CMP16rm,             0 },
    393     { X86::CMP32rr,         X86::CMP32rm,             0 },
    394     { X86::CMP64rr,         X86::CMP64rm,             0 },
    395     { X86::CMP8rr,          X86::CMP8rm,              0 },
    396     { X86::CVTSD2SSrr,      X86::CVTSD2SSrm,          0 },
    397     { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm,        0 },
    398     { X86::CVTSI2SDrr,      X86::CVTSI2SDrm,          0 },
    399     { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm,        0 },
    400     { X86::CVTSI2SSrr,      X86::CVTSI2SSrm,          0 },
    401     { X86::CVTSS2SDrr,      X86::CVTSS2SDrm,          0 },
    402     { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm,       0 },
    403     { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 },
    404     { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 },
    405     { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 },
    406     { X86::IMUL16rri,       X86::IMUL16rmi,           0 },
    407     { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 },
    408     { X86::IMUL32rri,       X86::IMUL32rmi,           0 },
    409     { X86::IMUL32rri8,      X86::IMUL32rmi8,          0 },
    410     { X86::IMUL64rri32,     X86::IMUL64rmi32,         0 },
    411     { X86::IMUL64rri8,      X86::IMUL64rmi8,          0 },
    412     { X86::Int_COMISDrr,    X86::Int_COMISDrm,        0 },
    413     { X86::Int_COMISSrr,    X86::Int_COMISSrm,        0 },
    414     { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm,        0 },
    415     { X86::CVTSD2SIrr,      X86::CVTSD2SIrm,          0 },
    416     { X86::CVTSS2SI64rr,    X86::CVTSS2SI64rm,        0 },
    417     { X86::CVTSS2SIrr,      X86::CVTSS2SIrm,          0 },
    418     { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm,         TB_ALIGN_16 },
    419     { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm,         TB_ALIGN_16 },
    420     { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm,  0 },
    421     { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm,     0 },
    422     { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm,  0 },
    423     { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm,     0 },
    424     { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm,       0 },
    425     { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm,       0 },
    426     { X86::MOV16rr,         X86::MOV16rm,             0 },
    427     { X86::MOV32rr,         X86::MOV32rm,             0 },
    428     { X86::MOV64rr,         X86::MOV64rm,             0 },
    429     { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm,         0 },
    430     { X86::MOV64toSDrr,     X86::MOV64toSDrm,         0 },
    431     { X86::MOV8rr,          X86::MOV8rm,              0 },
    432     { X86::MOVAPDrr,        X86::MOVAPDrm,            TB_ALIGN_16 },
    433     { X86::MOVAPSrr,        X86::MOVAPSrm,            TB_ALIGN_16 },
    434     { X86::MOVDDUPrr,       X86::MOVDDUPrm,           0 },
    435     { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm,         0 },
    436     { X86::MOVDI2SSrr,      X86::MOVDI2SSrm,          0 },
    437     { X86::MOVDQArr,        X86::MOVDQArm,            TB_ALIGN_16 },
    438     { X86::MOVSHDUPrr,      X86::MOVSHDUPrm,          TB_ALIGN_16 },
    439     { X86::MOVSLDUPrr,      X86::MOVSLDUPrm,          TB_ALIGN_16 },
    440     { X86::MOVSX16rr8,      X86::MOVSX16rm8,          0 },
    441     { X86::MOVSX32rr16,     X86::MOVSX32rm16,         0 },
    442     { X86::MOVSX32rr8,      X86::MOVSX32rm8,          0 },
    443     { X86::MOVSX64rr16,     X86::MOVSX64rm16,         0 },
    444     { X86::MOVSX64rr32,     X86::MOVSX64rm32,         0 },
    445     { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 },
    446     { X86::MOVUPDrr,        X86::MOVUPDrm,            TB_ALIGN_16 },
    447     { X86::MOVUPSrr,        X86::MOVUPSrm,            0 },
    448     { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm,        0 },
    449     { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm,     TB_ALIGN_16 },
    450     { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 },
    451     { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 },
    452     { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 },
    453     { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 },
    454     { X86::PABSBrr128,      X86::PABSBrm128,          TB_ALIGN_16 },
    455     { X86::PABSDrr128,      X86::PABSDrm128,          TB_ALIGN_16 },
    456     { X86::PABSWrr128,      X86::PABSWrm128,          TB_ALIGN_16 },
    457     { X86::PSHUFDri,        X86::PSHUFDmi,            TB_ALIGN_16 },
    458     { X86::PSHUFHWri,       X86::PSHUFHWmi,           TB_ALIGN_16 },
    459     { X86::PSHUFLWri,       X86::PSHUFLWmi,           TB_ALIGN_16 },
    460     { X86::RCPPSr,          X86::RCPPSm,              TB_ALIGN_16 },
    461     { X86::RCPPSr_Int,      X86::RCPPSm_Int,          TB_ALIGN_16 },
    462     { X86::RSQRTPSr,        X86::RSQRTPSm,            TB_ALIGN_16 },
    463     { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int,        TB_ALIGN_16 },
    464     { X86::RSQRTSSr,        X86::RSQRTSSm,            0 },
    465     { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        0 },
    466     { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 },
    467     { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 },
    468     { X86::SQRTSDr,         X86::SQRTSDm,             0 },
    469     { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         0 },
    470     { X86::SQRTSSr,         X86::SQRTSSm,             0 },
    471     { X86::SQRTSSr_Int,     X86::SQRTSSm_Int,         0 },
    472     { X86::TEST16rr,        X86::TEST16rm,            0 },
    473     { X86::TEST32rr,        X86::TEST32rm,            0 },
    474     { X86::TEST64rr,        X86::TEST64rm,            0 },
    475     { X86::TEST8rr,         X86::TEST8rm,             0 },
    476     // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
    477     { X86::UCOMISDrr,       X86::UCOMISDrm,           0 },
    478     { X86::UCOMISSrr,       X86::UCOMISSrm,           0 },
    479     // AVX 128-bit versions of foldable instructions
    480     { X86::Int_VCOMISDrr,   X86::Int_VCOMISDrm,       0 },
    481     { X86::Int_VCOMISSrr,   X86::Int_VCOMISSrm,       0 },
    482     { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm,      0 },
    483     { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm,      0 },
    484     { X86::VCVTTSD2SI64rr,  X86::VCVTTSD2SI64rm,      0 },
    485     { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
    486     { X86::VCVTTSD2SIrr,    X86::VCVTTSD2SIrm,        0 },
    487     { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm,    0 },
    488     { X86::VCVTTSS2SI64rr,  X86::VCVTTSS2SI64rm,      0 },
    489     { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
    490     { X86::VCVTTSS2SIrr,    X86::VCVTTSS2SIrm,        0 },
    491     { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm,    0 },
    492     { X86::VCVTSD2SI64rr,   X86::VCVTSD2SI64rm,       0 },
    493     { X86::VCVTSD2SIrr,     X86::VCVTSD2SIrm,         0 },
    494     { X86::VCVTSS2SI64rr,   X86::VCVTSS2SI64rm,       0 },
    495     { X86::VCVTSS2SIrr,     X86::VCVTSS2SIrm,         0 },
    496     { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 },
    497     { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 },
    498     { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 },
    499     { X86::VMOVAPSrr,       X86::VMOVAPSrm,           TB_ALIGN_16 },
    500     { X86::VMOVDDUPrr,      X86::VMOVDDUPrm,          0 },
    501     { X86::VMOVDI2PDIrr,    X86::VMOVDI2PDIrm,        0 },
    502     { X86::VMOVDI2SSrr,     X86::VMOVDI2SSrm,         0 },
    503     { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 },
    504     { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         TB_ALIGN_16 },
    505     { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         TB_ALIGN_16 },
    506     { X86::VMOVUPDrr,       X86::VMOVUPDrm,           0 },
    507     { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 },
    508     { X86::VMOVZQI2PQIrr,   X86::VMOVZQI2PQIrm,       0 },
    509     { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm,    TB_ALIGN_16 },
    510     { X86::VPABSBrr128,     X86::VPABSBrm128,         0 },
    511     { X86::VPABSDrr128,     X86::VPABSDrm128,         0 },
    512     { X86::VPABSWrr128,     X86::VPABSWrm128,         0 },
    513     { X86::VPERMILPDri,     X86::VPERMILPDmi,         0 },
    514     { X86::VPERMILPSri,     X86::VPERMILPSmi,         0 },
    515     { X86::VPSHUFDri,       X86::VPSHUFDmi,           0 },
    516     { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          0 },
    517     { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          0 },
    518     { X86::VRCPPSr,         X86::VRCPPSm,             0 },
    519     { X86::VRCPPSr_Int,     X86::VRCPPSm_Int,         0 },
    520     { X86::VRSQRTPSr,       X86::VRSQRTPSm,           0 },
    521     { X86::VRSQRTPSr_Int,   X86::VRSQRTPSm_Int,       0 },
    522     { X86::VSQRTPDr,        X86::VSQRTPDm,            0 },
    523     { X86::VSQRTPSr,        X86::VSQRTPSm,            0 },
    524     { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 },
    525     { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 },
    526     { X86::VBROADCASTSSrr,  X86::VBROADCASTSSrm,      TB_NO_REVERSE },
    527 
    528     // AVX 256-bit foldable instructions
    529     { X86::VMOVAPDYrr,      X86::VMOVAPDYrm,          TB_ALIGN_32 },
    530     { X86::VMOVAPSYrr,      X86::VMOVAPSYrm,          TB_ALIGN_32 },
    531     { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_32 },
    532     { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 },
    533     { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 },
    534     { X86::VPERMILPDYri,    X86::VPERMILPDYmi,        0 },
    535     { X86::VPERMILPSYri,    X86::VPERMILPSYmi,        0 },
    536 
    537     // AVX2 foldable instructions
    538     { X86::VPABSBrr256,     X86::VPABSBrm256,         0 },
    539     { X86::VPABSDrr256,     X86::VPABSDrm256,         0 },
    540     { X86::VPABSWrr256,     X86::VPABSWrm256,         0 },
    541     { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          0 },
    542     { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         0 },
    543     { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         0 },
    544     { X86::VRCPPSYr,        X86::VRCPPSYm,            0 },
    545     { X86::VRCPPSYr_Int,    X86::VRCPPSYm_Int,        0 },
    546     { X86::VRSQRTPSYr,      X86::VRSQRTPSYm,          0 },
    547     { X86::VSQRTPDYr,       X86::VSQRTPDYm,           0 },
    548     { X86::VSQRTPSYr,       X86::VSQRTPSYm,           0 },
    549     { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm,     TB_NO_REVERSE },
    550     { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm,     TB_NO_REVERSE },
    551 
    552     // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
    553     { X86::BEXTR32rr,       X86::BEXTR32rm,           0 },
    554     { X86::BEXTR64rr,       X86::BEXTR64rm,           0 },
    555     { X86::BEXTRI32ri,      X86::BEXTRI32mi,          0 },
    556     { X86::BEXTRI64ri,      X86::BEXTRI64mi,          0 },
    557     { X86::BLCFILL32rr,     X86::BLCFILL32rm,         0 },
    558     { X86::BLCFILL64rr,     X86::BLCFILL64rm,         0 },
    559     { X86::BLCI32rr,        X86::BLCI32rm,            0 },
    560     { X86::BLCI64rr,        X86::BLCI64rm,            0 },
    561     { X86::BLCIC32rr,       X86::BLCIC32rm,           0 },
    562     { X86::BLCIC64rr,       X86::BLCIC64rm,           0 },
    563     { X86::BLCMSK32rr,      X86::BLCMSK32rm,          0 },
    564     { X86::BLCMSK64rr,      X86::BLCMSK64rm,          0 },
    565     { X86::BLCS32rr,        X86::BLCS32rm,            0 },
    566     { X86::BLCS64rr,        X86::BLCS64rm,            0 },
    567     { X86::BLSFILL32rr,     X86::BLSFILL32rm,         0 },
    568     { X86::BLSFILL64rr,     X86::BLSFILL64rm,         0 },
    569     { X86::BLSI32rr,        X86::BLSI32rm,            0 },
    570     { X86::BLSI64rr,        X86::BLSI64rm,            0 },
    571     { X86::BLSIC32rr,       X86::BLSIC32rm,           0 },
    572     { X86::BLSIC64rr,       X86::BLSIC64rm,           0 },
    573     { X86::BLSMSK32rr,      X86::BLSMSK32rm,          0 },
    574     { X86::BLSMSK64rr,      X86::BLSMSK64rm,          0 },
    575     { X86::BLSR32rr,        X86::BLSR32rm,            0 },
    576     { X86::BLSR64rr,        X86::BLSR64rm,            0 },
    577     { X86::BZHI32rr,        X86::BZHI32rm,            0 },
    578     { X86::BZHI64rr,        X86::BZHI64rm,            0 },
    579     { X86::LZCNT16rr,       X86::LZCNT16rm,           0 },
    580     { X86::LZCNT32rr,       X86::LZCNT32rm,           0 },
    581     { X86::LZCNT64rr,       X86::LZCNT64rm,           0 },
    582     { X86::POPCNT16rr,      X86::POPCNT16rm,          0 },
    583     { X86::POPCNT32rr,      X86::POPCNT32rm,          0 },
    584     { X86::POPCNT64rr,      X86::POPCNT64rm,          0 },
    585     { X86::RORX32ri,        X86::RORX32mi,            0 },
    586     { X86::RORX64ri,        X86::RORX64mi,            0 },
    587     { X86::SARX32rr,        X86::SARX32rm,            0 },
    588     { X86::SARX64rr,        X86::SARX64rm,            0 },
    589     { X86::SHRX32rr,        X86::SHRX32rm,            0 },
    590     { X86::SHRX64rr,        X86::SHRX64rm,            0 },
    591     { X86::SHLX32rr,        X86::SHLX32rm,            0 },
    592     { X86::SHLX64rr,        X86::SHLX64rm,            0 },
    593     { X86::T1MSKC32rr,      X86::T1MSKC32rm,          0 },
    594     { X86::T1MSKC64rr,      X86::T1MSKC64rm,          0 },
    595     { X86::TZCNT16rr,       X86::TZCNT16rm,           0 },
    596     { X86::TZCNT32rr,       X86::TZCNT32rm,           0 },
    597     { X86::TZCNT64rr,       X86::TZCNT64rm,           0 },
    598     { X86::TZMSK32rr,       X86::TZMSK32rm,           0 },
    599     { X86::TZMSK64rr,       X86::TZMSK64rm,           0 },
    600 
    601     // AVX-512 foldable instructions
    602     { X86::VMOV64toPQIZrr,  X86::VMOVQI2PQIZrm,       0 },
    603     { X86::VMOVDI2SSZrr,    X86::VMOVDI2SSZrm,        0 },
    604     { X86::VMOVDQA32rr,     X86::VMOVDQA32rm,         TB_ALIGN_64 },
    605     { X86::VMOVDQA64rr,     X86::VMOVDQA64rm,         TB_ALIGN_64 },
    606     { X86::VMOVDQU32rr,     X86::VMOVDQU32rm,         0 },
    607     { X86::VMOVDQU64rr,     X86::VMOVDQU64rm,         0 },
    608     { X86::VPABSDZrr,       X86::VPABSDZrm,           0 },
    609     { X86::VPABSQZrr,       X86::VPABSQZrm,           0 },
    610 
    611     // AES foldable instructions
    612     { X86::AESIMCrr,              X86::AESIMCrm,              TB_ALIGN_16 },
    613     { X86::AESKEYGENASSIST128rr,  X86::AESKEYGENASSIST128rm,  TB_ALIGN_16 },
    614     { X86::VAESIMCrr,             X86::VAESIMCrm,             TB_ALIGN_16 },
    615     { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, TB_ALIGN_16 },
    616   };
    617 
    618   for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
    619     unsigned RegOp = OpTbl1[i].RegOp;
    620     unsigned MemOp = OpTbl1[i].MemOp;
    621     unsigned Flags = OpTbl1[i].Flags;
    622     AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
    623                   RegOp, MemOp,
    624                   // Index 1, folded load
    625                   Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
    626   }
    627 
    628   static const X86OpTblEntry OpTbl2[] = {
    629     { X86::ADC32rr,         X86::ADC32rm,       0 },
    630     { X86::ADC64rr,         X86::ADC64rm,       0 },
    631     { X86::ADD16rr,         X86::ADD16rm,       0 },
    632     { X86::ADD16rr_DB,      X86::ADD16rm,       TB_NO_REVERSE },
    633     { X86::ADD32rr,         X86::ADD32rm,       0 },
    634     { X86::ADD32rr_DB,      X86::ADD32rm,       TB_NO_REVERSE },
    635     { X86::ADD64rr,         X86::ADD64rm,       0 },
    636     { X86::ADD64rr_DB,      X86::ADD64rm,       TB_NO_REVERSE },
    637     { X86::ADD8rr,          X86::ADD8rm,        0 },
    638     { X86::ADDPDrr,         X86::ADDPDrm,       TB_ALIGN_16 },
    639     { X86::ADDPSrr,         X86::ADDPSrm,       TB_ALIGN_16 },
    640     { X86::ADDSDrr,         X86::ADDSDrm,       0 },
    641     { X86::ADDSSrr,         X86::ADDSSrm,       0 },
    642     { X86::ADDSUBPDrr,      X86::ADDSUBPDrm,    TB_ALIGN_16 },
    643     { X86::ADDSUBPSrr,      X86::ADDSUBPSrm,    TB_ALIGN_16 },
    644     { X86::AND16rr,         X86::AND16rm,       0 },
    645     { X86::AND32rr,         X86::AND32rm,       0 },
    646     { X86::AND64rr,         X86::AND64rm,       0 },
    647     { X86::AND8rr,          X86::AND8rm,        0 },
    648     { X86::ANDNPDrr,        X86::ANDNPDrm,      TB_ALIGN_16 },
    649     { X86::ANDNPSrr,        X86::ANDNPSrm,      TB_ALIGN_16 },
    650     { X86::ANDPDrr,         X86::ANDPDrm,       TB_ALIGN_16 },
    651     { X86::ANDPSrr,         X86::ANDPSrm,       TB_ALIGN_16 },
    652     { X86::BLENDPDrri,      X86::BLENDPDrmi,    TB_ALIGN_16 },
    653     { X86::BLENDPSrri,      X86::BLENDPSrmi,    TB_ALIGN_16 },
    654     { X86::BLENDVPDrr0,     X86::BLENDVPDrm0,   TB_ALIGN_16 },
    655     { X86::BLENDVPSrr0,     X86::BLENDVPSrm0,   TB_ALIGN_16 },
    656     { X86::CMOVA16rr,       X86::CMOVA16rm,     0 },
    657     { X86::CMOVA32rr,       X86::CMOVA32rm,     0 },
    658     { X86::CMOVA64rr,       X86::CMOVA64rm,     0 },
    659     { X86::CMOVAE16rr,      X86::CMOVAE16rm,    0 },
    660     { X86::CMOVAE32rr,      X86::CMOVAE32rm,    0 },
    661     { X86::CMOVAE64rr,      X86::CMOVAE64rm,    0 },
    662     { X86::CMOVB16rr,       X86::CMOVB16rm,     0 },
    663     { X86::CMOVB32rr,       X86::CMOVB32rm,     0 },
    664     { X86::CMOVB64rr,       X86::CMOVB64rm,     0 },
    665     { X86::CMOVBE16rr,      X86::CMOVBE16rm,    0 },
    666     { X86::CMOVBE32rr,      X86::CMOVBE32rm,    0 },
    667     { X86::CMOVBE64rr,      X86::CMOVBE64rm,    0 },
    668     { X86::CMOVE16rr,       X86::CMOVE16rm,     0 },
    669     { X86::CMOVE32rr,       X86::CMOVE32rm,     0 },
    670     { X86::CMOVE64rr,       X86::CMOVE64rm,     0 },
    671     { X86::CMOVG16rr,       X86::CMOVG16rm,     0 },
    672     { X86::CMOVG32rr,       X86::CMOVG32rm,     0 },
    673     { X86::CMOVG64rr,       X86::CMOVG64rm,     0 },
    674     { X86::CMOVGE16rr,      X86::CMOVGE16rm,    0 },
    675     { X86::CMOVGE32rr,      X86::CMOVGE32rm,    0 },
    676     { X86::CMOVGE64rr,      X86::CMOVGE64rm,    0 },
    677     { X86::CMOVL16rr,       X86::CMOVL16rm,     0 },
    678     { X86::CMOVL32rr,       X86::CMOVL32rm,     0 },
    679     { X86::CMOVL64rr,       X86::CMOVL64rm,     0 },
    680     { X86::CMOVLE16rr,      X86::CMOVLE16rm,    0 },
    681     { X86::CMOVLE32rr,      X86::CMOVLE32rm,    0 },
    682     { X86::CMOVLE64rr,      X86::CMOVLE64rm,    0 },
    683     { X86::CMOVNE16rr,      X86::CMOVNE16rm,    0 },
    684     { X86::CMOVNE32rr,      X86::CMOVNE32rm,    0 },
    685     { X86::CMOVNE64rr,      X86::CMOVNE64rm,    0 },
    686     { X86::CMOVNO16rr,      X86::CMOVNO16rm,    0 },
    687     { X86::CMOVNO32rr,      X86::CMOVNO32rm,    0 },
    688     { X86::CMOVNO64rr,      X86::CMOVNO64rm,    0 },
    689     { X86::CMOVNP16rr,      X86::CMOVNP16rm,    0 },
    690     { X86::CMOVNP32rr,      X86::CMOVNP32rm,    0 },
    691     { X86::CMOVNP64rr,      X86::CMOVNP64rm,    0 },
    692     { X86::CMOVNS16rr,      X86::CMOVNS16rm,    0 },
    693     { X86::CMOVNS32rr,      X86::CMOVNS32rm,    0 },
    694     { X86::CMOVNS64rr,      X86::CMOVNS64rm,    0 },
    695     { X86::CMOVO16rr,       X86::CMOVO16rm,     0 },
    696     { X86::CMOVO32rr,       X86::CMOVO32rm,     0 },
    697     { X86::CMOVO64rr,       X86::CMOVO64rm,     0 },
    698     { X86::CMOVP16rr,       X86::CMOVP16rm,     0 },
    699     { X86::CMOVP32rr,       X86::CMOVP32rm,     0 },
    700     { X86::CMOVP64rr,       X86::CMOVP64rm,     0 },
    701     { X86::CMOVS16rr,       X86::CMOVS16rm,     0 },
    702     { X86::CMOVS32rr,       X86::CMOVS32rm,     0 },
    703     { X86::CMOVS64rr,       X86::CMOVS64rm,     0 },
    704     { X86::CMPPDrri,        X86::CMPPDrmi,      TB_ALIGN_16 },
    705     { X86::CMPPSrri,        X86::CMPPSrmi,      TB_ALIGN_16 },
    706     { X86::CMPSDrr,         X86::CMPSDrm,       0 },
    707     { X86::CMPSSrr,         X86::CMPSSrm,       0 },
    708     { X86::DIVPDrr,         X86::DIVPDrm,       TB_ALIGN_16 },
    709     { X86::DIVPSrr,         X86::DIVPSrm,       TB_ALIGN_16 },
    710     { X86::DIVSDrr,         X86::DIVSDrm,       0 },
    711     { X86::DIVSSrr,         X86::DIVSSrm,       0 },
    712     { X86::FsANDNPDrr,      X86::FsANDNPDrm,    TB_ALIGN_16 },
    713     { X86::FsANDNPSrr,      X86::FsANDNPSrm,    TB_ALIGN_16 },
    714     { X86::FsANDPDrr,       X86::FsANDPDrm,     TB_ALIGN_16 },
    715     { X86::FsANDPSrr,       X86::FsANDPSrm,     TB_ALIGN_16 },
    716     { X86::FsORPDrr,        X86::FsORPDrm,      TB_ALIGN_16 },
    717     { X86::FsORPSrr,        X86::FsORPSrm,      TB_ALIGN_16 },
    718     { X86::FsXORPDrr,       X86::FsXORPDrm,     TB_ALIGN_16 },
    719     { X86::FsXORPSrr,       X86::FsXORPSrm,     TB_ALIGN_16 },
    720     { X86::HADDPDrr,        X86::HADDPDrm,      TB_ALIGN_16 },
    721     { X86::HADDPSrr,        X86::HADDPSrm,      TB_ALIGN_16 },
    722     { X86::HSUBPDrr,        X86::HSUBPDrm,      TB_ALIGN_16 },
    723     { X86::HSUBPSrr,        X86::HSUBPSrm,      TB_ALIGN_16 },
    724     { X86::IMUL16rr,        X86::IMUL16rm,      0 },
    725     { X86::IMUL32rr,        X86::IMUL32rm,      0 },
    726     { X86::IMUL64rr,        X86::IMUL64rm,      0 },
    727     { X86::Int_CMPSDrr,     X86::Int_CMPSDrm,   0 },
    728     { X86::Int_CMPSSrr,     X86::Int_CMPSSrm,   0 },
    729     { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm,      0 },
    730     { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm,    0 },
    731     { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm,      0 },
    732     { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm,    0 },
    733     { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm,      0 },
    734     { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm,      0 },
    735     { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 },
    736     { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 },
    737     { X86::MAXSDrr,         X86::MAXSDrm,       0 },
    738     { X86::MAXSSrr,         X86::MAXSSrm,       0 },
    739     { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 },
    740     { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 },
    741     { X86::MINSDrr,         X86::MINSDrm,       0 },
    742     { X86::MINSSrr,         X86::MINSSrm,       0 },
    743     { X86::MPSADBWrri,      X86::MPSADBWrmi,    TB_ALIGN_16 },
    744     { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 },
    745     { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 },
    746     { X86::MULSDrr,         X86::MULSDrm,       0 },
    747     { X86::MULSSrr,         X86::MULSSrm,       0 },
    748     { X86::OR16rr,          X86::OR16rm,        0 },
    749     { X86::OR32rr,          X86::OR32rm,        0 },
    750     { X86::OR64rr,          X86::OR64rm,        0 },
    751     { X86::OR8rr,           X86::OR8rm,         0 },
    752     { X86::ORPDrr,          X86::ORPDrm,        TB_ALIGN_16 },
    753     { X86::ORPSrr,          X86::ORPSrm,        TB_ALIGN_16 },
    754     { X86::PACKSSDWrr,      X86::PACKSSDWrm,    TB_ALIGN_16 },
    755     { X86::PACKSSWBrr,      X86::PACKSSWBrm,    TB_ALIGN_16 },
    756     { X86::PACKUSDWrr,      X86::PACKUSDWrm,    TB_ALIGN_16 },
    757     { X86::PACKUSWBrr,      X86::PACKUSWBrm,    TB_ALIGN_16 },
    758     { X86::PADDBrr,         X86::PADDBrm,       TB_ALIGN_16 },
    759     { X86::PADDDrr,         X86::PADDDrm,       TB_ALIGN_16 },
    760     { X86::PADDQrr,         X86::PADDQrm,       TB_ALIGN_16 },
    761     { X86::PADDSBrr,        X86::PADDSBrm,      TB_ALIGN_16 },
    762     { X86::PADDSWrr,        X86::PADDSWrm,      TB_ALIGN_16 },
    763     { X86::PADDUSBrr,       X86::PADDUSBrm,     TB_ALIGN_16 },
    764     { X86::PADDUSWrr,       X86::PADDUSWrm,     TB_ALIGN_16 },
    765     { X86::PADDWrr,         X86::PADDWrm,       TB_ALIGN_16 },
    766     { X86::PALIGNR128rr,    X86::PALIGNR128rm,  TB_ALIGN_16 },
    767     { X86::PANDNrr,         X86::PANDNrm,       TB_ALIGN_16 },
    768     { X86::PANDrr,          X86::PANDrm,        TB_ALIGN_16 },
    769     { X86::PAVGBrr,         X86::PAVGBrm,       TB_ALIGN_16 },
    770     { X86::PAVGWrr,         X86::PAVGWrm,       TB_ALIGN_16 },
    771     { X86::PBLENDWrri,      X86::PBLENDWrmi,    TB_ALIGN_16 },
    772     { X86::PCMPEQBrr,       X86::PCMPEQBrm,     TB_ALIGN_16 },
    773     { X86::PCMPEQDrr,       X86::PCMPEQDrm,     TB_ALIGN_16 },
    774     { X86::PCMPEQQrr,       X86::PCMPEQQrm,     TB_ALIGN_16 },
    775     { X86::PCMPEQWrr,       X86::PCMPEQWrm,     TB_ALIGN_16 },
    776     { X86::PCMPGTBrr,       X86::PCMPGTBrm,     TB_ALIGN_16 },
    777     { X86::PCMPGTDrr,       X86::PCMPGTDrm,     TB_ALIGN_16 },
    778     { X86::PCMPGTQrr,       X86::PCMPGTQrm,     TB_ALIGN_16 },
    779     { X86::PCMPGTWrr,       X86::PCMPGTWrm,     TB_ALIGN_16 },
    780     { X86::PHADDDrr,        X86::PHADDDrm,      TB_ALIGN_16 },
    781     { X86::PHADDWrr,        X86::PHADDWrm,      TB_ALIGN_16 },
    782     { X86::PHADDSWrr128,    X86::PHADDSWrm128,  TB_ALIGN_16 },
    783     { X86::PHSUBDrr,        X86::PHSUBDrm,      TB_ALIGN_16 },
    784     { X86::PHSUBSWrr128,    X86::PHSUBSWrm128,  TB_ALIGN_16 },
    785     { X86::PHSUBWrr,        X86::PHSUBWrm,      TB_ALIGN_16 },
    786     { X86::PINSRWrri,       X86::PINSRWrmi,     TB_ALIGN_16 },
    787     { X86::PMADDUBSWrr128,  X86::PMADDUBSWrm128, TB_ALIGN_16 },
    788     { X86::PMADDWDrr,       X86::PMADDWDrm,     TB_ALIGN_16 },
    789     { X86::PMAXSWrr,        X86::PMAXSWrm,      TB_ALIGN_16 },
    790     { X86::PMAXUBrr,        X86::PMAXUBrm,      TB_ALIGN_16 },
    791     { X86::PMINSWrr,        X86::PMINSWrm,      TB_ALIGN_16 },
    792     { X86::PMINUBrr,        X86::PMINUBrm,      TB_ALIGN_16 },
    793     { X86::PMINSBrr,        X86::PMINSBrm,      TB_ALIGN_16 },
    794     { X86::PMINSDrr,        X86::PMINSDrm,      TB_ALIGN_16 },
    795     { X86::PMINUDrr,        X86::PMINUDrm,      TB_ALIGN_16 },
    796     { X86::PMINUWrr,        X86::PMINUWrm,      TB_ALIGN_16 },
    797     { X86::PMAXSBrr,        X86::PMAXSBrm,      TB_ALIGN_16 },
    798     { X86::PMAXSDrr,        X86::PMAXSDrm,      TB_ALIGN_16 },
    799     { X86::PMAXUDrr,        X86::PMAXUDrm,      TB_ALIGN_16 },
    800     { X86::PMAXUWrr,        X86::PMAXUWrm,      TB_ALIGN_16 },
    801     { X86::PMULDQrr,        X86::PMULDQrm,      TB_ALIGN_16 },
    802     { X86::PMULHRSWrr128,   X86::PMULHRSWrm128, TB_ALIGN_16 },
    803     { X86::PMULHUWrr,       X86::PMULHUWrm,     TB_ALIGN_16 },
    804     { X86::PMULHWrr,        X86::PMULHWrm,      TB_ALIGN_16 },
    805     { X86::PMULLDrr,        X86::PMULLDrm,      TB_ALIGN_16 },
    806     { X86::PMULLWrr,        X86::PMULLWrm,      TB_ALIGN_16 },
    807     { X86::PMULUDQrr,       X86::PMULUDQrm,     TB_ALIGN_16 },
    808     { X86::PORrr,           X86::PORrm,         TB_ALIGN_16 },
    809     { X86::PSADBWrr,        X86::PSADBWrm,      TB_ALIGN_16 },
    810     { X86::PSHUFBrr,        X86::PSHUFBrm,      TB_ALIGN_16 },
    811     { X86::PSIGNBrr,        X86::PSIGNBrm,      TB_ALIGN_16 },
    812     { X86::PSIGNWrr,        X86::PSIGNWrm,      TB_ALIGN_16 },
    813     { X86::PSIGNDrr,        X86::PSIGNDrm,      TB_ALIGN_16 },
    814     { X86::PSLLDrr,         X86::PSLLDrm,       TB_ALIGN_16 },
    815     { X86::PSLLQrr,         X86::PSLLQrm,       TB_ALIGN_16 },
    816     { X86::PSLLWrr,         X86::PSLLWrm,       TB_ALIGN_16 },
    817     { X86::PSRADrr,         X86::PSRADrm,       TB_ALIGN_16 },
    818     { X86::PSRAWrr,         X86::PSRAWrm,       TB_ALIGN_16 },
    819     { X86::PSRLDrr,         X86::PSRLDrm,       TB_ALIGN_16 },
    820     { X86::PSRLQrr,         X86::PSRLQrm,       TB_ALIGN_16 },
    821     { X86::PSRLWrr,         X86::PSRLWrm,       TB_ALIGN_16 },
    822     { X86::PSUBBrr,         X86::PSUBBrm,       TB_ALIGN_16 },
    823     { X86::PSUBDrr,         X86::PSUBDrm,       TB_ALIGN_16 },
    824     { X86::PSUBSBrr,        X86::PSUBSBrm,      TB_ALIGN_16 },
    825     { X86::PSUBSWrr,        X86::PSUBSWrm,      TB_ALIGN_16 },
    826     { X86::PSUBWrr,         X86::PSUBWrm,       TB_ALIGN_16 },
    827     { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm,   TB_ALIGN_16 },
    828     { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm,   TB_ALIGN_16 },
    829     { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm,  TB_ALIGN_16 },
    830     { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm,   TB_ALIGN_16 },
    831     { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm,   TB_ALIGN_16 },
    832     { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm,   TB_ALIGN_16 },
    833     { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm,  TB_ALIGN_16 },
    834     { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm,   TB_ALIGN_16 },
    835     { X86::PXORrr,          X86::PXORrm,        TB_ALIGN_16 },
    836     { X86::SBB32rr,         X86::SBB32rm,       0 },
    837     { X86::SBB64rr,         X86::SBB64rm,       0 },
    838     { X86::SHUFPDrri,       X86::SHUFPDrmi,     TB_ALIGN_16 },
    839     { X86::SHUFPSrri,       X86::SHUFPSrmi,     TB_ALIGN_16 },
    840     { X86::SUB16rr,         X86::SUB16rm,       0 },
    841     { X86::SUB32rr,         X86::SUB32rm,       0 },
    842     { X86::SUB64rr,         X86::SUB64rm,       0 },
    843     { X86::SUB8rr,          X86::SUB8rm,        0 },
    844     { X86::SUBPDrr,         X86::SUBPDrm,       TB_ALIGN_16 },
    845     { X86::SUBPSrr,         X86::SUBPSrm,       TB_ALIGN_16 },
    846     { X86::SUBSDrr,         X86::SUBSDrm,       0 },
    847     { X86::SUBSSrr,         X86::SUBSSrm,       0 },
    848     // FIXME: TEST*rr -> swapped operand of TEST*mr.
    849     { X86::UNPCKHPDrr,      X86::UNPCKHPDrm,    TB_ALIGN_16 },
    850     { X86::UNPCKHPSrr,      X86::UNPCKHPSrm,    TB_ALIGN_16 },
    851     { X86::UNPCKLPDrr,      X86::UNPCKLPDrm,    TB_ALIGN_16 },
    852     { X86::UNPCKLPSrr,      X86::UNPCKLPSrm,    TB_ALIGN_16 },
    853     { X86::XOR16rr,         X86::XOR16rm,       0 },
    854     { X86::XOR32rr,         X86::XOR32rm,       0 },
    855     { X86::XOR64rr,         X86::XOR64rm,       0 },
    856     { X86::XOR8rr,          X86::XOR8rm,        0 },
    857     { X86::XORPDrr,         X86::XORPDrm,       TB_ALIGN_16 },
    858     { X86::XORPSrr,         X86::XORPSrm,       TB_ALIGN_16 },
    859     // AVX 128-bit versions of foldable instructions
    860     { X86::VCVTSD2SSrr,       X86::VCVTSD2SSrm,        0 },
    861     { X86::Int_VCVTSD2SSrr,   X86::Int_VCVTSD2SSrm,    0 },
    862     { X86::VCVTSI2SD64rr,     X86::VCVTSI2SD64rm,      0 },
    863     { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm,  0 },
    864     { X86::VCVTSI2SDrr,       X86::VCVTSI2SDrm,        0 },
    865     { X86::Int_VCVTSI2SDrr,   X86::Int_VCVTSI2SDrm,    0 },
    866     { X86::VCVTSI2SS64rr,     X86::VCVTSI2SS64rm,      0 },
    867     { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm,  0 },
    868     { X86::VCVTSI2SSrr,       X86::VCVTSI2SSrm,        0 },
    869     { X86::Int_VCVTSI2SSrr,   X86::Int_VCVTSI2SSrm,    0 },
    870     { X86::VCVTSS2SDrr,       X86::VCVTSS2SDrm,        0 },
    871     { X86::Int_VCVTSS2SDrr,   X86::Int_VCVTSS2SDrm,    0 },
    872     { X86::VCVTTPD2DQrr,      X86::VCVTTPD2DQXrm,      0 },
    873     { X86::VCVTTPS2DQrr,      X86::VCVTTPS2DQrm,       0 },
    874     { X86::VRSQRTSSr,         X86::VRSQRTSSm,          0 },
    875     { X86::VSQRTSDr,          X86::VSQRTSDm,           0 },
    876     { X86::VSQRTSSr,          X86::VSQRTSSm,           0 },
    877     { X86::VADDPDrr,          X86::VADDPDrm,           0 },
    878     { X86::VADDPSrr,          X86::VADDPSrm,           0 },
    879     { X86::VADDSDrr,          X86::VADDSDrm,           0 },
    880     { X86::VADDSSrr,          X86::VADDSSrm,           0 },
    881     { X86::VADDSUBPDrr,       X86::VADDSUBPDrm,        0 },
    882     { X86::VADDSUBPSrr,       X86::VADDSUBPSrm,        0 },
    883     { X86::VANDNPDrr,         X86::VANDNPDrm,          0 },
    884     { X86::VANDNPSrr,         X86::VANDNPSrm,          0 },
    885     { X86::VANDPDrr,          X86::VANDPDrm,           0 },
    886     { X86::VANDPSrr,          X86::VANDPSrm,           0 },
    887     { X86::VBLENDPDrri,       X86::VBLENDPDrmi,        0 },
    888     { X86::VBLENDPSrri,       X86::VBLENDPSrmi,        0 },
    889     { X86::VBLENDVPDrr,       X86::VBLENDVPDrm,        0 },
    890     { X86::VBLENDVPSrr,       X86::VBLENDVPSrm,        0 },
    891     { X86::VCMPPDrri,         X86::VCMPPDrmi,          0 },
    892     { X86::VCMPPSrri,         X86::VCMPPSrmi,          0 },
    893     { X86::VCMPSDrr,          X86::VCMPSDrm,           0 },
    894     { X86::VCMPSSrr,          X86::VCMPSSrm,           0 },
    895     { X86::VDIVPDrr,          X86::VDIVPDrm,           0 },
    896     { X86::VDIVPSrr,          X86::VDIVPSrm,           0 },
    897     { X86::VDIVSDrr,          X86::VDIVSDrm,           0 },
    898     { X86::VDIVSSrr,          X86::VDIVSSrm,           0 },
    899     { X86::VFsANDNPDrr,       X86::VFsANDNPDrm,        TB_ALIGN_16 },
    900     { X86::VFsANDNPSrr,       X86::VFsANDNPSrm,        TB_ALIGN_16 },
    901     { X86::VFsANDPDrr,        X86::VFsANDPDrm,         TB_ALIGN_16 },
    902     { X86::VFsANDPSrr,        X86::VFsANDPSrm,         TB_ALIGN_16 },
    903     { X86::VFsORPDrr,         X86::VFsORPDrm,          TB_ALIGN_16 },
    904     { X86::VFsORPSrr,         X86::VFsORPSrm,          TB_ALIGN_16 },
    905     { X86::VFsXORPDrr,        X86::VFsXORPDrm,         TB_ALIGN_16 },
    906     { X86::VFsXORPSrr,        X86::VFsXORPSrm,         TB_ALIGN_16 },
    907     { X86::VHADDPDrr,         X86::VHADDPDrm,          0 },
    908     { X86::VHADDPSrr,         X86::VHADDPSrm,          0 },
    909     { X86::VHSUBPDrr,         X86::VHSUBPDrm,          0 },
    910     { X86::VHSUBPSrr,         X86::VHSUBPSrm,          0 },
    911     { X86::Int_VCMPSDrr,      X86::Int_VCMPSDrm,       0 },
    912     { X86::Int_VCMPSSrr,      X86::Int_VCMPSSrm,       0 },
    913     { X86::VMAXPDrr,          X86::VMAXPDrm,           0 },
    914     { X86::VMAXPSrr,          X86::VMAXPSrm,           0 },
    915     { X86::VMAXSDrr,          X86::VMAXSDrm,           0 },
    916     { X86::VMAXSSrr,          X86::VMAXSSrm,           0 },
    917     { X86::VMINPDrr,          X86::VMINPDrm,           0 },
    918     { X86::VMINPSrr,          X86::VMINPSrm,           0 },
    919     { X86::VMINSDrr,          X86::VMINSDrm,           0 },
    920     { X86::VMINSSrr,          X86::VMINSSrm,           0 },
    921     { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        0 },
    922     { X86::VMULPDrr,          X86::VMULPDrm,           0 },
    923     { X86::VMULPSrr,          X86::VMULPSrm,           0 },
    924     { X86::VMULSDrr,          X86::VMULSDrm,           0 },
    925     { X86::VMULSSrr,          X86::VMULSSrm,           0 },
    926     { X86::VORPDrr,           X86::VORPDrm,            0 },
    927     { X86::VORPSrr,           X86::VORPSrm,            0 },
    928     { X86::VPACKSSDWrr,       X86::VPACKSSDWrm,        0 },
    929     { X86::VPACKSSWBrr,       X86::VPACKSSWBrm,        0 },
    930     { X86::VPACKUSDWrr,       X86::VPACKUSDWrm,        0 },
    931     { X86::VPACKUSWBrr,       X86::VPACKUSWBrm,        0 },
    932     { X86::VPADDBrr,          X86::VPADDBrm,           0 },
    933     { X86::VPADDDrr,          X86::VPADDDrm,           0 },
    934     { X86::VPADDQrr,          X86::VPADDQrm,           0 },
    935     { X86::VPADDSBrr,         X86::VPADDSBrm,          0 },
    936     { X86::VPADDSWrr,         X86::VPADDSWrm,          0 },
    937     { X86::VPADDUSBrr,        X86::VPADDUSBrm,         0 },
    938     { X86::VPADDUSWrr,        X86::VPADDUSWrm,         0 },
    939     { X86::VPADDWrr,          X86::VPADDWrm,           0 },
    940     { X86::VPALIGNR128rr,     X86::VPALIGNR128rm,      0 },
    941     { X86::VPANDNrr,          X86::VPANDNrm,           0 },
    942     { X86::VPANDrr,           X86::VPANDrm,            0 },
    943     { X86::VPAVGBrr,          X86::VPAVGBrm,           0 },
    944     { X86::VPAVGWrr,          X86::VPAVGWrm,           0 },
    945     { X86::VPBLENDWrri,       X86::VPBLENDWrmi,        0 },
    946     { X86::VPCMPEQBrr,        X86::VPCMPEQBrm,         0 },
    947     { X86::VPCMPEQDrr,        X86::VPCMPEQDrm,         0 },
    948     { X86::VPCMPEQQrr,        X86::VPCMPEQQrm,         0 },
    949     { X86::VPCMPEQWrr,        X86::VPCMPEQWrm,         0 },
    950     { X86::VPCMPGTBrr,        X86::VPCMPGTBrm,         0 },
    951     { X86::VPCMPGTDrr,        X86::VPCMPGTDrm,         0 },
    952     { X86::VPCMPGTQrr,        X86::VPCMPGTQrm,         0 },
    953     { X86::VPCMPGTWrr,        X86::VPCMPGTWrm,         0 },
    954     { X86::VPHADDDrr,         X86::VPHADDDrm,          0 },
    955     { X86::VPHADDSWrr128,     X86::VPHADDSWrm128,      0 },
    956     { X86::VPHADDWrr,         X86::VPHADDWrm,          0 },
    957     { X86::VPHSUBDrr,         X86::VPHSUBDrm,          0 },
    958     { X86::VPHSUBSWrr128,     X86::VPHSUBSWrm128,      0 },
    959     { X86::VPHSUBWrr,         X86::VPHSUBWrm,          0 },
    960     { X86::VPERMILPDrr,       X86::VPERMILPDrm,        0 },
    961     { X86::VPERMILPSrr,       X86::VPERMILPSrm,        0 },
    962     { X86::VPINSRWrri,        X86::VPINSRWrmi,         0 },
    963     { X86::VPMADDUBSWrr128,   X86::VPMADDUBSWrm128,    0 },
    964     { X86::VPMADDWDrr,        X86::VPMADDWDrm,         0 },
    965     { X86::VPMAXSWrr,         X86::VPMAXSWrm,          0 },
    966     { X86::VPMAXUBrr,         X86::VPMAXUBrm,          0 },
    967     { X86::VPMINSWrr,         X86::VPMINSWrm,          0 },
    968     { X86::VPMINUBrr,         X86::VPMINUBrm,          0 },
    969     { X86::VPMINSBrr,         X86::VPMINSBrm,          0 },
    970     { X86::VPMINSDrr,         X86::VPMINSDrm,          0 },
    971     { X86::VPMINUDrr,         X86::VPMINUDrm,          0 },
    972     { X86::VPMINUWrr,         X86::VPMINUWrm,          0 },
    973     { X86::VPMAXSBrr,         X86::VPMAXSBrm,          0 },
    974     { X86::VPMAXSDrr,         X86::VPMAXSDrm,          0 },
    975     { X86::VPMAXUDrr,         X86::VPMAXUDrm,          0 },
    976     { X86::VPMAXUWrr,         X86::VPMAXUWrm,          0 },
    977     { X86::VPMULDQrr,         X86::VPMULDQrm,          0 },
    978     { X86::VPMULHRSWrr128,    X86::VPMULHRSWrm128,     0 },
    979     { X86::VPMULHUWrr,        X86::VPMULHUWrm,         0 },
    980     { X86::VPMULHWrr,         X86::VPMULHWrm,          0 },
    981     { X86::VPMULLDrr,         X86::VPMULLDrm,          0 },
    982     { X86::VPMULLWrr,         X86::VPMULLWrm,          0 },
    983     { X86::VPMULUDQrr,        X86::VPMULUDQrm,         0 },
    984     { X86::VPORrr,            X86::VPORrm,             0 },
    985     { X86::VPSADBWrr,         X86::VPSADBWrm,          0 },
    986     { X86::VPSHUFBrr,         X86::VPSHUFBrm,          0 },
    987     { X86::VPSIGNBrr,         X86::VPSIGNBrm,          0 },
    988     { X86::VPSIGNWrr,         X86::VPSIGNWrm,          0 },
    989     { X86::VPSIGNDrr,         X86::VPSIGNDrm,          0 },
    990     { X86::VPSLLDrr,          X86::VPSLLDrm,           0 },
    991     { X86::VPSLLQrr,          X86::VPSLLQrm,           0 },
    992     { X86::VPSLLWrr,          X86::VPSLLWrm,           0 },
    993     { X86::VPSRADrr,          X86::VPSRADrm,           0 },
    994     { X86::VPSRAWrr,          X86::VPSRAWrm,           0 },
    995     { X86::VPSRLDrr,          X86::VPSRLDrm,           0 },
    996     { X86::VPSRLQrr,          X86::VPSRLQrm,           0 },
    997     { X86::VPSRLWrr,          X86::VPSRLWrm,           0 },
    998     { X86::VPSUBBrr,          X86::VPSUBBrm,           0 },
    999     { X86::VPSUBDrr,          X86::VPSUBDrm,           0 },
   1000     { X86::VPSUBSBrr,         X86::VPSUBSBrm,          0 },
   1001     { X86::VPSUBSWrr,         X86::VPSUBSWrm,          0 },
   1002     { X86::VPSUBWrr,          X86::VPSUBWrm,           0 },
   1003     { X86::VPUNPCKHBWrr,      X86::VPUNPCKHBWrm,       0 },
   1004     { X86::VPUNPCKHDQrr,      X86::VPUNPCKHDQrm,       0 },
   1005     { X86::VPUNPCKHQDQrr,     X86::VPUNPCKHQDQrm,      0 },
   1006     { X86::VPUNPCKHWDrr,      X86::VPUNPCKHWDrm,       0 },
   1007     { X86::VPUNPCKLBWrr,      X86::VPUNPCKLBWrm,       0 },
   1008     { X86::VPUNPCKLDQrr,      X86::VPUNPCKLDQrm,       0 },
   1009     { X86::VPUNPCKLQDQrr,     X86::VPUNPCKLQDQrm,      0 },
   1010     { X86::VPUNPCKLWDrr,      X86::VPUNPCKLWDrm,       0 },
   1011     { X86::VPXORrr,           X86::VPXORrm,            0 },
   1012     { X86::VSHUFPDrri,        X86::VSHUFPDrmi,         0 },
   1013     { X86::VSHUFPSrri,        X86::VSHUFPSrmi,         0 },
   1014     { X86::VSUBPDrr,          X86::VSUBPDrm,           0 },
   1015     { X86::VSUBPSrr,          X86::VSUBPSrm,           0 },
   1016     { X86::VSUBSDrr,          X86::VSUBSDrm,           0 },
   1017     { X86::VSUBSSrr,          X86::VSUBSSrm,           0 },
   1018     { X86::VUNPCKHPDrr,       X86::VUNPCKHPDrm,        0 },
   1019     { X86::VUNPCKHPSrr,       X86::VUNPCKHPSrm,        0 },
   1020     { X86::VUNPCKLPDrr,       X86::VUNPCKLPDrm,        0 },
   1021     { X86::VUNPCKLPSrr,       X86::VUNPCKLPSrm,        0 },
   1022     { X86::VXORPDrr,          X86::VXORPDrm,           0 },
   1023     { X86::VXORPSrr,          X86::VXORPSrm,           0 },
   1024     // AVX 256-bit foldable instructions
   1025     { X86::VADDPDYrr,         X86::VADDPDYrm,          0 },
   1026     { X86::VADDPSYrr,         X86::VADDPSYrm,          0 },
   1027     { X86::VADDSUBPDYrr,      X86::VADDSUBPDYrm,       0 },
   1028     { X86::VADDSUBPSYrr,      X86::VADDSUBPSYrm,       0 },
   1029     { X86::VANDNPDYrr,        X86::VANDNPDYrm,         0 },
   1030     { X86::VANDNPSYrr,        X86::VANDNPSYrm,         0 },
   1031     { X86::VANDPDYrr,         X86::VANDPDYrm,          0 },
   1032     { X86::VANDPSYrr,         X86::VANDPSYrm,          0 },
   1033     { X86::VBLENDPDYrri,      X86::VBLENDPDYrmi,       0 },
   1034     { X86::VBLENDPSYrri,      X86::VBLENDPSYrmi,       0 },
   1035     { X86::VBLENDVPDYrr,      X86::VBLENDVPDYrm,       0 },
   1036     { X86::VBLENDVPSYrr,      X86::VBLENDVPSYrm,       0 },
   1037     { X86::VCMPPDYrri,        X86::VCMPPDYrmi,         0 },
   1038     { X86::VCMPPSYrri,        X86::VCMPPSYrmi,         0 },
   1039     { X86::VDIVPDYrr,         X86::VDIVPDYrm,          0 },
   1040     { X86::VDIVPSYrr,         X86::VDIVPSYrm,          0 },
   1041     { X86::VHADDPDYrr,        X86::VHADDPDYrm,         0 },
   1042     { X86::VHADDPSYrr,        X86::VHADDPSYrm,         0 },
   1043     { X86::VHSUBPDYrr,        X86::VHSUBPDYrm,         0 },
   1044     { X86::VHSUBPSYrr,        X86::VHSUBPSYrm,         0 },
   1045     { X86::VINSERTF128rr,     X86::VINSERTF128rm,      0 },
   1046     { X86::VMAXPDYrr,         X86::VMAXPDYrm,          0 },
   1047     { X86::VMAXPSYrr,         X86::VMAXPSYrm,          0 },
   1048     { X86::VMINPDYrr,         X86::VMINPDYrm,          0 },
   1049     { X86::VMINPSYrr,         X86::VMINPSYrm,          0 },
   1050     { X86::VMULPDYrr,         X86::VMULPDYrm,          0 },
   1051     { X86::VMULPSYrr,         X86::VMULPSYrm,          0 },
   1052     { X86::VORPDYrr,          X86::VORPDYrm,           0 },
   1053     { X86::VORPSYrr,          X86::VORPSYrm,           0 },
   1054     { X86::VPERM2F128rr,      X86::VPERM2F128rm,       0 },
   1055     { X86::VPERMILPDYrr,      X86::VPERMILPDYrm,       0 },
   1056     { X86::VPERMILPSYrr,      X86::VPERMILPSYrm,       0 },
   1057     { X86::VSHUFPDYrri,       X86::VSHUFPDYrmi,        0 },
   1058     { X86::VSHUFPSYrri,       X86::VSHUFPSYrmi,        0 },
   1059     { X86::VSUBPDYrr,         X86::VSUBPDYrm,          0 },
   1060     { X86::VSUBPSYrr,         X86::VSUBPSYrm,          0 },
   1061     { X86::VUNPCKHPDYrr,      X86::VUNPCKHPDYrm,       0 },
   1062     { X86::VUNPCKHPSYrr,      X86::VUNPCKHPSYrm,       0 },
   1063     { X86::VUNPCKLPDYrr,      X86::VUNPCKLPDYrm,       0 },
   1064     { X86::VUNPCKLPSYrr,      X86::VUNPCKLPSYrm,       0 },
   1065     { X86::VXORPDYrr,         X86::VXORPDYrm,          0 },
   1066     { X86::VXORPSYrr,         X86::VXORPSYrm,          0 },
   1067     // AVX2 foldable instructions
   1068     { X86::VINSERTI128rr,     X86::VINSERTI128rm,      0 },
   1069     { X86::VPACKSSDWYrr,      X86::VPACKSSDWYrm,       0 },
   1070     { X86::VPACKSSWBYrr,      X86::VPACKSSWBYrm,       0 },
   1071     { X86::VPACKUSDWYrr,      X86::VPACKUSDWYrm,       0 },
   1072     { X86::VPACKUSWBYrr,      X86::VPACKUSWBYrm,       0 },
   1073     { X86::VPADDBYrr,         X86::VPADDBYrm,          0 },
   1074     { X86::VPADDDYrr,         X86::VPADDDYrm,          0 },
   1075     { X86::VPADDQYrr,         X86::VPADDQYrm,          0 },
   1076     { X86::VPADDSBYrr,        X86::VPADDSBYrm,         0 },
   1077     { X86::VPADDSWYrr,        X86::VPADDSWYrm,         0 },
   1078     { X86::VPADDUSBYrr,       X86::VPADDUSBYrm,        0 },
   1079     { X86::VPADDUSWYrr,       X86::VPADDUSWYrm,        0 },
   1080     { X86::VPADDWYrr,         X86::VPADDWYrm,          0 },
   1081     { X86::VPALIGNR256rr,     X86::VPALIGNR256rm,      0 },
   1082     { X86::VPANDNYrr,         X86::VPANDNYrm,          0 },
   1083     { X86::VPANDYrr,          X86::VPANDYrm,           0 },
   1084     { X86::VPAVGBYrr,         X86::VPAVGBYrm,          0 },
   1085     { X86::VPAVGWYrr,         X86::VPAVGWYrm,          0 },
   1086     { X86::VPBLENDDrri,       X86::VPBLENDDrmi,        0 },
   1087     { X86::VPBLENDDYrri,      X86::VPBLENDDYrmi,       0 },
   1088     { X86::VPBLENDWYrri,      X86::VPBLENDWYrmi,       0 },
   1089     { X86::VPCMPEQBYrr,       X86::VPCMPEQBYrm,        0 },
   1090     { X86::VPCMPEQDYrr,       X86::VPCMPEQDYrm,        0 },
   1091     { X86::VPCMPEQQYrr,       X86::VPCMPEQQYrm,        0 },
   1092     { X86::VPCMPEQWYrr,       X86::VPCMPEQWYrm,        0 },
   1093     { X86::VPCMPGTBYrr,       X86::VPCMPGTBYrm,        0 },
   1094     { X86::VPCMPGTDYrr,       X86::VPCMPGTDYrm,        0 },
   1095     { X86::VPCMPGTQYrr,       X86::VPCMPGTQYrm,        0 },
   1096     { X86::VPCMPGTWYrr,       X86::VPCMPGTWYrm,        0 },
   1097     { X86::VPERM2I128rr,      X86::VPERM2I128rm,       0 },
   1098     { X86::VPERMDYrr,         X86::VPERMDYrm,          0 },
   1099     { X86::VPERMPDYri,        X86::VPERMPDYmi,         0 },
   1100     { X86::VPERMPSYrr,        X86::VPERMPSYrm,         0 },
   1101     { X86::VPERMQYri,         X86::VPERMQYmi,          0 },
   1102     { X86::VPHADDDYrr,        X86::VPHADDDYrm,         0 },
   1103     { X86::VPHADDSWrr256,     X86::VPHADDSWrm256,      0 },
   1104     { X86::VPHADDWYrr,        X86::VPHADDWYrm,         0 },
   1105     { X86::VPHSUBDYrr,        X86::VPHSUBDYrm,         0 },
   1106     { X86::VPHSUBSWrr256,     X86::VPHSUBSWrm256,      0 },
   1107     { X86::VPHSUBWYrr,        X86::VPHSUBWYrm,         0 },
   1108     { X86::VPMADDUBSWrr256,   X86::VPMADDUBSWrm256,    0 },
   1109     { X86::VPMADDWDYrr,       X86::VPMADDWDYrm,        0 },
   1110     { X86::VPMAXSWYrr,        X86::VPMAXSWYrm,         0 },
   1111     { X86::VPMAXUBYrr,        X86::VPMAXUBYrm,         0 },
   1112     { X86::VPMINSWYrr,        X86::VPMINSWYrm,         0 },
   1113     { X86::VPMINUBYrr,        X86::VPMINUBYrm,         0 },
   1114     { X86::VPMINSBYrr,        X86::VPMINSBYrm,         0 },
   1115     { X86::VPMINSDYrr,        X86::VPMINSDYrm,         0 },
   1116     { X86::VPMINUDYrr,        X86::VPMINUDYrm,         0 },
   1117     { X86::VPMINUWYrr,        X86::VPMINUWYrm,         0 },
   1118     { X86::VPMAXSBYrr,        X86::VPMAXSBYrm,         0 },
   1119     { X86::VPMAXSDYrr,        X86::VPMAXSDYrm,         0 },
   1120     { X86::VPMAXUDYrr,        X86::VPMAXUDYrm,         0 },
   1121     { X86::VPMAXUWYrr,        X86::VPMAXUWYrm,         0 },
   1122     { X86::VMPSADBWYrri,      X86::VMPSADBWYrmi,       0 },
   1123     { X86::VPMULDQYrr,        X86::VPMULDQYrm,         0 },
   1124     { X86::VPMULHRSWrr256,    X86::VPMULHRSWrm256,     0 },
   1125     { X86::VPMULHUWYrr,       X86::VPMULHUWYrm,        0 },
   1126     { X86::VPMULHWYrr,        X86::VPMULHWYrm,         0 },
   1127     { X86::VPMULLDYrr,        X86::VPMULLDYrm,         0 },
   1128     { X86::VPMULLWYrr,        X86::VPMULLWYrm,         0 },
   1129     { X86::VPMULUDQYrr,       X86::VPMULUDQYrm,        0 },
   1130     { X86::VPORYrr,           X86::VPORYrm,            0 },
   1131     { X86::VPSADBWYrr,        X86::VPSADBWYrm,         0 },
   1132     { X86::VPSHUFBYrr,        X86::VPSHUFBYrm,         0 },
   1133     { X86::VPSIGNBYrr,        X86::VPSIGNBYrm,         0 },
   1134     { X86::VPSIGNWYrr,        X86::VPSIGNWYrm,         0 },
   1135     { X86::VPSIGNDYrr,        X86::VPSIGNDYrm,         0 },
   1136     { X86::VPSLLDYrr,         X86::VPSLLDYrm,          0 },
   1137     { X86::VPSLLQYrr,         X86::VPSLLQYrm,          0 },
   1138     { X86::VPSLLWYrr,         X86::VPSLLWYrm,          0 },
   1139     { X86::VPSLLVDrr,         X86::VPSLLVDrm,          0 },
   1140     { X86::VPSLLVDYrr,        X86::VPSLLVDYrm,         0 },
   1141     { X86::VPSLLVQrr,         X86::VPSLLVQrm,          0 },
   1142     { X86::VPSLLVQYrr,        X86::VPSLLVQYrm,         0 },
   1143     { X86::VPSRADYrr,         X86::VPSRADYrm,          0 },
   1144     { X86::VPSRAWYrr,         X86::VPSRAWYrm,          0 },
   1145     { X86::VPSRAVDrr,         X86::VPSRAVDrm,          0 },
   1146     { X86::VPSRAVDYrr,        X86::VPSRAVDYrm,         0 },
   1147     { X86::VPSRLDYrr,         X86::VPSRLDYrm,          0 },
   1148     { X86::VPSRLQYrr,         X86::VPSRLQYrm,          0 },
   1149     { X86::VPSRLWYrr,         X86::VPSRLWYrm,          0 },
   1150     { X86::VPSRLVDrr,         X86::VPSRLVDrm,          0 },
   1151     { X86::VPSRLVDYrr,        X86::VPSRLVDYrm,         0 },
   1152     { X86::VPSRLVQrr,         X86::VPSRLVQrm,          0 },
   1153     { X86::VPSRLVQYrr,        X86::VPSRLVQYrm,         0 },
   1154     { X86::VPSUBBYrr,         X86::VPSUBBYrm,          0 },
   1155     { X86::VPSUBDYrr,         X86::VPSUBDYrm,          0 },
   1156     { X86::VPSUBSBYrr,        X86::VPSUBSBYrm,         0 },
   1157     { X86::VPSUBSWYrr,        X86::VPSUBSWYrm,         0 },
   1158     { X86::VPSUBWYrr,         X86::VPSUBWYrm,          0 },
   1159     { X86::VPUNPCKHBWYrr,     X86::VPUNPCKHBWYrm,      0 },
   1160     { X86::VPUNPCKHDQYrr,     X86::VPUNPCKHDQYrm,      0 },
   1161     { X86::VPUNPCKHQDQYrr,    X86::VPUNPCKHQDQYrm,     0 },
   1162     { X86::VPUNPCKHWDYrr,     X86::VPUNPCKHWDYrm,      0 },
   1163     { X86::VPUNPCKLBWYrr,     X86::VPUNPCKLBWYrm,      0 },
   1164     { X86::VPUNPCKLDQYrr,     X86::VPUNPCKLDQYrm,      0 },
   1165     { X86::VPUNPCKLQDQYrr,    X86::VPUNPCKLQDQYrm,     0 },
   1166     { X86::VPUNPCKLWDYrr,     X86::VPUNPCKLWDYrm,      0 },
   1167     { X86::VPXORYrr,          X86::VPXORYrm,           0 },
   1168     // FIXME: add AVX 256-bit foldable instructions
   1169 
   1170     // FMA4 foldable patterns
   1171     { X86::VFMADDSS4rr,       X86::VFMADDSS4mr,        0           },
   1172     { X86::VFMADDSD4rr,       X86::VFMADDSD4mr,        0           },
   1173     { X86::VFMADDPS4rr,       X86::VFMADDPS4mr,        TB_ALIGN_16 },
   1174     { X86::VFMADDPD4rr,       X86::VFMADDPD4mr,        TB_ALIGN_16 },
   1175     { X86::VFMADDPS4rrY,      X86::VFMADDPS4mrY,       TB_ALIGN_32 },
   1176     { X86::VFMADDPD4rrY,      X86::VFMADDPD4mrY,       TB_ALIGN_32 },
   1177     { X86::VFNMADDSS4rr,      X86::VFNMADDSS4mr,       0           },
   1178     { X86::VFNMADDSD4rr,      X86::VFNMADDSD4mr,       0           },
   1179     { X86::VFNMADDPS4rr,      X86::VFNMADDPS4mr,       TB_ALIGN_16 },
   1180     { X86::VFNMADDPD4rr,      X86::VFNMADDPD4mr,       TB_ALIGN_16 },
   1181     { X86::VFNMADDPS4rrY,     X86::VFNMADDPS4mrY,      TB_ALIGN_32 },
   1182     { X86::VFNMADDPD4rrY,     X86::VFNMADDPD4mrY,      TB_ALIGN_32 },
   1183     { X86::VFMSUBSS4rr,       X86::VFMSUBSS4mr,        0           },
   1184     { X86::VFMSUBSD4rr,       X86::VFMSUBSD4mr,        0           },
   1185     { X86::VFMSUBPS4rr,       X86::VFMSUBPS4mr,        TB_ALIGN_16 },
   1186     { X86::VFMSUBPD4rr,       X86::VFMSUBPD4mr,        TB_ALIGN_16 },
   1187     { X86::VFMSUBPS4rrY,      X86::VFMSUBPS4mrY,       TB_ALIGN_32 },
   1188     { X86::VFMSUBPD4rrY,      X86::VFMSUBPD4mrY,       TB_ALIGN_32 },
   1189     { X86::VFNMSUBSS4rr,      X86::VFNMSUBSS4mr,       0           },
   1190     { X86::VFNMSUBSD4rr,      X86::VFNMSUBSD4mr,       0           },
   1191     { X86::VFNMSUBPS4rr,      X86::VFNMSUBPS4mr,       TB_ALIGN_16 },
   1192     { X86::VFNMSUBPD4rr,      X86::VFNMSUBPD4mr,       TB_ALIGN_16 },
   1193     { X86::VFNMSUBPS4rrY,     X86::VFNMSUBPS4mrY,      TB_ALIGN_32 },
   1194     { X86::VFNMSUBPD4rrY,     X86::VFNMSUBPD4mrY,      TB_ALIGN_32 },
   1195     { X86::VFMADDSUBPS4rr,    X86::VFMADDSUBPS4mr,     TB_ALIGN_16 },
   1196     { X86::VFMADDSUBPD4rr,    X86::VFMADDSUBPD4mr,     TB_ALIGN_16 },
   1197     { X86::VFMADDSUBPS4rrY,   X86::VFMADDSUBPS4mrY,    TB_ALIGN_32 },
   1198     { X86::VFMADDSUBPD4rrY,   X86::VFMADDSUBPD4mrY,    TB_ALIGN_32 },
   1199     { X86::VFMSUBADDPS4rr,    X86::VFMSUBADDPS4mr,     TB_ALIGN_16 },
   1200     { X86::VFMSUBADDPD4rr,    X86::VFMSUBADDPD4mr,     TB_ALIGN_16 },
   1201     { X86::VFMSUBADDPS4rrY,   X86::VFMSUBADDPS4mrY,    TB_ALIGN_32 },
   1202     { X86::VFMSUBADDPD4rrY,   X86::VFMSUBADDPD4mrY,    TB_ALIGN_32 },
   1203 
   1204     // BMI/BMI2 foldable instructions
   1205     { X86::ANDN32rr,          X86::ANDN32rm,            0 },
   1206     { X86::ANDN64rr,          X86::ANDN64rm,            0 },
   1207     { X86::MULX32rr,          X86::MULX32rm,            0 },
   1208     { X86::MULX64rr,          X86::MULX64rm,            0 },
   1209     { X86::PDEP32rr,          X86::PDEP32rm,            0 },
   1210     { X86::PDEP64rr,          X86::PDEP64rm,            0 },
   1211     { X86::PEXT32rr,          X86::PEXT32rm,            0 },
   1212     { X86::PEXT64rr,          X86::PEXT64rm,            0 },
   1213 
   1214     // AVX-512 foldable instructions
   1215     { X86::VADDPSZrr,         X86::VADDPSZrm,           0 },
   1216     { X86::VADDPDZrr,         X86::VADDPDZrm,           0 },
   1217     { X86::VSUBPSZrr,         X86::VSUBPSZrm,           0 },
   1218     { X86::VSUBPDZrr,         X86::VSUBPDZrm,           0 },
   1219     { X86::VMULPSZrr,         X86::VMULPSZrm,           0 },
   1220     { X86::VMULPDZrr,         X86::VMULPDZrm,           0 },
   1221     { X86::VDIVPSZrr,         X86::VDIVPSZrm,           0 },
   1222     { X86::VDIVPDZrr,         X86::VDIVPDZrm,           0 },
   1223     { X86::VMINPSZrr,         X86::VMINPSZrm,           0 },
   1224     { X86::VMINPDZrr,         X86::VMINPDZrm,           0 },
   1225     { X86::VMAXPSZrr,         X86::VMAXPSZrm,           0 },
   1226     { X86::VMAXPDZrr,         X86::VMAXPDZrm,           0 },
   1227     { X86::VPADDDZrr,         X86::VPADDDZrm,           0 },
   1228     { X86::VPADDQZrr,         X86::VPADDQZrm,           0 },
   1229     { X86::VPERMPDZri,        X86::VPERMPDZmi,          0 },
   1230     { X86::VPERMPSZrr,        X86::VPERMPSZrm,          0 },
   1231     { X86::VPMAXSDZrr,        X86::VPMAXSDZrm,          0 },
   1232     { X86::VPMAXSQZrr,        X86::VPMAXSQZrm,          0 },
   1233     { X86::VPMAXUDZrr,        X86::VPMAXUDZrm,          0 },
   1234     { X86::VPMAXUQZrr,        X86::VPMAXUQZrm,          0 },
   1235     { X86::VPMINSDZrr,        X86::VPMINSDZrm,          0 },
   1236     { X86::VPMINSQZrr,        X86::VPMINSQZrm,          0 },
   1237     { X86::VPMINUDZrr,        X86::VPMINUDZrm,          0 },
   1238     { X86::VPMINUQZrr,        X86::VPMINUQZrm,          0 },
   1239     { X86::VPMULDQZrr,        X86::VPMULDQZrm,          0 },
   1240     { X86::VPSLLVDZrr,        X86::VPSLLVDZrm,          0 },
   1241     { X86::VPSLLVQZrr,        X86::VPSLLVQZrm,          0 },
   1242     { X86::VPSRAVDZrr,        X86::VPSRAVDZrm,          0 },
   1243     { X86::VPSRLVDZrr,        X86::VPSRLVDZrm,          0 },
   1244     { X86::VPSRLVQZrr,        X86::VPSRLVQZrm,          0 },
   1245     { X86::VPSUBDZrr,         X86::VPSUBDZrm,           0 },
   1246     { X86::VPSUBQZrr,         X86::VPSUBQZrm,           0 },
   1247     { X86::VSHUFPDZrri,       X86::VSHUFPDZrmi,         0 },
   1248     { X86::VSHUFPSZrri,       X86::VSHUFPSZrmi,         0 },
   1249     { X86::VALIGNQrri,        X86::VALIGNQrmi,          0 },
   1250     { X86::VALIGNDrri,        X86::VALIGNDrmi,          0 },
   1251     { X86::VPMULUDQZrr,       X86::VPMULUDQZrm,         0 },
   1252 
   1253     // AES foldable instructions
   1254     { X86::AESDECLASTrr,      X86::AESDECLASTrm,        TB_ALIGN_16 },
   1255     { X86::AESDECrr,          X86::AESDECrm,            TB_ALIGN_16 },
   1256     { X86::AESENCLASTrr,      X86::AESENCLASTrm,        TB_ALIGN_16 },
   1257     { X86::AESENCrr,          X86::AESENCrm,            TB_ALIGN_16 },
   1258     { X86::VAESDECLASTrr,     X86::VAESDECLASTrm,       TB_ALIGN_16 },
   1259     { X86::VAESDECrr,         X86::VAESDECrm,           TB_ALIGN_16 },
   1260     { X86::VAESENCLASTrr,     X86::VAESENCLASTrm,       TB_ALIGN_16 },
   1261     { X86::VAESENCrr,         X86::VAESENCrm,           TB_ALIGN_16 },
   1262 
   1263     // SHA foldable instructions
   1264     { X86::SHA1MSG1rr,        X86::SHA1MSG1rm,          TB_ALIGN_16 },
   1265     { X86::SHA1MSG2rr,        X86::SHA1MSG2rm,          TB_ALIGN_16 },
   1266     { X86::SHA1NEXTErr,       X86::SHA1NEXTErm,         TB_ALIGN_16 },
   1267     { X86::SHA1RNDS4rri,      X86::SHA1RNDS4rmi,        TB_ALIGN_16 },
   1268     { X86::SHA256MSG1rr,      X86::SHA256MSG1rm,        TB_ALIGN_16 },
   1269     { X86::SHA256MSG2rr,      X86::SHA256MSG2rm,        TB_ALIGN_16 },
   1270     { X86::SHA256RNDS2rr,     X86::SHA256RNDS2rm,       TB_ALIGN_16 },
   1271   };
   1272 
   1273   for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
   1274     unsigned RegOp = OpTbl2[i].RegOp;
   1275     unsigned MemOp = OpTbl2[i].MemOp;
   1276     unsigned Flags = OpTbl2[i].Flags;
   1277     AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
   1278                   RegOp, MemOp,
   1279                   // Index 2, folded load
   1280                   Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
   1281   }
   1282 
   1283   static const X86OpTblEntry OpTbl3[] = {
   1284     // FMA foldable instructions
   1285     { X86::VFMADDSSr231r,         X86::VFMADDSSr231m,         TB_ALIGN_NONE },
   1286     { X86::VFMADDSDr231r,         X86::VFMADDSDr231m,         TB_ALIGN_NONE },
   1287     { X86::VFMADDSSr132r,         X86::VFMADDSSr132m,         TB_ALIGN_NONE },
   1288     { X86::VFMADDSDr132r,         X86::VFMADDSDr132m,         TB_ALIGN_NONE },
   1289     { X86::VFMADDSSr213r,         X86::VFMADDSSr213m,         TB_ALIGN_NONE },
   1290     { X86::VFMADDSDr213r,         X86::VFMADDSDr213m,         TB_ALIGN_NONE },
   1291 
   1292     { X86::VFMADDPSr231r,         X86::VFMADDPSr231m,         TB_ALIGN_NONE },
   1293     { X86::VFMADDPDr231r,         X86::VFMADDPDr231m,         TB_ALIGN_NONE },
   1294     { X86::VFMADDPSr132r,         X86::VFMADDPSr132m,         TB_ALIGN_NONE },
   1295     { X86::VFMADDPDr132r,         X86::VFMADDPDr132m,         TB_ALIGN_NONE },
   1296     { X86::VFMADDPSr213r,         X86::VFMADDPSr213m,         TB_ALIGN_NONE },
   1297     { X86::VFMADDPDr213r,         X86::VFMADDPDr213m,         TB_ALIGN_NONE },
   1298     { X86::VFMADDPSr231rY,        X86::VFMADDPSr231mY,        TB_ALIGN_NONE },
   1299     { X86::VFMADDPDr231rY,        X86::VFMADDPDr231mY,        TB_ALIGN_NONE },
   1300     { X86::VFMADDPSr132rY,        X86::VFMADDPSr132mY,        TB_ALIGN_NONE },
   1301     { X86::VFMADDPDr132rY,        X86::VFMADDPDr132mY,        TB_ALIGN_NONE },
   1302     { X86::VFMADDPSr213rY,        X86::VFMADDPSr213mY,        TB_ALIGN_NONE },
   1303     { X86::VFMADDPDr213rY,        X86::VFMADDPDr213mY,        TB_ALIGN_NONE },
   1304 
   1305     { X86::VFNMADDSSr231r,        X86::VFNMADDSSr231m,        TB_ALIGN_NONE },
   1306     { X86::VFNMADDSDr231r,        X86::VFNMADDSDr231m,        TB_ALIGN_NONE },
   1307     { X86::VFNMADDSSr132r,        X86::VFNMADDSSr132m,        TB_ALIGN_NONE },
   1308     { X86::VFNMADDSDr132r,        X86::VFNMADDSDr132m,        TB_ALIGN_NONE },
   1309     { X86::VFNMADDSSr213r,        X86::VFNMADDSSr213m,        TB_ALIGN_NONE },
   1310     { X86::VFNMADDSDr213r,        X86::VFNMADDSDr213m,        TB_ALIGN_NONE },
   1311 
   1312     { X86::VFNMADDPSr231r,        X86::VFNMADDPSr231m,        TB_ALIGN_NONE },
   1313     { X86::VFNMADDPDr231r,        X86::VFNMADDPDr231m,        TB_ALIGN_NONE },
   1314     { X86::VFNMADDPSr132r,        X86::VFNMADDPSr132m,        TB_ALIGN_NONE },
   1315     { X86::VFNMADDPDr132r,        X86::VFNMADDPDr132m,        TB_ALIGN_NONE },
   1316     { X86::VFNMADDPSr213r,        X86::VFNMADDPSr213m,        TB_ALIGN_NONE },
   1317     { X86::VFNMADDPDr213r,        X86::VFNMADDPDr213m,        TB_ALIGN_NONE },
   1318     { X86::VFNMADDPSr231rY,       X86::VFNMADDPSr231mY,       TB_ALIGN_NONE },
   1319     { X86::VFNMADDPDr231rY,       X86::VFNMADDPDr231mY,       TB_ALIGN_NONE },
   1320     { X86::VFNMADDPSr132rY,       X86::VFNMADDPSr132mY,       TB_ALIGN_NONE },
   1321     { X86::VFNMADDPDr132rY,       X86::VFNMADDPDr132mY,       TB_ALIGN_NONE },
   1322     { X86::VFNMADDPSr213rY,       X86::VFNMADDPSr213mY,       TB_ALIGN_NONE },
   1323     { X86::VFNMADDPDr213rY,       X86::VFNMADDPDr213mY,       TB_ALIGN_NONE },
   1324 
   1325     { X86::VFMSUBSSr231r,         X86::VFMSUBSSr231m,         TB_ALIGN_NONE },
   1326     { X86::VFMSUBSDr231r,         X86::VFMSUBSDr231m,         TB_ALIGN_NONE },
   1327     { X86::VFMSUBSSr132r,         X86::VFMSUBSSr132m,         TB_ALIGN_NONE },
   1328     { X86::VFMSUBSDr132r,         X86::VFMSUBSDr132m,         TB_ALIGN_NONE },
   1329     { X86::VFMSUBSSr213r,         X86::VFMSUBSSr213m,         TB_ALIGN_NONE },
   1330     { X86::VFMSUBSDr213r,         X86::VFMSUBSDr213m,         TB_ALIGN_NONE },
   1331 
   1332     { X86::VFMSUBPSr231r,         X86::VFMSUBPSr231m,         TB_ALIGN_NONE },
   1333     { X86::VFMSUBPDr231r,         X86::VFMSUBPDr231m,         TB_ALIGN_NONE },
   1334     { X86::VFMSUBPSr132r,         X86::VFMSUBPSr132m,         TB_ALIGN_NONE },
   1335     { X86::VFMSUBPDr132r,         X86::VFMSUBPDr132m,         TB_ALIGN_NONE },
   1336     { X86::VFMSUBPSr213r,         X86::VFMSUBPSr213m,         TB_ALIGN_NONE },
   1337     { X86::VFMSUBPDr213r,         X86::VFMSUBPDr213m,         TB_ALIGN_NONE },
   1338     { X86::VFMSUBPSr231rY,        X86::VFMSUBPSr231mY,        TB_ALIGN_NONE },
   1339     { X86::VFMSUBPDr231rY,        X86::VFMSUBPDr231mY,        TB_ALIGN_NONE },
   1340     { X86::VFMSUBPSr132rY,        X86::VFMSUBPSr132mY,        TB_ALIGN_NONE },
   1341     { X86::VFMSUBPDr132rY,        X86::VFMSUBPDr132mY,        TB_ALIGN_NONE },
   1342     { X86::VFMSUBPSr213rY,        X86::VFMSUBPSr213mY,        TB_ALIGN_NONE },
   1343     { X86::VFMSUBPDr213rY,        X86::VFMSUBPDr213mY,        TB_ALIGN_NONE },
   1344 
   1345     { X86::VFNMSUBSSr231r,        X86::VFNMSUBSSr231m,        TB_ALIGN_NONE },
   1346     { X86::VFNMSUBSDr231r,        X86::VFNMSUBSDr231m,        TB_ALIGN_NONE },
   1347     { X86::VFNMSUBSSr132r,        X86::VFNMSUBSSr132m,        TB_ALIGN_NONE },
   1348     { X86::VFNMSUBSDr132r,        X86::VFNMSUBSDr132m,        TB_ALIGN_NONE },
   1349     { X86::VFNMSUBSSr213r,        X86::VFNMSUBSSr213m,        TB_ALIGN_NONE },
   1350     { X86::VFNMSUBSDr213r,        X86::VFNMSUBSDr213m,        TB_ALIGN_NONE },
   1351 
   1352     { X86::VFNMSUBPSr231r,        X86::VFNMSUBPSr231m,        TB_ALIGN_NONE },
   1353     { X86::VFNMSUBPDr231r,        X86::VFNMSUBPDr231m,        TB_ALIGN_NONE },
   1354     { X86::VFNMSUBPSr132r,        X86::VFNMSUBPSr132m,        TB_ALIGN_NONE },
   1355     { X86::VFNMSUBPDr132r,        X86::VFNMSUBPDr132m,        TB_ALIGN_NONE },
   1356     { X86::VFNMSUBPSr213r,        X86::VFNMSUBPSr213m,        TB_ALIGN_NONE },
   1357     { X86::VFNMSUBPDr213r,        X86::VFNMSUBPDr213m,        TB_ALIGN_NONE },
   1358     { X86::VFNMSUBPSr231rY,       X86::VFNMSUBPSr231mY,       TB_ALIGN_NONE },
   1359     { X86::VFNMSUBPDr231rY,       X86::VFNMSUBPDr231mY,       TB_ALIGN_NONE },
   1360     { X86::VFNMSUBPSr132rY,       X86::VFNMSUBPSr132mY,       TB_ALIGN_NONE },
   1361     { X86::VFNMSUBPDr132rY,       X86::VFNMSUBPDr132mY,       TB_ALIGN_NONE },
   1362     { X86::VFNMSUBPSr213rY,       X86::VFNMSUBPSr213mY,       TB_ALIGN_NONE },
   1363     { X86::VFNMSUBPDr213rY,       X86::VFNMSUBPDr213mY,       TB_ALIGN_NONE },
   1364 
   1365     { X86::VFMADDSUBPSr231r,      X86::VFMADDSUBPSr231m,      TB_ALIGN_NONE },
   1366     { X86::VFMADDSUBPDr231r,      X86::VFMADDSUBPDr231m,      TB_ALIGN_NONE },
   1367     { X86::VFMADDSUBPSr132r,      X86::VFMADDSUBPSr132m,      TB_ALIGN_NONE },
   1368     { X86::VFMADDSUBPDr132r,      X86::VFMADDSUBPDr132m,      TB_ALIGN_NONE },
   1369     { X86::VFMADDSUBPSr213r,      X86::VFMADDSUBPSr213m,      TB_ALIGN_NONE },
   1370     { X86::VFMADDSUBPDr213r,      X86::VFMADDSUBPDr213m,      TB_ALIGN_NONE },
   1371     { X86::VFMADDSUBPSr231rY,     X86::VFMADDSUBPSr231mY,     TB_ALIGN_NONE },
   1372     { X86::VFMADDSUBPDr231rY,     X86::VFMADDSUBPDr231mY,     TB_ALIGN_NONE },
   1373     { X86::VFMADDSUBPSr132rY,     X86::VFMADDSUBPSr132mY,     TB_ALIGN_NONE },
   1374     { X86::VFMADDSUBPDr132rY,     X86::VFMADDSUBPDr132mY,     TB_ALIGN_NONE },
   1375     { X86::VFMADDSUBPSr213rY,     X86::VFMADDSUBPSr213mY,     TB_ALIGN_NONE },
   1376     { X86::VFMADDSUBPDr213rY,     X86::VFMADDSUBPDr213mY,     TB_ALIGN_NONE },
   1377 
   1378     { X86::VFMSUBADDPSr231r,      X86::VFMSUBADDPSr231m,      TB_ALIGN_NONE },
   1379     { X86::VFMSUBADDPDr231r,      X86::VFMSUBADDPDr231m,      TB_ALIGN_NONE },
   1380     { X86::VFMSUBADDPSr132r,      X86::VFMSUBADDPSr132m,      TB_ALIGN_NONE },
   1381     { X86::VFMSUBADDPDr132r,      X86::VFMSUBADDPDr132m,      TB_ALIGN_NONE },
   1382     { X86::VFMSUBADDPSr213r,      X86::VFMSUBADDPSr213m,      TB_ALIGN_NONE },
   1383     { X86::VFMSUBADDPDr213r,      X86::VFMSUBADDPDr213m,      TB_ALIGN_NONE },
   1384     { X86::VFMSUBADDPSr231rY,     X86::VFMSUBADDPSr231mY,     TB_ALIGN_NONE },
   1385     { X86::VFMSUBADDPDr231rY,     X86::VFMSUBADDPDr231mY,     TB_ALIGN_NONE },
   1386     { X86::VFMSUBADDPSr132rY,     X86::VFMSUBADDPSr132mY,     TB_ALIGN_NONE },
   1387     { X86::VFMSUBADDPDr132rY,     X86::VFMSUBADDPDr132mY,     TB_ALIGN_NONE },
   1388     { X86::VFMSUBADDPSr213rY,     X86::VFMSUBADDPSr213mY,     TB_ALIGN_NONE },
   1389     { X86::VFMSUBADDPDr213rY,     X86::VFMSUBADDPDr213mY,     TB_ALIGN_NONE },
   1390 
   1391     // FMA4 foldable patterns
   1392     { X86::VFMADDSS4rr,           X86::VFMADDSS4rm,           0           },
   1393     { X86::VFMADDSD4rr,           X86::VFMADDSD4rm,           0           },
   1394     { X86::VFMADDPS4rr,           X86::VFMADDPS4rm,           TB_ALIGN_16 },
   1395     { X86::VFMADDPD4rr,           X86::VFMADDPD4rm,           TB_ALIGN_16 },
   1396     { X86::VFMADDPS4rrY,          X86::VFMADDPS4rmY,          TB_ALIGN_32 },
   1397     { X86::VFMADDPD4rrY,          X86::VFMADDPD4rmY,          TB_ALIGN_32 },
   1398     { X86::VFNMADDSS4rr,          X86::VFNMADDSS4rm,          0           },
   1399     { X86::VFNMADDSD4rr,          X86::VFNMADDSD4rm,          0           },
   1400     { X86::VFNMADDPS4rr,          X86::VFNMADDPS4rm,          TB_ALIGN_16 },
   1401     { X86::VFNMADDPD4rr,          X86::VFNMADDPD4rm,          TB_ALIGN_16 },
   1402     { X86::VFNMADDPS4rrY,         X86::VFNMADDPS4rmY,         TB_ALIGN_32 },
   1403     { X86::VFNMADDPD4rrY,         X86::VFNMADDPD4rmY,         TB_ALIGN_32 },
   1404     { X86::VFMSUBSS4rr,           X86::VFMSUBSS4rm,           0           },
   1405     { X86::VFMSUBSD4rr,           X86::VFMSUBSD4rm,           0           },
   1406     { X86::VFMSUBPS4rr,           X86::VFMSUBPS4rm,           TB_ALIGN_16 },
   1407     { X86::VFMSUBPD4rr,           X86::VFMSUBPD4rm,           TB_ALIGN_16 },
   1408     { X86::VFMSUBPS4rrY,          X86::VFMSUBPS4rmY,          TB_ALIGN_32 },
   1409     { X86::VFMSUBPD4rrY,          X86::VFMSUBPD4rmY,          TB_ALIGN_32 },
   1410     { X86::VFNMSUBSS4rr,          X86::VFNMSUBSS4rm,          0           },
   1411     { X86::VFNMSUBSD4rr,          X86::VFNMSUBSD4rm,          0           },
   1412     { X86::VFNMSUBPS4rr,          X86::VFNMSUBPS4rm,          TB_ALIGN_16 },
   1413     { X86::VFNMSUBPD4rr,          X86::VFNMSUBPD4rm,          TB_ALIGN_16 },
   1414     { X86::VFNMSUBPS4rrY,         X86::VFNMSUBPS4rmY,         TB_ALIGN_32 },
   1415     { X86::VFNMSUBPD4rrY,         X86::VFNMSUBPD4rmY,         TB_ALIGN_32 },
   1416     { X86::VFMADDSUBPS4rr,        X86::VFMADDSUBPS4rm,        TB_ALIGN_16 },
   1417     { X86::VFMADDSUBPD4rr,        X86::VFMADDSUBPD4rm,        TB_ALIGN_16 },
   1418     { X86::VFMADDSUBPS4rrY,       X86::VFMADDSUBPS4rmY,       TB_ALIGN_32 },
   1419     { X86::VFMADDSUBPD4rrY,       X86::VFMADDSUBPD4rmY,       TB_ALIGN_32 },
   1420     { X86::VFMSUBADDPS4rr,        X86::VFMSUBADDPS4rm,        TB_ALIGN_16 },
   1421     { X86::VFMSUBADDPD4rr,        X86::VFMSUBADDPD4rm,        TB_ALIGN_16 },
   1422     { X86::VFMSUBADDPS4rrY,       X86::VFMSUBADDPS4rmY,       TB_ALIGN_32 },
   1423     { X86::VFMSUBADDPD4rrY,       X86::VFMSUBADDPD4rmY,       TB_ALIGN_32 },
   1424     // AVX-512 VPERMI instructions with 3 source operands.
   1425     { X86::VPERMI2Drr,            X86::VPERMI2Drm,            0 },
   1426     { X86::VPERMI2Qrr,            X86::VPERMI2Qrm,            0 },
   1427     { X86::VPERMI2PSrr,           X86::VPERMI2PSrm,           0 },
   1428     { X86::VPERMI2PDrr,           X86::VPERMI2PDrm,           0 },
   1429     { X86::VBLENDMPDZrr,          X86::VBLENDMPDZrm,          0 },
   1430     { X86::VBLENDMPSZrr,          X86::VBLENDMPSZrm,          0 },
   1431     { X86::VPBLENDMDZrr,          X86::VPBLENDMDZrm,          0 },
   1432     { X86::VPBLENDMQZrr,          X86::VPBLENDMQZrm,          0 }
   1433   };
   1434 
   1435   for (unsigned i = 0, e = array_lengthof(OpTbl3); i != e; ++i) {
   1436     unsigned RegOp = OpTbl3[i].RegOp;
   1437     unsigned MemOp = OpTbl3[i].MemOp;
   1438     unsigned Flags = OpTbl3[i].Flags;
   1439     AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
   1440                   RegOp, MemOp,
   1441                   // Index 3, folded load
   1442                   Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
   1443   }
   1444 
   1445 }
   1446 
   1447 void
   1448 X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
   1449                             MemOp2RegOpTableType &M2RTable,
   1450                             unsigned RegOp, unsigned MemOp, unsigned Flags) {
   1451     if ((Flags & TB_NO_FORWARD) == 0) {
   1452       assert(!R2MTable.count(RegOp) && "Duplicate entry!");
   1453       R2MTable[RegOp] = std::make_pair(MemOp, Flags);
   1454     }
   1455     if ((Flags & TB_NO_REVERSE) == 0) {
   1456       assert(!M2RTable.count(MemOp) &&
   1457            "Duplicated entries in unfolding maps?");
   1458       M2RTable[MemOp] = std::make_pair(RegOp, Flags);
   1459     }
   1460 }
   1461 
   1462 bool
   1463 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
   1464                                     unsigned &SrcReg, unsigned &DstReg,
   1465                                     unsigned &SubIdx) const {
   1466   switch (MI.getOpcode()) {
   1467   default: break;
   1468   case X86::MOVSX16rr8:
   1469   case X86::MOVZX16rr8:
   1470   case X86::MOVSX32rr8:
   1471   case X86::MOVZX32rr8:
   1472   case X86::MOVSX64rr8:
   1473     if (!Subtarget.is64Bit())
   1474       // It's not always legal to reference the low 8-bit of the larger
   1475       // register in 32-bit mode.
   1476       return false;
   1477   case X86::MOVSX32rr16:
   1478   case X86::MOVZX32rr16:
   1479   case X86::MOVSX64rr16:
   1480   case X86::MOVSX64rr32: {
   1481     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
   1482       // Be conservative.
   1483       return false;
   1484     SrcReg = MI.getOperand(1).getReg();
   1485     DstReg = MI.getOperand(0).getReg();
   1486     switch (MI.getOpcode()) {
   1487     default: llvm_unreachable("Unreachable!");
   1488     case X86::MOVSX16rr8:
   1489     case X86::MOVZX16rr8:
   1490     case X86::MOVSX32rr8:
   1491     case X86::MOVZX32rr8:
   1492     case X86::MOVSX64rr8:
   1493       SubIdx = X86::sub_8bit;
   1494       break;
   1495     case X86::MOVSX32rr16:
   1496     case X86::MOVZX32rr16:
   1497     case X86::MOVSX64rr16:
   1498       SubIdx = X86::sub_16bit;
   1499       break;
   1500     case X86::MOVSX64rr32:
   1501       SubIdx = X86::sub_32bit;
   1502       break;
   1503     }
   1504     return true;
   1505   }
   1506   }
   1507   return false;
   1508 }
   1509 
   1510 /// isFrameOperand - Return true and the FrameIndex if the specified
   1511 /// operand and follow operands form a reference to the stack frame.
   1512 bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
   1513                                   int &FrameIndex) const {
   1514   if (MI->getOperand(Op+X86::AddrBaseReg).isFI() &&
   1515       MI->getOperand(Op+X86::AddrScaleAmt).isImm() &&
   1516       MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
   1517       MI->getOperand(Op+X86::AddrDisp).isImm() &&
   1518       MI->getOperand(Op+X86::AddrScaleAmt).getImm() == 1 &&
   1519       MI->getOperand(Op+X86::AddrIndexReg).getReg() == 0 &&
   1520       MI->getOperand(Op+X86::AddrDisp).getImm() == 0) {
   1521     FrameIndex = MI->getOperand(Op+X86::AddrBaseReg).getIndex();
   1522     return true;
   1523   }
   1524   return false;
   1525 }
   1526 
   1527 static bool isFrameLoadOpcode(int Opcode) {
   1528   switch (Opcode) {
   1529   default:
   1530     return false;
   1531   case X86::MOV8rm:
   1532   case X86::MOV16rm:
   1533   case X86::MOV32rm:
   1534   case X86::MOV64rm:
   1535   case X86::LD_Fp64m:
   1536   case X86::MOVSSrm:
   1537   case X86::MOVSDrm:
   1538   case X86::MOVAPSrm:
   1539   case X86::MOVAPDrm:
   1540   case X86::MOVDQArm:
   1541   case X86::VMOVSSrm:
   1542   case X86::VMOVSDrm:
   1543   case X86::VMOVAPSrm:
   1544   case X86::VMOVAPDrm:
   1545   case X86::VMOVDQArm:
   1546   case X86::VMOVAPSYrm:
   1547   case X86::VMOVAPDYrm:
   1548   case X86::VMOVDQAYrm:
   1549   case X86::MMX_MOVD64rm:
   1550   case X86::MMX_MOVQ64rm:
   1551   case X86::VMOVAPSZrm:
   1552   case X86::VMOVUPSZrm:
   1553     return true;
   1554   }
   1555 }
   1556 
   1557 static bool isFrameStoreOpcode(int Opcode) {
   1558   switch (Opcode) {
   1559   default: break;
   1560   case X86::MOV8mr:
   1561   case X86::MOV16mr:
   1562   case X86::MOV32mr:
   1563   case X86::MOV64mr:
   1564   case X86::ST_FpP64m:
   1565   case X86::MOVSSmr:
   1566   case X86::MOVSDmr:
   1567   case X86::MOVAPSmr:
   1568   case X86::MOVAPDmr:
   1569   case X86::MOVDQAmr:
   1570   case X86::VMOVSSmr:
   1571   case X86::VMOVSDmr:
   1572   case X86::VMOVAPSmr:
   1573   case X86::VMOVAPDmr:
   1574   case X86::VMOVDQAmr:
   1575   case X86::VMOVAPSYmr:
   1576   case X86::VMOVAPDYmr:
   1577   case X86::VMOVDQAYmr:
   1578   case X86::VMOVUPSZmr:
   1579   case X86::VMOVAPSZmr:
   1580   case X86::MMX_MOVD64mr:
   1581   case X86::MMX_MOVQ64mr:
   1582   case X86::MMX_MOVNTQmr:
   1583     return true;
   1584   }
   1585   return false;
   1586 }
   1587 
   1588 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
   1589                                            int &FrameIndex) const {
   1590   if (isFrameLoadOpcode(MI->getOpcode()))
   1591     if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
   1592       return MI->getOperand(0).getReg();
   1593   return 0;
   1594 }
   1595 
   1596 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
   1597                                                  int &FrameIndex) const {
   1598   if (isFrameLoadOpcode(MI->getOpcode())) {
   1599     unsigned Reg;
   1600     if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
   1601       return Reg;
   1602     // Check for post-frame index elimination operations
   1603     const MachineMemOperand *Dummy;
   1604     return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
   1605   }
   1606   return 0;
   1607 }
   1608 
   1609 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
   1610                                           int &FrameIndex) const {
   1611   if (isFrameStoreOpcode(MI->getOpcode()))
   1612     if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
   1613         isFrameOperand(MI, 0, FrameIndex))
   1614       return MI->getOperand(X86::AddrNumOperands).getReg();
   1615   return 0;
   1616 }
   1617 
   1618 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
   1619                                                 int &FrameIndex) const {
   1620   if (isFrameStoreOpcode(MI->getOpcode())) {
   1621     unsigned Reg;
   1622     if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
   1623       return Reg;
   1624     // Check for post-frame index elimination operations
   1625     const MachineMemOperand *Dummy;
   1626     return hasStoreToStackSlot(MI, Dummy, FrameIndex);
   1627   }
   1628   return 0;
   1629 }
   1630 
   1631 /// regIsPICBase - Return true if register is PIC base (i.e.g defined by
   1632 /// X86::MOVPC32r.
   1633 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
   1634   // Don't waste compile time scanning use-def chains of physregs.
   1635   if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
   1636     return false;
   1637   bool isPICBase = false;
   1638   for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
   1639          E = MRI.def_instr_end(); I != E; ++I) {
   1640     MachineInstr *DefMI = &*I;
   1641     if (DefMI->getOpcode() != X86::MOVPC32r)
   1642       return false;
   1643     assert(!isPICBase && "More than one PIC base?");
   1644     isPICBase = true;
   1645   }
   1646   return isPICBase;
   1647 }
   1648 
   1649 bool
   1650 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
   1651                                                 AliasAnalysis *AA) const {
   1652   switch (MI->getOpcode()) {
   1653   default: break;
   1654   case X86::MOV8rm:
   1655   case X86::MOV16rm:
   1656   case X86::MOV32rm:
   1657   case X86::MOV64rm:
   1658   case X86::LD_Fp64m:
   1659   case X86::MOVSSrm:
   1660   case X86::MOVSDrm:
   1661   case X86::MOVAPSrm:
   1662   case X86::MOVUPSrm:
   1663   case X86::MOVAPDrm:
   1664   case X86::MOVDQArm:
   1665   case X86::MOVDQUrm:
   1666   case X86::VMOVSSrm:
   1667   case X86::VMOVSDrm:
   1668   case X86::VMOVAPSrm:
   1669   case X86::VMOVUPSrm:
   1670   case X86::VMOVAPDrm:
   1671   case X86::VMOVDQArm:
   1672   case X86::VMOVDQUrm:
   1673   case X86::VMOVAPSYrm:
   1674   case X86::VMOVUPSYrm:
   1675   case X86::VMOVAPDYrm:
   1676   case X86::VMOVDQAYrm:
   1677   case X86::VMOVDQUYrm:
   1678   case X86::MMX_MOVD64rm:
   1679   case X86::MMX_MOVQ64rm:
   1680   case X86::FsVMOVAPSrm:
   1681   case X86::FsVMOVAPDrm:
   1682   case X86::FsMOVAPSrm:
   1683   case X86::FsMOVAPDrm: {
   1684     // Loads from constant pools are trivially rematerializable.
   1685     if (MI->getOperand(1+X86::AddrBaseReg).isReg() &&
   1686         MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
   1687         MI->getOperand(1+X86::AddrIndexReg).isReg() &&
   1688         MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
   1689         MI->isInvariantLoad(AA)) {
   1690       unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
   1691       if (BaseReg == 0 || BaseReg == X86::RIP)
   1692         return true;
   1693       // Allow re-materialization of PIC load.
   1694       if (!ReMatPICStubLoad && MI->getOperand(1+X86::AddrDisp).isGlobal())
   1695         return false;
   1696       const MachineFunction &MF = *MI->getParent()->getParent();
   1697       const MachineRegisterInfo &MRI = MF.getRegInfo();
   1698       return regIsPICBase(BaseReg, MRI);
   1699     }
   1700     return false;
   1701   }
   1702 
   1703   case X86::LEA32r:
   1704   case X86::LEA64r: {
   1705     if (MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
   1706         MI->getOperand(1+X86::AddrIndexReg).isReg() &&
   1707         MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
   1708         !MI->getOperand(1+X86::AddrDisp).isReg()) {
   1709       // lea fi#, lea GV, etc. are all rematerializable.
   1710       if (!MI->getOperand(1+X86::AddrBaseReg).isReg())
   1711         return true;
   1712       unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
   1713       if (BaseReg == 0)
   1714         return true;
   1715       // Allow re-materialization of lea PICBase + x.
   1716       const MachineFunction &MF = *MI->getParent()->getParent();
   1717       const MachineRegisterInfo &MRI = MF.getRegInfo();
   1718       return regIsPICBase(BaseReg, MRI);
   1719     }
   1720     return false;
   1721   }
   1722   }
   1723 
   1724   // All other instructions marked M_REMATERIALIZABLE are always trivially
   1725   // rematerializable.
   1726   return true;
   1727 }
   1728 
   1729 bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
   1730                                          MachineBasicBlock::iterator I) const {
   1731   MachineBasicBlock::iterator E = MBB.end();
   1732 
   1733   // For compile time consideration, if we are not able to determine the
   1734   // safety after visiting 4 instructions in each direction, we will assume
   1735   // it's not safe.
   1736   MachineBasicBlock::iterator Iter = I;
   1737   for (unsigned i = 0; Iter != E && i < 4; ++i) {
   1738     bool SeenDef = false;
   1739     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
   1740       MachineOperand &MO = Iter->getOperand(j);
   1741       if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
   1742         SeenDef = true;
   1743       if (!MO.isReg())
   1744         continue;
   1745       if (MO.getReg() == X86::EFLAGS) {
   1746         if (MO.isUse())
   1747           return false;
   1748         SeenDef = true;
   1749       }
   1750     }
   1751 
   1752     if (SeenDef)
   1753       // This instruction defines EFLAGS, no need to look any further.
   1754       return true;
   1755     ++Iter;
   1756     // Skip over DBG_VALUE.
   1757     while (Iter != E && Iter->isDebugValue())
   1758       ++Iter;
   1759   }
   1760 
   1761   // It is safe to clobber EFLAGS at the end of a block of no successor has it
   1762   // live in.
   1763   if (Iter == E) {
   1764     for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
   1765            SE = MBB.succ_end(); SI != SE; ++SI)
   1766       if ((*SI)->isLiveIn(X86::EFLAGS))
   1767         return false;
   1768     return true;
   1769   }
   1770 
   1771   MachineBasicBlock::iterator B = MBB.begin();
   1772   Iter = I;
   1773   for (unsigned i = 0; i < 4; ++i) {
   1774     // If we make it to the beginning of the block, it's safe to clobber
   1775     // EFLAGS iff EFLAGS is not live-in.
   1776     if (Iter == B)
   1777       return !MBB.isLiveIn(X86::EFLAGS);
   1778 
   1779     --Iter;
   1780     // Skip over DBG_VALUE.
   1781     while (Iter != B && Iter->isDebugValue())
   1782       --Iter;
   1783 
   1784     bool SawKill = false;
   1785     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
   1786       MachineOperand &MO = Iter->getOperand(j);
   1787       // A register mask may clobber EFLAGS, but we should still look for a
   1788       // live EFLAGS def.
   1789       if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
   1790         SawKill = true;
   1791       if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
   1792         if (MO.isDef()) return MO.isDead();
   1793         if (MO.isKill()) SawKill = true;
   1794       }
   1795     }
   1796 
   1797     if (SawKill)
   1798       // This instruction kills EFLAGS and doesn't redefine it, so
   1799       // there's no need to look further.
   1800       return true;
   1801   }
   1802 
   1803   // Conservative answer.
   1804   return false;
   1805 }
   1806 
   1807 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
   1808                                  MachineBasicBlock::iterator I,
   1809                                  unsigned DestReg, unsigned SubIdx,
   1810                                  const MachineInstr *Orig,
   1811                                  const TargetRegisterInfo &TRI) const {
   1812   // MOV32r0 is implemented with a xor which clobbers condition code.
   1813   // Re-materialize it as movri instructions to avoid side effects.
   1814   unsigned Opc = Orig->getOpcode();
   1815   if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) {
   1816     DebugLoc DL = Orig->getDebugLoc();
   1817     BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0))
   1818       .addImm(0);
   1819   } else {
   1820     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
   1821     MBB.insert(I, MI);
   1822   }
   1823 
   1824   MachineInstr *NewMI = std::prev(I);
   1825   NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
   1826 }
   1827 
   1828 /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
   1829 /// is not marked dead.
   1830 static bool hasLiveCondCodeDef(MachineInstr *MI) {
   1831   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1832     MachineOperand &MO = MI->getOperand(i);
   1833     if (MO.isReg() && MO.isDef() &&
   1834         MO.getReg() == X86::EFLAGS && !MO.isDead()) {
   1835       return true;
   1836     }
   1837   }
   1838   return false;
   1839 }
   1840 
   1841 /// getTruncatedShiftCount - check whether the shift count for a machine operand
   1842 /// is non-zero.
   1843 inline static unsigned getTruncatedShiftCount(MachineInstr *MI,
   1844                                               unsigned ShiftAmtOperandIdx) {
   1845   // The shift count is six bits with the REX.W prefix and five bits without.
   1846   unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
   1847   unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm();
   1848   return Imm & ShiftCountMask;
   1849 }
   1850 
   1851 /// isTruncatedShiftCountForLEA - check whether the given shift count is appropriate
   1852 /// can be represented by a LEA instruction.
   1853 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
   1854   // Left shift instructions can be transformed into load-effective-address
   1855   // instructions if we can encode them appropriately.
   1856   // A LEA instruction utilizes a SIB byte to encode it's scale factor.
   1857   // The SIB.scale field is two bits wide which means that we can encode any
   1858   // shift amount less than 4.
   1859   return ShAmt < 4 && ShAmt > 0;
   1860 }
   1861 
   1862 bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
   1863                                   unsigned Opc, bool AllowSP,
   1864                                   unsigned &NewSrc, bool &isKill, bool &isUndef,
   1865                                   MachineOperand &ImplicitOp) const {
   1866   MachineFunction &MF = *MI->getParent()->getParent();
   1867   const TargetRegisterClass *RC;
   1868   if (AllowSP) {
   1869     RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
   1870   } else {
   1871     RC = Opc != X86::LEA32r ?
   1872       &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
   1873   }
   1874   unsigned SrcReg = Src.getReg();
   1875 
   1876   // For both LEA64 and LEA32 the register already has essentially the right
   1877   // type (32-bit or 64-bit) we may just need to forbid SP.
   1878   if (Opc != X86::LEA64_32r) {
   1879     NewSrc = SrcReg;
   1880     isKill = Src.isKill();
   1881     isUndef = Src.isUndef();
   1882 
   1883     if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
   1884         !MF.getRegInfo().constrainRegClass(NewSrc, RC))
   1885       return false;
   1886 
   1887     return true;
   1888   }
   1889 
   1890   // This is for an LEA64_32r and incoming registers are 32-bit. One way or
   1891   // another we need to add 64-bit registers to the final MI.
   1892   if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
   1893     ImplicitOp = Src;
   1894     ImplicitOp.setImplicit();
   1895 
   1896     NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64);
   1897     MachineBasicBlock::LivenessQueryResult LQR =
   1898       MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI);
   1899 
   1900     switch (LQR) {
   1901     case MachineBasicBlock::LQR_Unknown:
   1902       // We can't give sane liveness flags to the instruction, abandon LEA
   1903       // formation.
   1904       return false;
   1905     case MachineBasicBlock::LQR_Live:
   1906       isKill = MI->killsRegister(SrcReg);
   1907       isUndef = false;
   1908       break;
   1909     default:
   1910       // The physreg itself is dead, so we have to use it as an <undef>.
   1911       isKill = false;
   1912       isUndef = true;
   1913       break;
   1914     }
   1915   } else {
   1916     // Virtual register of the wrong class, we have to create a temporary 64-bit
   1917     // vreg to feed into the LEA.
   1918     NewSrc = MF.getRegInfo().createVirtualRegister(RC);
   1919     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
   1920             get(TargetOpcode::COPY))
   1921       .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
   1922         .addOperand(Src);
   1923 
   1924     // Which is obviously going to be dead after we're done with it.
   1925     isKill = true;
   1926     isUndef = false;
   1927   }
   1928 
   1929   // We've set all the parameters without issue.
   1930   return true;
   1931 }
   1932 
   1933 /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
   1934 /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
   1935 /// to a 32-bit superregister and then truncating back down to a 16-bit
   1936 /// subregister.
   1937 MachineInstr *
   1938 X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
   1939                                            MachineFunction::iterator &MFI,
   1940                                            MachineBasicBlock::iterator &MBBI,
   1941                                            LiveVariables *LV) const {
   1942   MachineInstr *MI = MBBI;
   1943   unsigned Dest = MI->getOperand(0).getReg();
   1944   unsigned Src = MI->getOperand(1).getReg();
   1945   bool isDead = MI->getOperand(0).isDead();
   1946   bool isKill = MI->getOperand(1).isKill();
   1947 
   1948   MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
   1949   unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
   1950   unsigned Opc, leaInReg;
   1951   if (Subtarget.is64Bit()) {
   1952     Opc = X86::LEA64_32r;
   1953     leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
   1954   } else {
   1955     Opc = X86::LEA32r;
   1956     leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
   1957   }
   1958 
   1959   // Build and insert into an implicit UNDEF value. This is OK because
   1960   // well be shifting and then extracting the lower 16-bits.
   1961   // This has the potential to cause partial register stall. e.g.
   1962   //   movw    (%rbp,%rcx,2), %dx
   1963   //   leal    -65(%rdx), %esi
   1964   // But testing has shown this *does* help performance in 64-bit mode (at
   1965   // least on modern x86 machines).
   1966   BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
   1967   MachineInstr *InsMI =
   1968     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
   1969     .addReg(leaInReg, RegState::Define, X86::sub_16bit)
   1970     .addReg(Src, getKillRegState(isKill));
   1971 
   1972   MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
   1973                                     get(Opc), leaOutReg);
   1974   switch (MIOpc) {
   1975   default: llvm_unreachable("Unreachable!");
   1976   case X86::SHL16ri: {
   1977     unsigned ShAmt = MI->getOperand(2).getImm();
   1978     MIB.addReg(0).addImm(1 << ShAmt)
   1979        .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
   1980     break;
   1981   }
   1982   case X86::INC16r:
   1983   case X86::INC64_16r:
   1984     addRegOffset(MIB, leaInReg, true, 1);
   1985     break;
   1986   case X86::DEC16r:
   1987   case X86::DEC64_16r:
   1988     addRegOffset(MIB, leaInReg, true, -1);
   1989     break;
   1990   case X86::ADD16ri:
   1991   case X86::ADD16ri8:
   1992   case X86::ADD16ri_DB:
   1993   case X86::ADD16ri8_DB:
   1994     addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
   1995     break;
   1996   case X86::ADD16rr:
   1997   case X86::ADD16rr_DB: {
   1998     unsigned Src2 = MI->getOperand(2).getReg();
   1999     bool isKill2 = MI->getOperand(2).isKill();
   2000     unsigned leaInReg2 = 0;
   2001     MachineInstr *InsMI2 = nullptr;
   2002     if (Src == Src2) {
   2003       // ADD16rr %reg1028<kill>, %reg1028
   2004       // just a single insert_subreg.
   2005       addRegReg(MIB, leaInReg, true, leaInReg, false);
   2006     } else {
   2007       if (Subtarget.is64Bit())
   2008         leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
   2009       else
   2010         leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
   2011       // Build and insert into an implicit UNDEF value. This is OK because
   2012       // well be shifting and then extracting the lower 16-bits.
   2013       BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
   2014       InsMI2 =
   2015         BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
   2016         .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
   2017         .addReg(Src2, getKillRegState(isKill2));
   2018       addRegReg(MIB, leaInReg, true, leaInReg2, true);
   2019     }
   2020     if (LV && isKill2 && InsMI2)
   2021       LV->replaceKillInstruction(Src2, MI, InsMI2);
   2022     break;
   2023   }
   2024   }
   2025 
   2026   MachineInstr *NewMI = MIB;
   2027   MachineInstr *ExtMI =
   2028     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
   2029     .addReg(Dest, RegState::Define | getDeadRegState(isDead))
   2030     .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
   2031 
   2032   if (LV) {
   2033     // Update live variables
   2034     LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
   2035     LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
   2036     if (isKill)
   2037       LV->replaceKillInstruction(Src, MI, InsMI);
   2038     if (isDead)
   2039       LV->replaceKillInstruction(Dest, MI, ExtMI);
   2040   }
   2041 
   2042   return ExtMI;
   2043 }
   2044 
   2045 /// convertToThreeAddress - This method must be implemented by targets that
   2046 /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
   2047 /// may be able to convert a two-address instruction into a true
   2048 /// three-address instruction on demand.  This allows the X86 target (for
   2049 /// example) to convert ADD and SHL instructions into LEA instructions if they
   2050 /// would require register copies due to two-addressness.
   2051 ///
   2052 /// This method returns a null pointer if the transformation cannot be
   2053 /// performed, otherwise it returns the new instruction.
   2054 ///
   2055 MachineInstr *
   2056 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
   2057                                     MachineBasicBlock::iterator &MBBI,
   2058                                     LiveVariables *LV) const {
   2059   MachineInstr *MI = MBBI;
   2060 
   2061   // The following opcodes also sets the condition code register(s). Only
   2062   // convert them to equivalent lea if the condition code register def's
   2063   // are dead!
   2064   if (hasLiveCondCodeDef(MI))
   2065     return nullptr;
   2066 
   2067   MachineFunction &MF = *MI->getParent()->getParent();
   2068   // All instructions input are two-addr instructions.  Get the known operands.
   2069   const MachineOperand &Dest = MI->getOperand(0);
   2070   const MachineOperand &Src = MI->getOperand(1);
   2071 
   2072   MachineInstr *NewMI = nullptr;
   2073   // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
   2074   // we have better subtarget support, enable the 16-bit LEA generation here.
   2075   // 16-bit LEA is also slow on Core2.
   2076   bool DisableLEA16 = true;
   2077   bool is64Bit = Subtarget.is64Bit();
   2078 
   2079   unsigned MIOpc = MI->getOpcode();
   2080   switch (MIOpc) {
   2081   case X86::SHUFPSrri: {
   2082     assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
   2083     if (!Subtarget.hasSSE2()) return nullptr;
   2084 
   2085     unsigned B = MI->getOperand(1).getReg();
   2086     unsigned C = MI->getOperand(2).getReg();
   2087     if (B != C) return nullptr;
   2088     unsigned M = MI->getOperand(3).getImm();
   2089     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
   2090       .addOperand(Dest).addOperand(Src).addImm(M);
   2091     break;
   2092   }
   2093   case X86::SHUFPDrri: {
   2094     assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!");
   2095     if (!Subtarget.hasSSE2()) return nullptr;
   2096 
   2097     unsigned B = MI->getOperand(1).getReg();
   2098     unsigned C = MI->getOperand(2).getReg();
   2099     if (B != C) return nullptr;
   2100     unsigned M = MI->getOperand(3).getImm();
   2101 
   2102     // Convert to PSHUFD mask.
   2103     M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44;
   2104 
   2105     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
   2106       .addOperand(Dest).addOperand(Src).addImm(M);
   2107     break;
   2108   }
   2109   case X86::SHL64ri: {
   2110     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
   2111     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
   2112     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
   2113 
   2114     // LEA can't handle RSP.
   2115     if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
   2116         !MF.getRegInfo().constrainRegClass(Src.getReg(),
   2117                                            &X86::GR64_NOSPRegClass))
   2118       return nullptr;
   2119 
   2120     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
   2121       .addOperand(Dest)
   2122       .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
   2123     break;
   2124   }
   2125   case X86::SHL32ri: {
   2126     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
   2127     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
   2128     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
   2129 
   2130     unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
   2131 
   2132     // LEA can't handle ESP.
   2133     bool isKill, isUndef;
   2134     unsigned SrcReg;
   2135     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2136     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
   2137                         SrcReg, isKill, isUndef, ImplicitOp))
   2138       return nullptr;
   2139 
   2140     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
   2141       .addOperand(Dest)
   2142       .addReg(0).addImm(1 << ShAmt)
   2143       .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
   2144       .addImm(0).addReg(0);
   2145     if (ImplicitOp.getReg() != 0)
   2146       MIB.addOperand(ImplicitOp);
   2147     NewMI = MIB;
   2148 
   2149     break;
   2150   }
   2151   case X86::SHL16ri: {
   2152     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
   2153     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
   2154     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
   2155 
   2156     if (DisableLEA16)
   2157       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : nullptr;
   2158     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   2159       .addOperand(Dest)
   2160       .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
   2161     break;
   2162   }
   2163   default: {
   2164 
   2165     switch (MIOpc) {
   2166     default: return nullptr;
   2167     case X86::INC64r:
   2168     case X86::INC32r:
   2169     case X86::INC64_32r: {
   2170       assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
   2171       unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
   2172         : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
   2173       bool isKill, isUndef;
   2174       unsigned SrcReg;
   2175       MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2176       if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
   2177                           SrcReg, isKill, isUndef, ImplicitOp))
   2178         return nullptr;
   2179 
   2180       MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
   2181           .addOperand(Dest)
   2182           .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
   2183       if (ImplicitOp.getReg() != 0)
   2184         MIB.addOperand(ImplicitOp);
   2185 
   2186       NewMI = addOffset(MIB, 1);
   2187       break;
   2188     }
   2189     case X86::INC16r:
   2190     case X86::INC64_16r:
   2191       if (DisableLEA16)
   2192         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
   2193                        : nullptr;
   2194       assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
   2195       NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   2196                         .addOperand(Dest).addOperand(Src), 1);
   2197       break;
   2198     case X86::DEC64r:
   2199     case X86::DEC32r:
   2200     case X86::DEC64_32r: {
   2201       assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
   2202       unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
   2203         : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
   2204 
   2205       bool isKill, isUndef;
   2206       unsigned SrcReg;
   2207       MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2208       if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
   2209                           SrcReg, isKill, isUndef, ImplicitOp))
   2210         return nullptr;
   2211 
   2212       MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
   2213           .addOperand(Dest)
   2214           .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
   2215       if (ImplicitOp.getReg() != 0)
   2216         MIB.addOperand(ImplicitOp);
   2217 
   2218       NewMI = addOffset(MIB, -1);
   2219 
   2220       break;
   2221     }
   2222     case X86::DEC16r:
   2223     case X86::DEC64_16r:
   2224       if (DisableLEA16)
   2225         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
   2226                        : nullptr;
   2227       assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
   2228       NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   2229                         .addOperand(Dest).addOperand(Src), -1);
   2230       break;
   2231     case X86::ADD64rr:
   2232     case X86::ADD64rr_DB:
   2233     case X86::ADD32rr:
   2234     case X86::ADD32rr_DB: {
   2235       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2236       unsigned Opc;
   2237       if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
   2238         Opc = X86::LEA64r;
   2239       else
   2240         Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
   2241 
   2242       bool isKill, isUndef;
   2243       unsigned SrcReg;
   2244       MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2245       if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
   2246                           SrcReg, isKill, isUndef, ImplicitOp))
   2247         return nullptr;
   2248 
   2249       const MachineOperand &Src2 = MI->getOperand(2);
   2250       bool isKill2, isUndef2;
   2251       unsigned SrcReg2;
   2252       MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
   2253       if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
   2254                           SrcReg2, isKill2, isUndef2, ImplicitOp2))
   2255         return nullptr;
   2256 
   2257       MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
   2258         .addOperand(Dest);
   2259       if (ImplicitOp.getReg() != 0)
   2260         MIB.addOperand(ImplicitOp);
   2261       if (ImplicitOp2.getReg() != 0)
   2262         MIB.addOperand(ImplicitOp2);
   2263 
   2264       NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
   2265 
   2266       // Preserve undefness of the operands.
   2267       NewMI->getOperand(1).setIsUndef(isUndef);
   2268       NewMI->getOperand(3).setIsUndef(isUndef2);
   2269 
   2270       if (LV && Src2.isKill())
   2271         LV->replaceKillInstruction(SrcReg2, MI, NewMI);
   2272       break;
   2273     }
   2274     case X86::ADD16rr:
   2275     case X86::ADD16rr_DB: {
   2276       if (DisableLEA16)
   2277         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
   2278                        : nullptr;
   2279       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2280       unsigned Src2 = MI->getOperand(2).getReg();
   2281       bool isKill2 = MI->getOperand(2).isKill();
   2282       NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   2283                         .addOperand(Dest),
   2284                         Src.getReg(), Src.isKill(), Src2, isKill2);
   2285 
   2286       // Preserve undefness of the operands.
   2287       bool isUndef = MI->getOperand(1).isUndef();
   2288       bool isUndef2 = MI->getOperand(2).isUndef();
   2289       NewMI->getOperand(1).setIsUndef(isUndef);
   2290       NewMI->getOperand(3).setIsUndef(isUndef2);
   2291 
   2292       if (LV && isKill2)
   2293         LV->replaceKillInstruction(Src2, MI, NewMI);
   2294       break;
   2295     }
   2296     case X86::ADD64ri32:
   2297     case X86::ADD64ri8:
   2298     case X86::ADD64ri32_DB:
   2299     case X86::ADD64ri8_DB:
   2300       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2301       NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
   2302                         .addOperand(Dest).addOperand(Src),
   2303                         MI->getOperand(2).getImm());
   2304       break;
   2305     case X86::ADD32ri:
   2306     case X86::ADD32ri8:
   2307     case X86::ADD32ri_DB:
   2308     case X86::ADD32ri8_DB: {
   2309       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2310       unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
   2311 
   2312       bool isKill, isUndef;
   2313       unsigned SrcReg;
   2314       MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2315       if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
   2316                           SrcReg, isKill, isUndef, ImplicitOp))
   2317         return nullptr;
   2318 
   2319       MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
   2320           .addOperand(Dest)
   2321           .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
   2322       if (ImplicitOp.getReg() != 0)
   2323         MIB.addOperand(ImplicitOp);
   2324 
   2325       NewMI = addOffset(MIB, MI->getOperand(2).getImm());
   2326       break;
   2327     }
   2328     case X86::ADD16ri:
   2329     case X86::ADD16ri8:
   2330     case X86::ADD16ri_DB:
   2331     case X86::ADD16ri8_DB:
   2332       if (DisableLEA16)
   2333         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
   2334                        : nullptr;
   2335       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2336       NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   2337                         .addOperand(Dest).addOperand(Src),
   2338                         MI->getOperand(2).getImm());
   2339       break;
   2340     }
   2341   }
   2342   }
   2343 
   2344   if (!NewMI) return nullptr;
   2345 
   2346   if (LV) {  // Update live variables
   2347     if (Src.isKill())
   2348       LV->replaceKillInstruction(Src.getReg(), MI, NewMI);
   2349     if (Dest.isDead())
   2350       LV->replaceKillInstruction(Dest.getReg(), MI, NewMI);
   2351   }
   2352 
   2353   MFI->insert(MBBI, NewMI);          // Insert the new inst
   2354   return NewMI;
   2355 }
   2356 
   2357 /// commuteInstruction - We have a few instructions that must be hacked on to
   2358 /// commute them.
   2359 ///
   2360 MachineInstr *
   2361 X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
   2362   switch (MI->getOpcode()) {
   2363   case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
   2364   case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
   2365   case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
   2366   case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
   2367   case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
   2368   case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
   2369     unsigned Opc;
   2370     unsigned Size;
   2371     switch (MI->getOpcode()) {
   2372     default: llvm_unreachable("Unreachable!");
   2373     case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
   2374     case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
   2375     case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
   2376     case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
   2377     case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
   2378     case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
   2379     }
   2380     unsigned Amt = MI->getOperand(3).getImm();
   2381     if (NewMI) {
   2382       MachineFunction &MF = *MI->getParent()->getParent();
   2383       MI = MF.CloneMachineInstr(MI);
   2384       NewMI = false;
   2385     }
   2386     MI->setDesc(get(Opc));
   2387     MI->getOperand(3).setImm(Size-Amt);
   2388     return TargetInstrInfo::commuteInstruction(MI, NewMI);
   2389   }
   2390   case X86::CMOVB16rr:  case X86::CMOVB32rr:  case X86::CMOVB64rr:
   2391   case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
   2392   case X86::CMOVE16rr:  case X86::CMOVE32rr:  case X86::CMOVE64rr:
   2393   case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
   2394   case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
   2395   case X86::CMOVA16rr:  case X86::CMOVA32rr:  case X86::CMOVA64rr:
   2396   case X86::CMOVL16rr:  case X86::CMOVL32rr:  case X86::CMOVL64rr:
   2397   case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
   2398   case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
   2399   case X86::CMOVG16rr:  case X86::CMOVG32rr:  case X86::CMOVG64rr:
   2400   case X86::CMOVS16rr:  case X86::CMOVS32rr:  case X86::CMOVS64rr:
   2401   case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
   2402   case X86::CMOVP16rr:  case X86::CMOVP32rr:  case X86::CMOVP64rr:
   2403   case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
   2404   case X86::CMOVO16rr:  case X86::CMOVO32rr:  case X86::CMOVO64rr:
   2405   case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
   2406     unsigned Opc;
   2407     switch (MI->getOpcode()) {
   2408     default: llvm_unreachable("Unreachable!");
   2409     case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
   2410     case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
   2411     case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
   2412     case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
   2413     case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
   2414     case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
   2415     case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
   2416     case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
   2417     case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
   2418     case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
   2419     case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
   2420     case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
   2421     case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
   2422     case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
   2423     case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
   2424     case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
   2425     case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
   2426     case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
   2427     case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
   2428     case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
   2429     case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
   2430     case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
   2431     case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
   2432     case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
   2433     case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
   2434     case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
   2435     case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
   2436     case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
   2437     case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
   2438     case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
   2439     case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
   2440     case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
   2441     case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
   2442     case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
   2443     case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
   2444     case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
   2445     case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
   2446     case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
   2447     case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
   2448     case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
   2449     case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
   2450     case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
   2451     case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
   2452     case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
   2453     case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
   2454     case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
   2455     case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
   2456     case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
   2457     }
   2458     if (NewMI) {
   2459       MachineFunction &MF = *MI->getParent()->getParent();
   2460       MI = MF.CloneMachineInstr(MI);
   2461       NewMI = false;
   2462     }
   2463     MI->setDesc(get(Opc));
   2464     // Fallthrough intended.
   2465   }
   2466   default:
   2467     return TargetInstrInfo::commuteInstruction(MI, NewMI);
   2468   }
   2469 }
   2470 
   2471 bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
   2472                                          unsigned &SrcOpIdx2) const {
   2473   switch (MI->getOpcode()) {
   2474     case X86::VFMADDPDr231r:
   2475     case X86::VFMADDPSr231r:
   2476     case X86::VFMADDSDr231r:
   2477     case X86::VFMADDSSr231r:
   2478     case X86::VFMSUBPDr231r:
   2479     case X86::VFMSUBPSr231r:
   2480     case X86::VFMSUBSDr231r:
   2481     case X86::VFMSUBSSr231r:
   2482     case X86::VFNMADDPDr231r:
   2483     case X86::VFNMADDPSr231r:
   2484     case X86::VFNMADDSDr231r:
   2485     case X86::VFNMADDSSr231r:
   2486     case X86::VFNMSUBPDr231r:
   2487     case X86::VFNMSUBPSr231r:
   2488     case X86::VFNMSUBSDr231r:
   2489     case X86::VFNMSUBSSr231r:
   2490     case X86::VFMADDPDr231rY:
   2491     case X86::VFMADDPSr231rY:
   2492     case X86::VFMSUBPDr231rY:
   2493     case X86::VFMSUBPSr231rY:
   2494     case X86::VFNMADDPDr231rY:
   2495     case X86::VFNMADDPSr231rY:
   2496     case X86::VFNMSUBPDr231rY:
   2497     case X86::VFNMSUBPSr231rY:
   2498       SrcOpIdx1 = 2;
   2499       SrcOpIdx2 = 3;
   2500       return true;
   2501     default:
   2502       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
   2503   }
   2504 }
   2505 
   2506 static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
   2507   switch (BrOpc) {
   2508   default: return X86::COND_INVALID;
   2509   case X86::JE_4:  return X86::COND_E;
   2510   case X86::JNE_4: return X86::COND_NE;
   2511   case X86::JL_4:  return X86::COND_L;
   2512   case X86::JLE_4: return X86::COND_LE;
   2513   case X86::JG_4:  return X86::COND_G;
   2514   case X86::JGE_4: return X86::COND_GE;
   2515   case X86::JB_4:  return X86::COND_B;
   2516   case X86::JBE_4: return X86::COND_BE;
   2517   case X86::JA_4:  return X86::COND_A;
   2518   case X86::JAE_4: return X86::COND_AE;
   2519   case X86::JS_4:  return X86::COND_S;
   2520   case X86::JNS_4: return X86::COND_NS;
   2521   case X86::JP_4:  return X86::COND_P;
   2522   case X86::JNP_4: return X86::COND_NP;
   2523   case X86::JO_4:  return X86::COND_O;
   2524   case X86::JNO_4: return X86::COND_NO;
   2525   }
   2526 }
   2527 
   2528 /// getCondFromSETOpc - return condition code of a SET opcode.
   2529 static X86::CondCode getCondFromSETOpc(unsigned Opc) {
   2530   switch (Opc) {
   2531   default: return X86::COND_INVALID;
   2532   case X86::SETAr:  case X86::SETAm:  return X86::COND_A;
   2533   case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
   2534   case X86::SETBr:  case X86::SETBm:  return X86::COND_B;
   2535   case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
   2536   case X86::SETEr:  case X86::SETEm:  return X86::COND_E;
   2537   case X86::SETGr:  case X86::SETGm:  return X86::COND_G;
   2538   case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
   2539   case X86::SETLr:  case X86::SETLm:  return X86::COND_L;
   2540   case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
   2541   case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
   2542   case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
   2543   case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
   2544   case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
   2545   case X86::SETOr:  case X86::SETOm:  return X86::COND_O;
   2546   case X86::SETPr:  case X86::SETPm:  return X86::COND_P;
   2547   case X86::SETSr:  case X86::SETSm:  return X86::COND_S;
   2548   }
   2549 }
   2550 
   2551 /// getCondFromCmovOpc - return condition code of a CMov opcode.
   2552 X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
   2553   switch (Opc) {
   2554   default: return X86::COND_INVALID;
   2555   case X86::CMOVA16rm:  case X86::CMOVA16rr:  case X86::CMOVA32rm:
   2556   case X86::CMOVA32rr:  case X86::CMOVA64rm:  case X86::CMOVA64rr:
   2557     return X86::COND_A;
   2558   case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
   2559   case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
   2560     return X86::COND_AE;
   2561   case X86::CMOVB16rm:  case X86::CMOVB16rr:  case X86::CMOVB32rm:
   2562   case X86::CMOVB32rr:  case X86::CMOVB64rm:  case X86::CMOVB64rr:
   2563     return X86::COND_B;
   2564   case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
   2565   case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
   2566     return X86::COND_BE;
   2567   case X86::CMOVE16rm:  case X86::CMOVE16rr:  case X86::CMOVE32rm:
   2568   case X86::CMOVE32rr:  case X86::CMOVE64rm:  case X86::CMOVE64rr:
   2569     return X86::COND_E;
   2570   case X86::CMOVG16rm:  case X86::CMOVG16rr:  case X86::CMOVG32rm:
   2571   case X86::CMOVG32rr:  case X86::CMOVG64rm:  case X86::CMOVG64rr:
   2572     return X86::COND_G;
   2573   case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
   2574   case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
   2575     return X86::COND_GE;
   2576   case X86::CMOVL16rm:  case X86::CMOVL16rr:  case X86::CMOVL32rm:
   2577   case X86::CMOVL32rr:  case X86::CMOVL64rm:  case X86::CMOVL64rr:
   2578     return X86::COND_L;
   2579   case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
   2580   case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
   2581     return X86::COND_LE;
   2582   case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
   2583   case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
   2584     return X86::COND_NE;
   2585   case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
   2586   case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
   2587     return X86::COND_NO;
   2588   case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
   2589   case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
   2590     return X86::COND_NP;
   2591   case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
   2592   case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
   2593     return X86::COND_NS;
   2594   case X86::CMOVO16rm:  case X86::CMOVO16rr:  case X86::CMOVO32rm:
   2595   case X86::CMOVO32rr:  case X86::CMOVO64rm:  case X86::CMOVO64rr:
   2596     return X86::COND_O;
   2597   case X86::CMOVP16rm:  case X86::CMOVP16rr:  case X86::CMOVP32rm:
   2598   case X86::CMOVP32rr:  case X86::CMOVP64rm:  case X86::CMOVP64rr:
   2599     return X86::COND_P;
   2600   case X86::CMOVS16rm:  case X86::CMOVS16rr:  case X86::CMOVS32rm:
   2601   case X86::CMOVS32rr:  case X86::CMOVS64rm:  case X86::CMOVS64rr:
   2602     return X86::COND_S;
   2603   }
   2604 }
   2605 
   2606 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
   2607   switch (CC) {
   2608   default: llvm_unreachable("Illegal condition code!");
   2609   case X86::COND_E:  return X86::JE_4;
   2610   case X86::COND_NE: return X86::JNE_4;
   2611   case X86::COND_L:  return X86::JL_4;
   2612   case X86::COND_LE: return X86::JLE_4;
   2613   case X86::COND_G:  return X86::JG_4;
   2614   case X86::COND_GE: return X86::JGE_4;
   2615   case X86::COND_B:  return X86::JB_4;
   2616   case X86::COND_BE: return X86::JBE_4;
   2617   case X86::COND_A:  return X86::JA_4;
   2618   case X86::COND_AE: return X86::JAE_4;
   2619   case X86::COND_S:  return X86::JS_4;
   2620   case X86::COND_NS: return X86::JNS_4;
   2621   case X86::COND_P:  return X86::JP_4;
   2622   case X86::COND_NP: return X86::JNP_4;
   2623   case X86::COND_O:  return X86::JO_4;
   2624   case X86::COND_NO: return X86::JNO_4;
   2625   }
   2626 }
   2627 
   2628 /// GetOppositeBranchCondition - Return the inverse of the specified condition,
   2629 /// e.g. turning COND_E to COND_NE.
   2630 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
   2631   switch (CC) {
   2632   default: llvm_unreachable("Illegal condition code!");
   2633   case X86::COND_E:  return X86::COND_NE;
   2634   case X86::COND_NE: return X86::COND_E;
   2635   case X86::COND_L:  return X86::COND_GE;
   2636   case X86::COND_LE: return X86::COND_G;
   2637   case X86::COND_G:  return X86::COND_LE;
   2638   case X86::COND_GE: return X86::COND_L;
   2639   case X86::COND_B:  return X86::COND_AE;
   2640   case X86::COND_BE: return X86::COND_A;
   2641   case X86::COND_A:  return X86::COND_BE;
   2642   case X86::COND_AE: return X86::COND_B;
   2643   case X86::COND_S:  return X86::COND_NS;
   2644   case X86::COND_NS: return X86::COND_S;
   2645   case X86::COND_P:  return X86::COND_NP;
   2646   case X86::COND_NP: return X86::COND_P;
   2647   case X86::COND_O:  return X86::COND_NO;
   2648   case X86::COND_NO: return X86::COND_O;
   2649   }
   2650 }
   2651 
   2652 /// getSwappedCondition - assume the flags are set by MI(a,b), return
   2653 /// the condition code if we modify the instructions such that flags are
   2654 /// set by MI(b,a).
   2655 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
   2656   switch (CC) {
   2657   default: return X86::COND_INVALID;
   2658   case X86::COND_E:  return X86::COND_E;
   2659   case X86::COND_NE: return X86::COND_NE;
   2660   case X86::COND_L:  return X86::COND_G;
   2661   case X86::COND_LE: return X86::COND_GE;
   2662   case X86::COND_G:  return X86::COND_L;
   2663   case X86::COND_GE: return X86::COND_LE;
   2664   case X86::COND_B:  return X86::COND_A;
   2665   case X86::COND_BE: return X86::COND_AE;
   2666   case X86::COND_A:  return X86::COND_B;
   2667   case X86::COND_AE: return X86::COND_BE;
   2668   }
   2669 }
   2670 
   2671 /// getSETFromCond - Return a set opcode for the given condition and
   2672 /// whether it has memory operand.
   2673 unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) {
   2674   static const uint16_t Opc[16][2] = {
   2675     { X86::SETAr,  X86::SETAm  },
   2676     { X86::SETAEr, X86::SETAEm },
   2677     { X86::SETBr,  X86::SETBm  },
   2678     { X86::SETBEr, X86::SETBEm },
   2679     { X86::SETEr,  X86::SETEm  },
   2680     { X86::SETGr,  X86::SETGm  },
   2681     { X86::SETGEr, X86::SETGEm },
   2682     { X86::SETLr,  X86::SETLm  },
   2683     { X86::SETLEr, X86::SETLEm },
   2684     { X86::SETNEr, X86::SETNEm },
   2685     { X86::SETNOr, X86::SETNOm },
   2686     { X86::SETNPr, X86::SETNPm },
   2687     { X86::SETNSr, X86::SETNSm },
   2688     { X86::SETOr,  X86::SETOm  },
   2689     { X86::SETPr,  X86::SETPm  },
   2690     { X86::SETSr,  X86::SETSm  }
   2691   };
   2692 
   2693   assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes");
   2694   return Opc[CC][HasMemoryOperand ? 1 : 0];
   2695 }
   2696 
   2697 /// getCMovFromCond - Return a cmov opcode for the given condition,
   2698 /// register size in bytes, and operand type.
   2699 unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes,
   2700                               bool HasMemoryOperand) {
   2701   static const uint16_t Opc[32][3] = {
   2702     { X86::CMOVA16rr,  X86::CMOVA32rr,  X86::CMOVA64rr  },
   2703     { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
   2704     { X86::CMOVB16rr,  X86::CMOVB32rr,  X86::CMOVB64rr  },
   2705     { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
   2706     { X86::CMOVE16rr,  X86::CMOVE32rr,  X86::CMOVE64rr  },
   2707     { X86::CMOVG16rr,  X86::CMOVG32rr,  X86::CMOVG64rr  },
   2708     { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
   2709     { X86::CMOVL16rr,  X86::CMOVL32rr,  X86::CMOVL64rr  },
   2710     { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
   2711     { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
   2712     { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
   2713     { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
   2714     { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
   2715     { X86::CMOVO16rr,  X86::CMOVO32rr,  X86::CMOVO64rr  },
   2716     { X86::CMOVP16rr,  X86::CMOVP32rr,  X86::CMOVP64rr  },
   2717     { X86::CMOVS16rr,  X86::CMOVS32rr,  X86::CMOVS64rr  },
   2718     { X86::CMOVA16rm,  X86::CMOVA32rm,  X86::CMOVA64rm  },
   2719     { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
   2720     { X86::CMOVB16rm,  X86::CMOVB32rm,  X86::CMOVB64rm  },
   2721     { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
   2722     { X86::CMOVE16rm,  X86::CMOVE32rm,  X86::CMOVE64rm  },
   2723     { X86::CMOVG16rm,  X86::CMOVG32rm,  X86::CMOVG64rm  },
   2724     { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
   2725     { X86::CMOVL16rm,  X86::CMOVL32rm,  X86::CMOVL64rm  },
   2726     { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
   2727     { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
   2728     { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
   2729     { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
   2730     { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
   2731     { X86::CMOVO16rm,  X86::CMOVO32rm,  X86::CMOVO64rm  },
   2732     { X86::CMOVP16rm,  X86::CMOVP32rm,  X86::CMOVP64rm  },
   2733     { X86::CMOVS16rm,  X86::CMOVS32rm,  X86::CMOVS64rm  }
   2734   };
   2735 
   2736   assert(CC < 16 && "Can only handle standard cond codes");
   2737   unsigned Idx = HasMemoryOperand ? 16+CC : CC;
   2738   switch(RegBytes) {
   2739   default: llvm_unreachable("Illegal register size!");
   2740   case 2: return Opc[Idx][0];
   2741   case 4: return Opc[Idx][1];
   2742   case 8: return Opc[Idx][2];
   2743   }
   2744 }
   2745 
   2746 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
   2747   if (!MI->isTerminator()) return false;
   2748 
   2749   // Conditional branch is a special case.
   2750   if (MI->isBranch() && !MI->isBarrier())
   2751     return true;
   2752   if (!MI->isPredicable())
   2753     return true;
   2754   return !isPredicated(MI);
   2755 }
   2756 
   2757 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
   2758                                  MachineBasicBlock *&TBB,
   2759                                  MachineBasicBlock *&FBB,
   2760                                  SmallVectorImpl<MachineOperand> &Cond,
   2761                                  bool AllowModify) const {
   2762   // Start from the bottom of the block and work up, examining the
   2763   // terminator instructions.
   2764   MachineBasicBlock::iterator I = MBB.end();
   2765   MachineBasicBlock::iterator UnCondBrIter = MBB.end();
   2766   while (I != MBB.begin()) {
   2767     --I;
   2768     if (I->isDebugValue())
   2769       continue;
   2770 
   2771     // Working from the bottom, when we see a non-terminator instruction, we're
   2772     // done.
   2773     if (!isUnpredicatedTerminator(I))
   2774       break;
   2775 
   2776     // A terminator that isn't a branch can't easily be handled by this
   2777     // analysis.
   2778     if (!I->isBranch())
   2779       return true;
   2780 
   2781     // Handle unconditional branches.
   2782     if (I->getOpcode() == X86::JMP_4) {
   2783       UnCondBrIter = I;
   2784 
   2785       if (!AllowModify) {
   2786         TBB = I->getOperand(0).getMBB();
   2787         continue;
   2788       }
   2789 
   2790       // If the block has any instructions after a JMP, delete them.
   2791       while (std::next(I) != MBB.end())
   2792         std::next(I)->eraseFromParent();
   2793 
   2794       Cond.clear();
   2795       FBB = nullptr;
   2796 
   2797       // Delete the JMP if it's equivalent to a fall-through.
   2798       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
   2799         TBB = nullptr;
   2800         I->eraseFromParent();
   2801         I = MBB.end();
   2802         UnCondBrIter = MBB.end();
   2803         continue;
   2804       }
   2805 
   2806       // TBB is used to indicate the unconditional destination.
   2807       TBB = I->getOperand(0).getMBB();
   2808       continue;
   2809     }
   2810 
   2811     // Handle conditional branches.
   2812     X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
   2813     if (BranchCode == X86::COND_INVALID)
   2814       return true;  // Can't handle indirect branch.
   2815 
   2816     // Working from the bottom, handle the first conditional branch.
   2817     if (Cond.empty()) {
   2818       MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
   2819       if (AllowModify && UnCondBrIter != MBB.end() &&
   2820           MBB.isLayoutSuccessor(TargetBB)) {
   2821         // If we can modify the code and it ends in something like:
   2822         //
   2823         //     jCC L1
   2824         //     jmp L2
   2825         //   L1:
   2826         //     ...
   2827         //   L2:
   2828         //
   2829         // Then we can change this to:
   2830         //
   2831         //     jnCC L2
   2832         //   L1:
   2833         //     ...
   2834         //   L2:
   2835         //
   2836         // Which is a bit more efficient.
   2837         // We conditionally jump to the fall-through block.
   2838         BranchCode = GetOppositeBranchCondition(BranchCode);
   2839         unsigned JNCC = GetCondBranchFromCond(BranchCode);
   2840         MachineBasicBlock::iterator OldInst = I;
   2841 
   2842         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
   2843           .addMBB(UnCondBrIter->getOperand(0).getMBB());
   2844         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
   2845           .addMBB(TargetBB);
   2846 
   2847         OldInst->eraseFromParent();
   2848         UnCondBrIter->eraseFromParent();
   2849 
   2850         // Restart the analysis.
   2851         UnCondBrIter = MBB.end();
   2852         I = MBB.end();
   2853         continue;
   2854       }
   2855 
   2856       FBB = TBB;
   2857       TBB = I->getOperand(0).getMBB();
   2858       Cond.push_back(MachineOperand::CreateImm(BranchCode));
   2859       continue;
   2860     }
   2861 
   2862     // Handle subsequent conditional branches. Only handle the case where all
   2863     // conditional branches branch to the same destination and their condition
   2864     // opcodes fit one of the special multi-branch idioms.
   2865     assert(Cond.size() == 1);
   2866     assert(TBB);
   2867 
   2868     // Only handle the case where all conditional branches branch to the same
   2869     // destination.
   2870     if (TBB != I->getOperand(0).getMBB())
   2871       return true;
   2872 
   2873     // If the conditions are the same, we can leave them alone.
   2874     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
   2875     if (OldBranchCode == BranchCode)
   2876       continue;
   2877 
   2878     // If they differ, see if they fit one of the known patterns. Theoretically,
   2879     // we could handle more patterns here, but we shouldn't expect to see them
   2880     // if instruction selection has done a reasonable job.
   2881     if ((OldBranchCode == X86::COND_NP &&
   2882          BranchCode == X86::COND_E) ||
   2883         (OldBranchCode == X86::COND_E &&
   2884          BranchCode == X86::COND_NP))
   2885       BranchCode = X86::COND_NP_OR_E;
   2886     else if ((OldBranchCode == X86::COND_P &&
   2887               BranchCode == X86::COND_NE) ||
   2888              (OldBranchCode == X86::COND_NE &&
   2889               BranchCode == X86::COND_P))
   2890       BranchCode = X86::COND_NE_OR_P;
   2891     else
   2892       return true;
   2893 
   2894     // Update the MachineOperand.
   2895     Cond[0].setImm(BranchCode);
   2896   }
   2897 
   2898   return false;
   2899 }
   2900 
   2901 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
   2902   MachineBasicBlock::iterator I = MBB.end();
   2903   unsigned Count = 0;
   2904 
   2905   while (I != MBB.begin()) {
   2906     --I;
   2907     if (I->isDebugValue())
   2908       continue;
   2909     if (I->getOpcode() != X86::JMP_4 &&
   2910         getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
   2911       break;
   2912     // Remove the branch.
   2913     I->eraseFromParent();
   2914     I = MBB.end();
   2915     ++Count;
   2916   }
   2917 
   2918   return Count;
   2919 }
   2920 
   2921 unsigned
   2922 X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
   2923                            MachineBasicBlock *FBB,
   2924                            const SmallVectorImpl<MachineOperand> &Cond,
   2925                            DebugLoc DL) const {
   2926   // Shouldn't be a fall through.
   2927   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
   2928   assert((Cond.size() == 1 || Cond.size() == 0) &&
   2929          "X86 branch conditions have one component!");
   2930 
   2931   if (Cond.empty()) {
   2932     // Unconditional branch?
   2933     assert(!FBB && "Unconditional branch with multiple successors!");
   2934     BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
   2935     return 1;
   2936   }
   2937 
   2938   // Conditional branch.
   2939   unsigned Count = 0;
   2940   X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
   2941   switch (CC) {
   2942   case X86::COND_NP_OR_E:
   2943     // Synthesize NP_OR_E with two branches.
   2944     BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
   2945     ++Count;
   2946     BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
   2947     ++Count;
   2948     break;
   2949   case X86::COND_NE_OR_P:
   2950     // Synthesize NE_OR_P with two branches.
   2951     BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
   2952     ++Count;
   2953     BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
   2954     ++Count;
   2955     break;
   2956   default: {
   2957     unsigned Opc = GetCondBranchFromCond(CC);
   2958     BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
   2959     ++Count;
   2960   }
   2961   }
   2962   if (FBB) {
   2963     // Two-way Conditional branch. Insert the second branch.
   2964     BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
   2965     ++Count;
   2966   }
   2967   return Count;
   2968 }
   2969 
   2970 bool X86InstrInfo::
   2971 canInsertSelect(const MachineBasicBlock &MBB,
   2972                 const SmallVectorImpl<MachineOperand> &Cond,
   2973                 unsigned TrueReg, unsigned FalseReg,
   2974                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
   2975   // Not all subtargets have cmov instructions.
   2976   if (!Subtarget.hasCMov())
   2977     return false;
   2978   if (Cond.size() != 1)
   2979     return false;
   2980   // We cannot do the composite conditions, at least not in SSA form.
   2981   if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
   2982     return false;
   2983 
   2984   // Check register classes.
   2985   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
   2986   const TargetRegisterClass *RC =
   2987     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
   2988   if (!RC)
   2989     return false;
   2990 
   2991   // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
   2992   if (X86::GR16RegClass.hasSubClassEq(RC) ||
   2993       X86::GR32RegClass.hasSubClassEq(RC) ||
   2994       X86::GR64RegClass.hasSubClassEq(RC)) {
   2995     // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
   2996     // Bridge. Probably Ivy Bridge as well.
   2997     CondCycles = 2;
   2998     TrueCycles = 2;
   2999     FalseCycles = 2;
   3000     return true;
   3001   }
   3002 
   3003   // Can't do vectors.
   3004   return false;
   3005 }
   3006 
   3007 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
   3008                                 MachineBasicBlock::iterator I, DebugLoc DL,
   3009                                 unsigned DstReg,
   3010                                 const SmallVectorImpl<MachineOperand> &Cond,
   3011                                 unsigned TrueReg, unsigned FalseReg) const {
   3012    MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
   3013    assert(Cond.size() == 1 && "Invalid Cond array");
   3014    unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
   3015                                   MRI.getRegClass(DstReg)->getSize(),
   3016                                   false/*HasMemoryOperand*/);
   3017    BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
   3018 }
   3019 
   3020 /// isHReg - Test if the given register is a physical h register.
   3021 static bool isHReg(unsigned Reg) {
   3022   return X86::GR8_ABCD_HRegClass.contains(Reg);
   3023 }
   3024 
   3025 // Try and copy between VR128/VR64 and GR64 registers.
   3026 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
   3027                                         const X86Subtarget &Subtarget) {
   3028 
   3029   // SrcReg(VR128) -> DestReg(GR64)
   3030   // SrcReg(VR64)  -> DestReg(GR64)
   3031   // SrcReg(GR64)  -> DestReg(VR128)
   3032   // SrcReg(GR64)  -> DestReg(VR64)
   3033 
   3034   bool HasAVX = Subtarget.hasAVX();
   3035   bool HasAVX512 = Subtarget.hasAVX512();
   3036   if (X86::GR64RegClass.contains(DestReg)) {
   3037     if (X86::VR128XRegClass.contains(SrcReg))
   3038       // Copy from a VR128 register to a GR64 register.
   3039       return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr :
   3040                                                X86::MOVPQIto64rr);
   3041     if (X86::VR64RegClass.contains(SrcReg))
   3042       // Copy from a VR64 register to a GR64 register.
   3043       return X86::MOVSDto64rr;
   3044   } else if (X86::GR64RegClass.contains(SrcReg)) {
   3045     // Copy from a GR64 register to a VR128 register.
   3046     if (X86::VR128XRegClass.contains(DestReg))
   3047       return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr :
   3048                                                X86::MOV64toPQIrr);
   3049     // Copy from a GR64 register to a VR64 register.
   3050     if (X86::VR64RegClass.contains(DestReg))
   3051       return X86::MOV64toSDrr;
   3052   }
   3053 
   3054   // SrcReg(FR32) -> DestReg(GR32)
   3055   // SrcReg(GR32) -> DestReg(FR32)
   3056 
   3057   if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg))
   3058     // Copy from a FR32 register to a GR32 register.
   3059     return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr);
   3060 
   3061   if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
   3062     // Copy from a GR32 register to a FR32 register.
   3063     return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr);
   3064   return 0;
   3065 }
   3066 
   3067 inline static bool MaskRegClassContains(unsigned Reg) {
   3068   return X86::VK8RegClass.contains(Reg) ||
   3069          X86::VK16RegClass.contains(Reg) ||
   3070          X86::VK1RegClass.contains(Reg);
   3071 }
   3072 static
   3073 unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg) {
   3074   if (X86::VR128XRegClass.contains(DestReg, SrcReg) ||
   3075       X86::VR256XRegClass.contains(DestReg, SrcReg) ||
   3076       X86::VR512RegClass.contains(DestReg, SrcReg)) {
   3077      DestReg = get512BitSuperRegister(DestReg);
   3078      SrcReg = get512BitSuperRegister(SrcReg);
   3079      return X86::VMOVAPSZrr;
   3080   }
   3081   if (MaskRegClassContains(DestReg) &&
   3082       MaskRegClassContains(SrcReg))
   3083     return X86::KMOVWkk;
   3084   if (MaskRegClassContains(DestReg) &&
   3085       (X86::GR32RegClass.contains(SrcReg) ||
   3086        X86::GR16RegClass.contains(SrcReg) ||
   3087        X86::GR8RegClass.contains(SrcReg))) {
   3088     SrcReg = getX86SubSuperRegister(SrcReg, MVT::i32);
   3089     return X86::KMOVWkr;
   3090   }
   3091   if ((X86::GR32RegClass.contains(DestReg) ||
   3092        X86::GR16RegClass.contains(DestReg) ||
   3093        X86::GR8RegClass.contains(DestReg)) &&
   3094        MaskRegClassContains(SrcReg)) {
   3095     DestReg = getX86SubSuperRegister(DestReg, MVT::i32);
   3096     return X86::KMOVWrk;
   3097   }
   3098   return 0;
   3099 }
   3100 
   3101 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
   3102                                MachineBasicBlock::iterator MI, DebugLoc DL,
   3103                                unsigned DestReg, unsigned SrcReg,
   3104                                bool KillSrc) const {
   3105   // First deal with the normal symmetric copies.
   3106   bool HasAVX = Subtarget.hasAVX();
   3107   bool HasAVX512 = Subtarget.hasAVX512();
   3108   unsigned Opc = 0;
   3109   if (X86::GR64RegClass.contains(DestReg, SrcReg))
   3110     Opc = X86::MOV64rr;
   3111   else if (X86::GR32RegClass.contains(DestReg, SrcReg))
   3112     Opc = X86::MOV32rr;
   3113   else if (X86::GR16RegClass.contains(DestReg, SrcReg))
   3114     Opc = X86::MOV16rr;
   3115   else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
   3116     // Copying to or from a physical H register on x86-64 requires a NOREX
   3117     // move.  Otherwise use a normal move.
   3118     if ((isHReg(DestReg) || isHReg(SrcReg)) &&
   3119         Subtarget.is64Bit()) {
   3120       Opc = X86::MOV8rr_NOREX;
   3121       // Both operands must be encodable without an REX prefix.
   3122       assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
   3123              "8-bit H register can not be copied outside GR8_NOREX");
   3124     } else
   3125       Opc = X86::MOV8rr;
   3126   }
   3127   else if (X86::VR64RegClass.contains(DestReg, SrcReg))
   3128     Opc = X86::MMX_MOVQ64rr;
   3129   else if (HasAVX512)
   3130     Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg);
   3131   else if (X86::VR128RegClass.contains(DestReg, SrcReg))
   3132     Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
   3133   else if (X86::VR256RegClass.contains(DestReg, SrcReg))
   3134     Opc = X86::VMOVAPSYrr;
   3135   if (!Opc)
   3136     Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
   3137 
   3138   if (Opc) {
   3139     BuildMI(MBB, MI, DL, get(Opc), DestReg)
   3140       .addReg(SrcReg, getKillRegState(KillSrc));
   3141     return;
   3142   }
   3143 
   3144   // Moving EFLAGS to / from another register requires a push and a pop.
   3145   // Notice that we have to adjust the stack if we don't want to clobber the
   3146   // first frame index. See X86FrameLowering.cpp - colobbersTheStack.
   3147   if (SrcReg == X86::EFLAGS) {
   3148     if (X86::GR64RegClass.contains(DestReg)) {
   3149       BuildMI(MBB, MI, DL, get(X86::PUSHF64));
   3150       BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
   3151       return;
   3152     }
   3153     if (X86::GR32RegClass.contains(DestReg)) {
   3154       BuildMI(MBB, MI, DL, get(X86::PUSHF32));
   3155       BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
   3156       return;
   3157     }
   3158   }
   3159   if (DestReg == X86::EFLAGS) {
   3160     if (X86::GR64RegClass.contains(SrcReg)) {
   3161       BuildMI(MBB, MI, DL, get(X86::PUSH64r))
   3162         .addReg(SrcReg, getKillRegState(KillSrc));
   3163       BuildMI(MBB, MI, DL, get(X86::POPF64));
   3164       return;
   3165     }
   3166     if (X86::GR32RegClass.contains(SrcReg)) {
   3167       BuildMI(MBB, MI, DL, get(X86::PUSH32r))
   3168         .addReg(SrcReg, getKillRegState(KillSrc));
   3169       BuildMI(MBB, MI, DL, get(X86::POPF32));
   3170       return;
   3171     }
   3172   }
   3173 
   3174   DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
   3175                << " to " << RI.getName(DestReg) << '\n');
   3176   llvm_unreachable("Cannot emit physreg copy instruction");
   3177 }
   3178 
   3179 static unsigned getLoadStoreRegOpcode(unsigned Reg,
   3180                                       const TargetRegisterClass *RC,
   3181                                       bool isStackAligned,
   3182                                       const X86Subtarget &STI,
   3183                                       bool load) {
   3184   if (STI.hasAVX512()) {
   3185     if (X86::VK8RegClass.hasSubClassEq(RC)  ||
   3186       X86::VK16RegClass.hasSubClassEq(RC))
   3187       return load ? X86::KMOVWkm : X86::KMOVWmk;
   3188     if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC))
   3189       return load ? X86::VMOVSSZrm : X86::VMOVSSZmr;
   3190     if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC))
   3191       return load ? X86::VMOVSDZrm : X86::VMOVSDZmr;
   3192     if (X86::VR512RegClass.hasSubClassEq(RC))
   3193       return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
   3194   }
   3195 
   3196   bool HasAVX = STI.hasAVX();
   3197   switch (RC->getSize()) {
   3198   default:
   3199     llvm_unreachable("Unknown spill size");
   3200   case 1:
   3201     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
   3202     if (STI.is64Bit())
   3203       // Copying to or from a physical H register on x86-64 requires a NOREX
   3204       // move.  Otherwise use a normal move.
   3205       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
   3206         return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
   3207     return load ? X86::MOV8rm : X86::MOV8mr;
   3208   case 2:
   3209     assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
   3210     return load ? X86::MOV16rm : X86::MOV16mr;
   3211   case 4:
   3212     if (X86::GR32RegClass.hasSubClassEq(RC))
   3213       return load ? X86::MOV32rm : X86::MOV32mr;
   3214     if (X86::FR32RegClass.hasSubClassEq(RC))
   3215       return load ?
   3216         (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
   3217         (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
   3218     if (X86::RFP32RegClass.hasSubClassEq(RC))
   3219       return load ? X86::LD_Fp32m : X86::ST_Fp32m;
   3220     llvm_unreachable("Unknown 4-byte regclass");
   3221   case 8:
   3222     if (X86::GR64RegClass.hasSubClassEq(RC))
   3223       return load ? X86::MOV64rm : X86::MOV64mr;
   3224     if (X86::FR64RegClass.hasSubClassEq(RC))
   3225       return load ?
   3226         (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
   3227         (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
   3228     if (X86::VR64RegClass.hasSubClassEq(RC))
   3229       return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
   3230     if (X86::RFP64RegClass.hasSubClassEq(RC))
   3231       return load ? X86::LD_Fp64m : X86::ST_Fp64m;
   3232     llvm_unreachable("Unknown 8-byte regclass");
   3233   case 10:
   3234     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
   3235     return load ? X86::LD_Fp80m : X86::ST_FpP80m;
   3236   case 16: {
   3237     assert((X86::VR128RegClass.hasSubClassEq(RC) ||
   3238             X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass");
   3239     // If stack is realigned we can use aligned stores.
   3240     if (isStackAligned)
   3241       return load ?
   3242         (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
   3243         (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
   3244     else
   3245       return load ?
   3246         (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
   3247         (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
   3248   }
   3249   case 32:
   3250     assert((X86::VR256RegClass.hasSubClassEq(RC) ||
   3251             X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass");
   3252     // If stack is realigned we can use aligned stores.
   3253     if (isStackAligned)
   3254       return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
   3255     else
   3256       return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
   3257   case 64:
   3258     assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
   3259     if (isStackAligned)
   3260       return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
   3261     else
   3262       return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
   3263   }
   3264 }
   3265 
   3266 static unsigned getStoreRegOpcode(unsigned SrcReg,
   3267                                   const TargetRegisterClass *RC,
   3268                                   bool isStackAligned,
   3269                                   const X86Subtarget &STI) {
   3270   return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
   3271 }
   3272 
   3273 
   3274 static unsigned getLoadRegOpcode(unsigned DestReg,
   3275                                  const TargetRegisterClass *RC,
   3276                                  bool isStackAligned,
   3277                                  const X86Subtarget &STI) {
   3278   return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
   3279 }
   3280 
   3281 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
   3282                                        MachineBasicBlock::iterator MI,
   3283                                        unsigned SrcReg, bool isKill, int FrameIdx,
   3284                                        const TargetRegisterClass *RC,
   3285                                        const TargetRegisterInfo *TRI) const {
   3286   const MachineFunction &MF = *MBB.getParent();
   3287   assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
   3288          "Stack slot too small for store");
   3289   unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
   3290   bool isAligned =
   3291       (MF.getTarget().getFrameLowering()->getStackAlignment() >= Alignment) ||
   3292       RI.canRealignStack(MF);
   3293   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
   3294   DebugLoc DL = MBB.findDebugLoc(MI);
   3295   addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
   3296     .addReg(SrcReg, getKillRegState(isKill));
   3297 }
   3298 
   3299 void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
   3300                                   bool isKill,
   3301                                   SmallVectorImpl<MachineOperand> &Addr,
   3302                                   const TargetRegisterClass *RC,
   3303                                   MachineInstr::mmo_iterator MMOBegin,
   3304                                   MachineInstr::mmo_iterator MMOEnd,
   3305                                   SmallVectorImpl<MachineInstr*> &NewMIs) const {
   3306   unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
   3307   bool isAligned = MMOBegin != MMOEnd &&
   3308                    (*MMOBegin)->getAlignment() >= Alignment;
   3309   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
   3310   DebugLoc DL;
   3311   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
   3312   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
   3313     MIB.addOperand(Addr[i]);
   3314   MIB.addReg(SrcReg, getKillRegState(isKill));
   3315   (*MIB).setMemRefs(MMOBegin, MMOEnd);
   3316   NewMIs.push_back(MIB);
   3317 }
   3318 
   3319 
   3320 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
   3321                                         MachineBasicBlock::iterator MI,
   3322                                         unsigned DestReg, int FrameIdx,
   3323                                         const TargetRegisterClass *RC,
   3324                                         const TargetRegisterInfo *TRI) const {
   3325   const MachineFunction &MF = *MBB.getParent();
   3326   unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
   3327   bool isAligned =
   3328       (MF.getTarget().getFrameLowering()->getStackAlignment() >= Alignment) ||
   3329       RI.canRealignStack(MF);
   3330   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
   3331   DebugLoc DL = MBB.findDebugLoc(MI);
   3332   addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
   3333 }
   3334 
   3335 void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
   3336                                  SmallVectorImpl<MachineOperand> &Addr,
   3337                                  const TargetRegisterClass *RC,
   3338                                  MachineInstr::mmo_iterator MMOBegin,
   3339                                  MachineInstr::mmo_iterator MMOEnd,
   3340                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
   3341   unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
   3342   bool isAligned = MMOBegin != MMOEnd &&
   3343                    (*MMOBegin)->getAlignment() >= Alignment;
   3344   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
   3345   DebugLoc DL;
   3346   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
   3347   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
   3348     MIB.addOperand(Addr[i]);
   3349   (*MIB).setMemRefs(MMOBegin, MMOEnd);
   3350   NewMIs.push_back(MIB);
   3351 }
   3352 
   3353 bool X86InstrInfo::
   3354 analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
   3355                int &CmpMask, int &CmpValue) const {
   3356   switch (MI->getOpcode()) {
   3357   default: break;
   3358   case X86::CMP64ri32:
   3359   case X86::CMP64ri8:
   3360   case X86::CMP32ri:
   3361   case X86::CMP32ri8:
   3362   case X86::CMP16ri:
   3363   case X86::CMP16ri8:
   3364   case X86::CMP8ri:
   3365     SrcReg = MI->getOperand(0).getReg();
   3366     SrcReg2 = 0;
   3367     CmpMask = ~0;
   3368     CmpValue = MI->getOperand(1).getImm();
   3369     return true;
   3370   // A SUB can be used to perform comparison.
   3371   case X86::SUB64rm:
   3372   case X86::SUB32rm:
   3373   case X86::SUB16rm:
   3374   case X86::SUB8rm:
   3375     SrcReg = MI->getOperand(1).getReg();
   3376     SrcReg2 = 0;
   3377     CmpMask = ~0;
   3378     CmpValue = 0;
   3379     return true;
   3380   case X86::SUB64rr:
   3381   case X86::SUB32rr:
   3382   case X86::SUB16rr:
   3383   case X86::SUB8rr:
   3384     SrcReg = MI->getOperand(1).getReg();
   3385     SrcReg2 = MI->getOperand(2).getReg();
   3386     CmpMask = ~0;
   3387     CmpValue = 0;
   3388     return true;
   3389   case X86::SUB64ri32:
   3390   case X86::SUB64ri8:
   3391   case X86::SUB32ri:
   3392   case X86::SUB32ri8:
   3393   case X86::SUB16ri:
   3394   case X86::SUB16ri8:
   3395   case X86::SUB8ri:
   3396     SrcReg = MI->getOperand(1).getReg();
   3397     SrcReg2 = 0;
   3398     CmpMask = ~0;
   3399     CmpValue = MI->getOperand(2).getImm();
   3400     return true;
   3401   case X86::CMP64rr:
   3402   case X86::CMP32rr:
   3403   case X86::CMP16rr:
   3404   case X86::CMP8rr:
   3405     SrcReg = MI->getOperand(0).getReg();
   3406     SrcReg2 = MI->getOperand(1).getReg();
   3407     CmpMask = ~0;
   3408     CmpValue = 0;
   3409     return true;
   3410   case X86::TEST8rr:
   3411   case X86::TEST16rr:
   3412   case X86::TEST32rr:
   3413   case X86::TEST64rr:
   3414     SrcReg = MI->getOperand(0).getReg();
   3415     if (MI->getOperand(1).getReg() != SrcReg) return false;
   3416     // Compare against zero.
   3417     SrcReg2 = 0;
   3418     CmpMask = ~0;
   3419     CmpValue = 0;
   3420     return true;
   3421   }
   3422   return false;
   3423 }
   3424 
   3425 /// isRedundantFlagInstr - check whether the first instruction, whose only
   3426 /// purpose is to update flags, can be made redundant.
   3427 /// CMPrr can be made redundant by SUBrr if the operands are the same.
   3428 /// This function can be extended later on.
   3429 /// SrcReg, SrcRegs: register operands for FlagI.
   3430 /// ImmValue: immediate for FlagI if it takes an immediate.
   3431 inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
   3432                                         unsigned SrcReg2, int ImmValue,
   3433                                         MachineInstr *OI) {
   3434   if (((FlagI->getOpcode() == X86::CMP64rr &&
   3435         OI->getOpcode() == X86::SUB64rr) ||
   3436        (FlagI->getOpcode() == X86::CMP32rr &&
   3437         OI->getOpcode() == X86::SUB32rr)||
   3438        (FlagI->getOpcode() == X86::CMP16rr &&
   3439         OI->getOpcode() == X86::SUB16rr)||
   3440        (FlagI->getOpcode() == X86::CMP8rr &&
   3441         OI->getOpcode() == X86::SUB8rr)) &&
   3442       ((OI->getOperand(1).getReg() == SrcReg &&
   3443         OI->getOperand(2).getReg() == SrcReg2) ||
   3444        (OI->getOperand(1).getReg() == SrcReg2 &&
   3445         OI->getOperand(2).getReg() == SrcReg)))
   3446     return true;
   3447 
   3448   if (((FlagI->getOpcode() == X86::CMP64ri32 &&
   3449         OI->getOpcode() == X86::SUB64ri32) ||
   3450        (FlagI->getOpcode() == X86::CMP64ri8 &&
   3451         OI->getOpcode() == X86::SUB64ri8) ||
   3452        (FlagI->getOpcode() == X86::CMP32ri &&
   3453         OI->getOpcode() == X86::SUB32ri) ||
   3454        (FlagI->getOpcode() == X86::CMP32ri8 &&
   3455         OI->getOpcode() == X86::SUB32ri8) ||
   3456        (FlagI->getOpcode() == X86::CMP16ri &&
   3457         OI->getOpcode() == X86::SUB16ri) ||
   3458        (FlagI->getOpcode() == X86::CMP16ri8 &&
   3459         OI->getOpcode() == X86::SUB16ri8) ||
   3460        (FlagI->getOpcode() == X86::CMP8ri &&
   3461         OI->getOpcode() == X86::SUB8ri)) &&
   3462       OI->getOperand(1).getReg() == SrcReg &&
   3463       OI->getOperand(2).getImm() == ImmValue)
   3464     return true;
   3465   return false;
   3466 }
   3467 
   3468 /// isDefConvertible - check whether the definition can be converted
   3469 /// to remove a comparison against zero.
   3470 inline static bool isDefConvertible(MachineInstr *MI) {
   3471   switch (MI->getOpcode()) {
   3472   default: return false;
   3473 
   3474   // The shift instructions only modify ZF if their shift count is non-zero.
   3475   // N.B.: The processor truncates the shift count depending on the encoding.
   3476   case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
   3477   case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
   3478      return getTruncatedShiftCount(MI, 2) != 0;
   3479 
   3480   // Some left shift instructions can be turned into LEA instructions but only
   3481   // if their flags aren't used. Avoid transforming such instructions.
   3482   case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
   3483     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
   3484     if (isTruncatedShiftCountForLEA(ShAmt)) return false;
   3485     return ShAmt != 0;
   3486   }
   3487 
   3488   case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
   3489   case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
   3490      return getTruncatedShiftCount(MI, 3) != 0;
   3491 
   3492   case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
   3493   case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
   3494   case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
   3495   case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
   3496   case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
   3497   case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
   3498   case X86::DEC64_32r: case X86::DEC64_16r:
   3499   case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
   3500   case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
   3501   case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
   3502   case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
   3503   case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
   3504   case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
   3505   case X86::INC64_32r: case X86::INC64_16r:
   3506   case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
   3507   case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
   3508   case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
   3509   case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
   3510   case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
   3511   case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
   3512   case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
   3513   case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
   3514   case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
   3515   case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
   3516   case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
   3517   case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
   3518   case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
   3519   case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
   3520   case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
   3521   case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
   3522   case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
   3523   case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
   3524   case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
   3525   case X86::ADC32ri:   case X86::ADC32ri8:
   3526   case X86::ADC32rr:   case X86::ADC64ri32:
   3527   case X86::ADC64ri8:  case X86::ADC64rr:
   3528   case X86::SBB32ri:   case X86::SBB32ri8:
   3529   case X86::SBB32rr:   case X86::SBB64ri32:
   3530   case X86::SBB64ri8:  case X86::SBB64rr:
   3531   case X86::ANDN32rr:  case X86::ANDN32rm:
   3532   case X86::ANDN64rr:  case X86::ANDN64rm:
   3533   case X86::BEXTR32rr: case X86::BEXTR64rr:
   3534   case X86::BEXTR32rm: case X86::BEXTR64rm:
   3535   case X86::BLSI32rr:  case X86::BLSI32rm:
   3536   case X86::BLSI64rr:  case X86::BLSI64rm:
   3537   case X86::BLSMSK32rr:case X86::BLSMSK32rm:
   3538   case X86::BLSMSK64rr:case X86::BLSMSK64rm:
   3539   case X86::BLSR32rr:  case X86::BLSR32rm:
   3540   case X86::BLSR64rr:  case X86::BLSR64rm:
   3541   case X86::BZHI32rr:  case X86::BZHI32rm:
   3542   case X86::BZHI64rr:  case X86::BZHI64rm:
   3543   case X86::LZCNT16rr: case X86::LZCNT16rm:
   3544   case X86::LZCNT32rr: case X86::LZCNT32rm:
   3545   case X86::LZCNT64rr: case X86::LZCNT64rm:
   3546   case X86::POPCNT16rr:case X86::POPCNT16rm:
   3547   case X86::POPCNT32rr:case X86::POPCNT32rm:
   3548   case X86::POPCNT64rr:case X86::POPCNT64rm:
   3549   case X86::TZCNT16rr: case X86::TZCNT16rm:
   3550   case X86::TZCNT32rr: case X86::TZCNT32rm:
   3551   case X86::TZCNT64rr: case X86::TZCNT64rm:
   3552     return true;
   3553   }
   3554 }
   3555 
   3556 /// isUseDefConvertible - check whether the use can be converted
   3557 /// to remove a comparison against zero.
   3558 static X86::CondCode isUseDefConvertible(MachineInstr *MI) {
   3559   switch (MI->getOpcode()) {
   3560   default: return X86::COND_INVALID;
   3561   case X86::LZCNT16rr: case X86::LZCNT16rm:
   3562   case X86::LZCNT32rr: case X86::LZCNT32rm:
   3563   case X86::LZCNT64rr: case X86::LZCNT64rm:
   3564     return X86::COND_B;
   3565   case X86::POPCNT16rr:case X86::POPCNT16rm:
   3566   case X86::POPCNT32rr:case X86::POPCNT32rm:
   3567   case X86::POPCNT64rr:case X86::POPCNT64rm:
   3568     return X86::COND_E;
   3569   case X86::TZCNT16rr: case X86::TZCNT16rm:
   3570   case X86::TZCNT32rr: case X86::TZCNT32rm:
   3571   case X86::TZCNT64rr: case X86::TZCNT64rm:
   3572     return X86::COND_B;
   3573   }
   3574 }
   3575 
   3576 /// optimizeCompareInstr - Check if there exists an earlier instruction that
   3577 /// operates on the same source operands and sets flags in the same way as
   3578 /// Compare; remove Compare if possible.
   3579 bool X86InstrInfo::
   3580 optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
   3581                      int CmpMask, int CmpValue,
   3582                      const MachineRegisterInfo *MRI) const {
   3583   // Check whether we can replace SUB with CMP.
   3584   unsigned NewOpcode = 0;
   3585   switch (CmpInstr->getOpcode()) {
   3586   default: break;
   3587   case X86::SUB64ri32:
   3588   case X86::SUB64ri8:
   3589   case X86::SUB32ri:
   3590   case X86::SUB32ri8:
   3591   case X86::SUB16ri:
   3592   case X86::SUB16ri8:
   3593   case X86::SUB8ri:
   3594   case X86::SUB64rm:
   3595   case X86::SUB32rm:
   3596   case X86::SUB16rm:
   3597   case X86::SUB8rm:
   3598   case X86::SUB64rr:
   3599   case X86::SUB32rr:
   3600   case X86::SUB16rr:
   3601   case X86::SUB8rr: {
   3602     if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
   3603       return false;
   3604     // There is no use of the destination register, we can replace SUB with CMP.
   3605     switch (CmpInstr->getOpcode()) {
   3606     default: llvm_unreachable("Unreachable!");
   3607     case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
   3608     case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
   3609     case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
   3610     case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
   3611     case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
   3612     case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
   3613     case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
   3614     case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
   3615     case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
   3616     case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
   3617     case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
   3618     case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
   3619     case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
   3620     case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
   3621     case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
   3622     }
   3623     CmpInstr->setDesc(get(NewOpcode));
   3624     CmpInstr->RemoveOperand(0);
   3625     // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
   3626     if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
   3627         NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
   3628       return false;
   3629   }
   3630   }
   3631 
   3632   // Get the unique definition of SrcReg.
   3633   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
   3634   if (!MI) return false;
   3635 
   3636   // CmpInstr is the first instruction of the BB.
   3637   MachineBasicBlock::iterator I = CmpInstr, Def = MI;
   3638 
   3639   // If we are comparing against zero, check whether we can use MI to update
   3640   // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
   3641   bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
   3642   if (IsCmpZero && MI->getParent() != CmpInstr->getParent())
   3643     return false;
   3644 
   3645   // If we have a use of the source register between the def and our compare
   3646   // instruction we can eliminate the compare iff the use sets EFLAGS in the
   3647   // right way.
   3648   bool ShouldUpdateCC = false;
   3649   X86::CondCode NewCC = X86::COND_INVALID;
   3650   if (IsCmpZero && !isDefConvertible(MI)) {
   3651     // Scan forward from the use until we hit the use we're looking for or the
   3652     // compare instruction.
   3653     for (MachineBasicBlock::iterator J = MI;; ++J) {
   3654       // Do we have a convertible instruction?
   3655       NewCC = isUseDefConvertible(J);
   3656       if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
   3657           J->getOperand(1).getReg() == SrcReg) {
   3658         assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
   3659         ShouldUpdateCC = true; // Update CC later on.
   3660         // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
   3661         // with the new def.
   3662         MI = Def = J;
   3663         break;
   3664       }
   3665 
   3666       if (J == I)
   3667         return false;
   3668     }
   3669   }
   3670 
   3671   // We are searching for an earlier instruction that can make CmpInstr
   3672   // redundant and that instruction will be saved in Sub.
   3673   MachineInstr *Sub = nullptr;
   3674   const TargetRegisterInfo *TRI = &getRegisterInfo();
   3675 
   3676   // We iterate backward, starting from the instruction before CmpInstr and
   3677   // stop when reaching the definition of a source register or done with the BB.
   3678   // RI points to the instruction before CmpInstr.
   3679   // If the definition is in this basic block, RE points to the definition;
   3680   // otherwise, RE is the rend of the basic block.
   3681   MachineBasicBlock::reverse_iterator
   3682       RI = MachineBasicBlock::reverse_iterator(I),
   3683       RE = CmpInstr->getParent() == MI->getParent() ?
   3684            MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
   3685            CmpInstr->getParent()->rend();
   3686   MachineInstr *Movr0Inst = nullptr;
   3687   for (; RI != RE; ++RI) {
   3688     MachineInstr *Instr = &*RI;
   3689     // Check whether CmpInstr can be made redundant by the current instruction.
   3690     if (!IsCmpZero &&
   3691         isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
   3692       Sub = Instr;
   3693       break;
   3694     }
   3695 
   3696     if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
   3697         Instr->readsRegister(X86::EFLAGS, TRI)) {
   3698       // This instruction modifies or uses EFLAGS.
   3699 
   3700       // MOV32r0 etc. are implemented with xor which clobbers condition code.
   3701       // They are safe to move up, if the definition to EFLAGS is dead and
   3702       // earlier instructions do not read or write EFLAGS.
   3703       if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 &&
   3704           Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
   3705         Movr0Inst = Instr;
   3706         continue;
   3707       }
   3708 
   3709       // We can't remove CmpInstr.
   3710       return false;
   3711     }
   3712   }
   3713 
   3714   // Return false if no candidates exist.
   3715   if (!IsCmpZero && !Sub)
   3716     return false;
   3717 
   3718   bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
   3719                     Sub->getOperand(2).getReg() == SrcReg);
   3720 
   3721   // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
   3722   // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
   3723   // If we are done with the basic block, we need to check whether EFLAGS is
   3724   // live-out.
   3725   bool IsSafe = false;
   3726   SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
   3727   MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
   3728   for (++I; I != E; ++I) {
   3729     const MachineInstr &Instr = *I;
   3730     bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
   3731     bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
   3732     // We should check the usage if this instruction uses and updates EFLAGS.
   3733     if (!UseEFLAGS && ModifyEFLAGS) {
   3734       // It is safe to remove CmpInstr if EFLAGS is updated again.
   3735       IsSafe = true;
   3736       break;
   3737     }
   3738     if (!UseEFLAGS && !ModifyEFLAGS)
   3739       continue;
   3740 
   3741     // EFLAGS is used by this instruction.
   3742     X86::CondCode OldCC = X86::COND_INVALID;
   3743     bool OpcIsSET = false;
   3744     if (IsCmpZero || IsSwapped) {
   3745       // We decode the condition code from opcode.
   3746       if (Instr.isBranch())
   3747         OldCC = getCondFromBranchOpc(Instr.getOpcode());
   3748       else {
   3749         OldCC = getCondFromSETOpc(Instr.getOpcode());
   3750         if (OldCC != X86::COND_INVALID)
   3751           OpcIsSET = true;
   3752         else
   3753           OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
   3754       }
   3755       if (OldCC == X86::COND_INVALID) return false;
   3756     }
   3757     if (IsCmpZero) {
   3758       switch (OldCC) {
   3759       default: break;
   3760       case X86::COND_A: case X86::COND_AE:
   3761       case X86::COND_B: case X86::COND_BE:
   3762       case X86::COND_G: case X86::COND_GE:
   3763       case X86::COND_L: case X86::COND_LE:
   3764       case X86::COND_O: case X86::COND_NO:
   3765         // CF and OF are used, we can't perform this optimization.
   3766         return false;
   3767       }
   3768 
   3769       // If we're updating the condition code check if we have to reverse the
   3770       // condition.
   3771       if (ShouldUpdateCC)
   3772         switch (OldCC) {
   3773         default:
   3774           return false;
   3775         case X86::COND_E:
   3776           break;
   3777         case X86::COND_NE:
   3778           NewCC = GetOppositeBranchCondition(NewCC);
   3779           break;
   3780         }
   3781     } else if (IsSwapped) {
   3782       // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
   3783       // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
   3784       // We swap the condition code and synthesize the new opcode.
   3785       NewCC = getSwappedCondition(OldCC);
   3786       if (NewCC == X86::COND_INVALID) return false;
   3787     }
   3788 
   3789     if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) {
   3790       // Synthesize the new opcode.
   3791       bool HasMemoryOperand = Instr.hasOneMemOperand();
   3792       unsigned NewOpc;
   3793       if (Instr.isBranch())
   3794         NewOpc = GetCondBranchFromCond(NewCC);
   3795       else if(OpcIsSET)
   3796         NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
   3797       else {
   3798         unsigned DstReg = Instr.getOperand(0).getReg();
   3799         NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
   3800                                  HasMemoryOperand);
   3801       }
   3802 
   3803       // Push the MachineInstr to OpsToUpdate.
   3804       // If it is safe to remove CmpInstr, the condition code of these
   3805       // instructions will be modified.
   3806       OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
   3807     }
   3808     if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
   3809       // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
   3810       IsSafe = true;
   3811       break;
   3812     }
   3813   }
   3814 
   3815   // If EFLAGS is not killed nor re-defined, we should check whether it is
   3816   // live-out. If it is live-out, do not optimize.
   3817   if ((IsCmpZero || IsSwapped) && !IsSafe) {
   3818     MachineBasicBlock *MBB = CmpInstr->getParent();
   3819     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
   3820              SE = MBB->succ_end(); SI != SE; ++SI)
   3821       if ((*SI)->isLiveIn(X86::EFLAGS))
   3822         return false;
   3823   }
   3824 
   3825   // The instruction to be updated is either Sub or MI.
   3826   Sub = IsCmpZero ? MI : Sub;
   3827   // Move Movr0Inst to the appropriate place before Sub.
   3828   if (Movr0Inst) {
   3829     // Look backwards until we find a def that doesn't use the current EFLAGS.
   3830     Def = Sub;
   3831     MachineBasicBlock::reverse_iterator
   3832       InsertI = MachineBasicBlock::reverse_iterator(++Def),
   3833                 InsertE = Sub->getParent()->rend();
   3834     for (; InsertI != InsertE; ++InsertI) {
   3835       MachineInstr *Instr = &*InsertI;
   3836       if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
   3837           Instr->modifiesRegister(X86::EFLAGS, TRI)) {
   3838         Sub->getParent()->remove(Movr0Inst);
   3839         Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
   3840                                    Movr0Inst);
   3841         break;
   3842       }
   3843     }
   3844     if (InsertI == InsertE)
   3845       return false;
   3846   }
   3847 
   3848   // Make sure Sub instruction defines EFLAGS and mark the def live.
   3849   unsigned i = 0, e = Sub->getNumOperands();
   3850   for (; i != e; ++i) {
   3851     MachineOperand &MO = Sub->getOperand(i);
   3852     if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
   3853       MO.setIsDead(false);
   3854       break;
   3855     }
   3856   }
   3857   assert(i != e && "Unable to locate a def EFLAGS operand");
   3858 
   3859   CmpInstr->eraseFromParent();
   3860 
   3861   // Modify the condition code of instructions in OpsToUpdate.
   3862   for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
   3863     OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
   3864   return true;
   3865 }
   3866 
   3867 /// optimizeLoadInstr - Try to remove the load by folding it to a register
   3868 /// operand at the use. We fold the load instructions if load defines a virtual
   3869 /// register, the virtual register is used once in the same BB, and the
   3870 /// instructions in-between do not load or store, and have no side effects.
   3871 MachineInstr* X86InstrInfo::
   3872 optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI,
   3873                   unsigned &FoldAsLoadDefReg,
   3874                   MachineInstr *&DefMI) const {
   3875   if (FoldAsLoadDefReg == 0)
   3876     return nullptr;
   3877   // To be conservative, if there exists another load, clear the load candidate.
   3878   if (MI->mayLoad()) {
   3879     FoldAsLoadDefReg = 0;
   3880     return nullptr;
   3881   }
   3882 
   3883   // Check whether we can move DefMI here.
   3884   DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
   3885   assert(DefMI);
   3886   bool SawStore = false;
   3887   if (!DefMI->isSafeToMove(this, nullptr, SawStore))
   3888     return nullptr;
   3889 
   3890   // We try to commute MI if possible.
   3891   unsigned IdxEnd = (MI->isCommutable()) ? 2 : 1;
   3892   for (unsigned Idx = 0; Idx < IdxEnd; Idx++) {
   3893     // Collect information about virtual register operands of MI.
   3894     unsigned SrcOperandId = 0;
   3895     bool FoundSrcOperand = false;
   3896     for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
   3897       MachineOperand &MO = MI->getOperand(i);
   3898       if (!MO.isReg())
   3899         continue;
   3900       unsigned Reg = MO.getReg();
   3901       if (Reg != FoldAsLoadDefReg)
   3902         continue;
   3903       // Do not fold if we have a subreg use or a def or multiple uses.
   3904       if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
   3905         return nullptr;
   3906 
   3907       SrcOperandId = i;
   3908       FoundSrcOperand = true;
   3909     }
   3910     if (!FoundSrcOperand) return nullptr;
   3911 
   3912     // Check whether we can fold the def into SrcOperandId.
   3913     SmallVector<unsigned, 8> Ops;
   3914     Ops.push_back(SrcOperandId);
   3915     MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI);
   3916     if (FoldMI) {
   3917       FoldAsLoadDefReg = 0;
   3918       return FoldMI;
   3919     }
   3920 
   3921     if (Idx == 1) {
   3922       // MI was changed but it didn't help, commute it back!
   3923       commuteInstruction(MI, false);
   3924       return nullptr;
   3925     }
   3926 
   3927     // Check whether we can commute MI and enable folding.
   3928     if (MI->isCommutable()) {
   3929       MachineInstr *NewMI = commuteInstruction(MI, false);
   3930       // Unable to commute.
   3931       if (!NewMI) return nullptr;
   3932       if (NewMI != MI) {
   3933         // New instruction. It doesn't need to be kept.
   3934         NewMI->eraseFromParent();
   3935         return nullptr;
   3936       }
   3937     }
   3938   }
   3939   return nullptr;
   3940 }
   3941 
   3942 /// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
   3943 /// instruction with two undef reads of the register being defined.  This is
   3944 /// used for mapping:
   3945 ///   %xmm4 = V_SET0
   3946 /// to:
   3947 ///   %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
   3948 ///
   3949 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
   3950                              const MCInstrDesc &Desc) {
   3951   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
   3952   unsigned Reg = MIB->getOperand(0).getReg();
   3953   MIB->setDesc(Desc);
   3954 
   3955   // MachineInstr::addOperand() will insert explicit operands before any
   3956   // implicit operands.
   3957   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
   3958   // But we don't trust that.
   3959   assert(MIB->getOperand(1).getReg() == Reg &&
   3960          MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
   3961   return true;
   3962 }
   3963 
   3964 bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
   3965   bool HasAVX = Subtarget.hasAVX();
   3966   MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
   3967   switch (MI->getOpcode()) {
   3968   case X86::MOV32r0:
   3969     return Expand2AddrUndef(MIB, get(X86::XOR32rr));
   3970   case X86::SETB_C8r:
   3971     return Expand2AddrUndef(MIB, get(X86::SBB8rr));
   3972   case X86::SETB_C16r:
   3973     return Expand2AddrUndef(MIB, get(X86::SBB16rr));
   3974   case X86::SETB_C32r:
   3975     return Expand2AddrUndef(MIB, get(X86::SBB32rr));
   3976   case X86::SETB_C64r:
   3977     return Expand2AddrUndef(MIB, get(X86::SBB64rr));
   3978   case X86::V_SET0:
   3979   case X86::FsFLD0SS:
   3980   case X86::FsFLD0SD:
   3981     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
   3982   case X86::AVX_SET0:
   3983     assert(HasAVX && "AVX not supported");
   3984     return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
   3985   case X86::AVX512_512_SET0:
   3986     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
   3987   case X86::V_SETALLONES:
   3988     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
   3989   case X86::AVX2_SETALLONES:
   3990     return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
   3991   case X86::TEST8ri_NOREX:
   3992     MI->setDesc(get(X86::TEST8ri));
   3993     return true;
   3994   case X86::KSET0B:
   3995   case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr));
   3996   case X86::KSET1B:
   3997   case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr));
   3998   }
   3999   return false;
   4000 }
   4001 
   4002 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
   4003                                      const SmallVectorImpl<MachineOperand> &MOs,
   4004                                      MachineInstr *MI,
   4005                                      const TargetInstrInfo &TII) {
   4006   // Create the base instruction with the memory operand as the first part.
   4007   // Omit the implicit operands, something BuildMI can't do.
   4008   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
   4009                                               MI->getDebugLoc(), true);
   4010   MachineInstrBuilder MIB(MF, NewMI);
   4011   unsigned NumAddrOps = MOs.size();
   4012   for (unsigned i = 0; i != NumAddrOps; ++i)
   4013     MIB.addOperand(MOs[i]);
   4014   if (NumAddrOps < 4)  // FrameIndex only
   4015     addOffset(MIB, 0);
   4016 
   4017   // Loop over the rest of the ri operands, converting them over.
   4018   unsigned NumOps = MI->getDesc().getNumOperands()-2;
   4019   for (unsigned i = 0; i != NumOps; ++i) {
   4020     MachineOperand &MO = MI->getOperand(i+2);
   4021     MIB.addOperand(MO);
   4022   }
   4023   for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
   4024     MachineOperand &MO = MI->getOperand(i);
   4025     MIB.addOperand(MO);
   4026   }
   4027   return MIB;
   4028 }
   4029 
   4030 static MachineInstr *FuseInst(MachineFunction &MF,
   4031                               unsigned Opcode, unsigned OpNo,
   4032                               const SmallVectorImpl<MachineOperand> &MOs,
   4033                               MachineInstr *MI, const TargetInstrInfo &TII) {
   4034   // Omit the implicit operands, something BuildMI can't do.
   4035   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
   4036                                               MI->getDebugLoc(), true);
   4037   MachineInstrBuilder MIB(MF, NewMI);
   4038 
   4039   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   4040     MachineOperand &MO = MI->getOperand(i);
   4041     if (i == OpNo) {
   4042       assert(MO.isReg() && "Expected to fold into reg operand!");
   4043       unsigned NumAddrOps = MOs.size();
   4044       for (unsigned i = 0; i != NumAddrOps; ++i)
   4045         MIB.addOperand(MOs[i]);
   4046       if (NumAddrOps < 4)  // FrameIndex only
   4047         addOffset(MIB, 0);
   4048     } else {
   4049       MIB.addOperand(MO);
   4050     }
   4051   }
   4052   return MIB;
   4053 }
   4054 
   4055 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
   4056                                 const SmallVectorImpl<MachineOperand> &MOs,
   4057                                 MachineInstr *MI) {
   4058   MachineFunction &MF = *MI->getParent()->getParent();
   4059   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
   4060 
   4061   unsigned NumAddrOps = MOs.size();
   4062   for (unsigned i = 0; i != NumAddrOps; ++i)
   4063     MIB.addOperand(MOs[i]);
   4064   if (NumAddrOps < 4)  // FrameIndex only
   4065     addOffset(MIB, 0);
   4066   return MIB.addImm(0);
   4067 }
   4068 
   4069 MachineInstr*
   4070 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
   4071                                     MachineInstr *MI, unsigned i,
   4072                                     const SmallVectorImpl<MachineOperand> &MOs,
   4073                                     unsigned Size, unsigned Align) const {
   4074   const DenseMap<unsigned,
   4075                  std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
   4076   bool isCallRegIndirect = Subtarget.callRegIndirect();
   4077   bool isTwoAddrFold = false;
   4078 
   4079   // Atom favors register form of call. So, we do not fold loads into calls
   4080   // when X86Subtarget is Atom.
   4081   if (isCallRegIndirect &&
   4082     (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r)) {
   4083     return nullptr;
   4084   }
   4085 
   4086   unsigned NumOps = MI->getDesc().getNumOperands();
   4087   bool isTwoAddr = NumOps > 1 &&
   4088     MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
   4089 
   4090   // FIXME: AsmPrinter doesn't know how to handle
   4091   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
   4092   if (MI->getOpcode() == X86::ADD32ri &&
   4093       MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
   4094     return nullptr;
   4095 
   4096   MachineInstr *NewMI = nullptr;
   4097   // Folding a memory location into the two-address part of a two-address
   4098   // instruction is different than folding it other places.  It requires
   4099   // replacing the *two* registers with the memory location.
   4100   if (isTwoAddr && NumOps >= 2 && i < 2 &&
   4101       MI->getOperand(0).isReg() &&
   4102       MI->getOperand(1).isReg() &&
   4103       MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
   4104     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
   4105     isTwoAddrFold = true;
   4106   } else if (i == 0) { // If operand 0
   4107     if (MI->getOpcode() == X86::MOV32r0) {
   4108       NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
   4109       if (NewMI)
   4110         return NewMI;
   4111     }
   4112 
   4113     OpcodeTablePtr = &RegOp2MemOpTable0;
   4114   } else if (i == 1) {
   4115     OpcodeTablePtr = &RegOp2MemOpTable1;
   4116   } else if (i == 2) {
   4117     OpcodeTablePtr = &RegOp2MemOpTable2;
   4118   } else if (i == 3) {
   4119     OpcodeTablePtr = &RegOp2MemOpTable3;
   4120   }
   4121 
   4122   // If table selected...
   4123   if (OpcodeTablePtr) {
   4124     // Find the Opcode to fuse
   4125     DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   4126       OpcodeTablePtr->find(MI->getOpcode());
   4127     if (I != OpcodeTablePtr->end()) {
   4128       unsigned Opcode = I->second.first;
   4129       unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
   4130       if (Align < MinAlign)
   4131         return nullptr;
   4132       bool NarrowToMOV32rm = false;
   4133       if (Size) {
   4134         unsigned RCSize = getRegClass(MI->getDesc(), i, &RI, MF)->getSize();
   4135         if (Size < RCSize) {
   4136           // Check if it's safe to fold the load. If the size of the object is
   4137           // narrower than the load width, then it's not.
   4138           if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
   4139             return nullptr;
   4140           // If this is a 64-bit load, but the spill slot is 32, then we can do
   4141           // a 32-bit load which is implicitly zero-extended. This likely is due
   4142           // to liveintervalanalysis remat'ing a load from stack slot.
   4143           if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
   4144             return nullptr;
   4145           Opcode = X86::MOV32rm;
   4146           NarrowToMOV32rm = true;
   4147         }
   4148       }
   4149 
   4150       if (isTwoAddrFold)
   4151         NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
   4152       else
   4153         NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
   4154 
   4155       if (NarrowToMOV32rm) {
   4156         // If this is the special case where we use a MOV32rm to load a 32-bit
   4157         // value and zero-extend the top bits. Change the destination register
   4158         // to a 32-bit one.
   4159         unsigned DstReg = NewMI->getOperand(0).getReg();
   4160         if (TargetRegisterInfo::isPhysicalRegister(DstReg))
   4161           NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
   4162                                                    X86::sub_32bit));
   4163         else
   4164           NewMI->getOperand(0).setSubReg(X86::sub_32bit);
   4165       }
   4166       return NewMI;
   4167     }
   4168   }
   4169 
   4170   // No fusion
   4171   if (PrintFailedFusing && !MI->isCopy())
   4172     dbgs() << "We failed to fuse operand " << i << " in " << *MI;
   4173   return nullptr;
   4174 }
   4175 
   4176 /// hasPartialRegUpdate - Return true for all instructions that only update
   4177 /// the first 32 or 64-bits of the destination register and leave the rest
   4178 /// unmodified. This can be used to avoid folding loads if the instructions
   4179 /// only update part of the destination register, and the non-updated part is
   4180 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
   4181 /// instructions breaks the partial register dependency and it can improve
   4182 /// performance. e.g.:
   4183 ///
   4184 ///   movss (%rdi), %xmm0
   4185 ///   cvtss2sd %xmm0, %xmm0
   4186 ///
   4187 /// Instead of
   4188 ///   cvtss2sd (%rdi), %xmm0
   4189 ///
   4190 /// FIXME: This should be turned into a TSFlags.
   4191 ///
   4192 static bool hasPartialRegUpdate(unsigned Opcode) {
   4193   switch (Opcode) {
   4194   case X86::CVTSI2SSrr:
   4195   case X86::CVTSI2SS64rr:
   4196   case X86::CVTSI2SDrr:
   4197   case X86::CVTSI2SD64rr:
   4198   case X86::CVTSD2SSrr:
   4199   case X86::Int_CVTSD2SSrr:
   4200   case X86::CVTSS2SDrr:
   4201   case X86::Int_CVTSS2SDrr:
   4202   case X86::RCPSSr:
   4203   case X86::RCPSSr_Int:
   4204   case X86::ROUNDSDr:
   4205   case X86::ROUNDSDr_Int:
   4206   case X86::ROUNDSSr:
   4207   case X86::ROUNDSSr_Int:
   4208   case X86::RSQRTSSr:
   4209   case X86::RSQRTSSr_Int:
   4210   case X86::SQRTSSr:
   4211   case X86::SQRTSSr_Int:
   4212     return true;
   4213   }
   4214 
   4215   return false;
   4216 }
   4217 
   4218 /// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle
   4219 /// instructions we would like before a partial register update.
   4220 unsigned X86InstrInfo::
   4221 getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
   4222                              const TargetRegisterInfo *TRI) const {
   4223   if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
   4224     return 0;
   4225 
   4226   // If MI is marked as reading Reg, the partial register update is wanted.
   4227   const MachineOperand &MO = MI->getOperand(0);
   4228   unsigned Reg = MO.getReg();
   4229   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   4230     if (MO.readsReg() || MI->readsVirtualRegister(Reg))
   4231       return 0;
   4232   } else {
   4233     if (MI->readsRegister(Reg, TRI))
   4234       return 0;
   4235   }
   4236 
   4237   // If any of the preceding 16 instructions are reading Reg, insert a
   4238   // dependency breaking instruction.  The magic number is based on a few
   4239   // Nehalem experiments.
   4240   return 16;
   4241 }
   4242 
   4243 // Return true for any instruction the copies the high bits of the first source
   4244 // operand into the unused high bits of the destination operand.
   4245 static bool hasUndefRegUpdate(unsigned Opcode) {
   4246   switch (Opcode) {
   4247   case X86::VCVTSI2SSrr:
   4248   case X86::Int_VCVTSI2SSrr:
   4249   case X86::VCVTSI2SS64rr:
   4250   case X86::Int_VCVTSI2SS64rr:
   4251   case X86::VCVTSI2SDrr:
   4252   case X86::Int_VCVTSI2SDrr:
   4253   case X86::VCVTSI2SD64rr:
   4254   case X86::Int_VCVTSI2SD64rr:
   4255   case X86::VCVTSD2SSrr:
   4256   case X86::Int_VCVTSD2SSrr:
   4257   case X86::VCVTSS2SDrr:
   4258   case X86::Int_VCVTSS2SDrr:
   4259   case X86::VRCPSSr:
   4260   case X86::VROUNDSDr:
   4261   case X86::VROUNDSDr_Int:
   4262   case X86::VROUNDSSr:
   4263   case X86::VROUNDSSr_Int:
   4264   case X86::VRSQRTSSr:
   4265   case X86::VSQRTSSr:
   4266 
   4267   // AVX-512
   4268   case X86::VCVTSD2SSZrr:
   4269   case X86::VCVTSS2SDZrr:
   4270     return true;
   4271   }
   4272 
   4273   return false;
   4274 }
   4275 
   4276 /// Inform the ExeDepsFix pass how many idle instructions we would like before
   4277 /// certain undef register reads.
   4278 ///
   4279 /// This catches the VCVTSI2SD family of instructions:
   4280 ///
   4281 /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
   4282 ///
   4283 /// We should to be careful *not* to catch VXOR idioms which are presumably
   4284 /// handled specially in the pipeline:
   4285 ///
   4286 /// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1
   4287 ///
   4288 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
   4289 /// high bits that are passed-through are not live.
   4290 unsigned X86InstrInfo::
   4291 getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
   4292                      const TargetRegisterInfo *TRI) const {
   4293   if (!hasUndefRegUpdate(MI->getOpcode()))
   4294     return 0;
   4295 
   4296   // Set the OpNum parameter to the first source operand.
   4297   OpNum = 1;
   4298 
   4299   const MachineOperand &MO = MI->getOperand(OpNum);
   4300   if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
   4301     // Use the same magic number as getPartialRegUpdateClearance.
   4302     return 16;
   4303   }
   4304   return 0;
   4305 }
   4306 
   4307 void X86InstrInfo::
   4308 breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
   4309                           const TargetRegisterInfo *TRI) const {
   4310   unsigned Reg = MI->getOperand(OpNum).getReg();
   4311   // If MI kills this register, the false dependence is already broken.
   4312   if (MI->killsRegister(Reg, TRI))
   4313     return;
   4314   if (X86::VR128RegClass.contains(Reg)) {
   4315     // These instructions are all floating point domain, so xorps is the best
   4316     // choice.
   4317     bool HasAVX = Subtarget.hasAVX();
   4318     unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
   4319     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
   4320       .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
   4321   } else if (X86::VR256RegClass.contains(Reg)) {
   4322     // Use vxorps to clear the full ymm register.
   4323     // It wants to read and write the xmm sub-register.
   4324     unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
   4325     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
   4326       .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
   4327       .addReg(Reg, RegState::ImplicitDefine);
   4328   } else
   4329     return;
   4330   MI->addRegisterKilled(Reg, TRI, true);
   4331 }
   4332 
   4333 MachineInstr*
   4334 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
   4335                                     const SmallVectorImpl<unsigned> &Ops,
   4336                                     int FrameIndex) const {
   4337   // Check switch flag
   4338   if (NoFusing) return nullptr;
   4339 
   4340   // Unless optimizing for size, don't fold to avoid partial
   4341   // register update stalls
   4342   if (!MF.getFunction()->getAttributes().
   4343         hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
   4344       hasPartialRegUpdate(MI->getOpcode()))
   4345     return nullptr;
   4346 
   4347   const MachineFrameInfo *MFI = MF.getFrameInfo();
   4348   unsigned Size = MFI->getObjectSize(FrameIndex);
   4349   unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
   4350   // If the function stack isn't realigned we don't want to fold instructions
   4351   // that need increased alignment.
   4352   if (!RI.needsStackRealignment(MF))
   4353     Alignment = std::min(
   4354         Alignment, MF.getTarget().getFrameLowering()->getStackAlignment());
   4355   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
   4356     unsigned NewOpc = 0;
   4357     unsigned RCSize = 0;
   4358     switch (MI->getOpcode()) {
   4359     default: return nullptr;
   4360     case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
   4361     case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
   4362     case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
   4363     case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
   4364     }
   4365     // Check if it's safe to fold the load. If the size of the object is
   4366     // narrower than the load width, then it's not.
   4367     if (Size < RCSize)
   4368       return nullptr;
   4369     // Change to CMPXXri r, 0 first.
   4370     MI->setDesc(get(NewOpc));
   4371     MI->getOperand(1).ChangeToImmediate(0);
   4372   } else if (Ops.size() != 1)
   4373     return nullptr;
   4374 
   4375   SmallVector<MachineOperand,4> MOs;
   4376   MOs.push_back(MachineOperand::CreateFI(FrameIndex));
   4377   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
   4378 }
   4379 
   4380 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
   4381                                                   MachineInstr *MI,
   4382                                            const SmallVectorImpl<unsigned> &Ops,
   4383                                                   MachineInstr *LoadMI) const {
   4384   // If loading from a FrameIndex, fold directly from the FrameIndex.
   4385   unsigned NumOps = LoadMI->getDesc().getNumOperands();
   4386   int FrameIndex;
   4387   if (isLoadFromStackSlot(LoadMI, FrameIndex))
   4388     return foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
   4389 
   4390   // Check switch flag
   4391   if (NoFusing) return nullptr;
   4392 
   4393   // Unless optimizing for size, don't fold to avoid partial
   4394   // register update stalls
   4395   if (!MF.getFunction()->getAttributes().
   4396         hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
   4397       hasPartialRegUpdate(MI->getOpcode()))
   4398     return nullptr;
   4399 
   4400   // Determine the alignment of the load.
   4401   unsigned Alignment = 0;
   4402   if (LoadMI->hasOneMemOperand())
   4403     Alignment = (*LoadMI->memoperands_begin())->getAlignment();
   4404   else
   4405     switch (LoadMI->getOpcode()) {
   4406     case X86::AVX2_SETALLONES:
   4407     case X86::AVX_SET0:
   4408       Alignment = 32;
   4409       break;
   4410     case X86::V_SET0:
   4411     case X86::V_SETALLONES:
   4412       Alignment = 16;
   4413       break;
   4414     case X86::FsFLD0SD:
   4415       Alignment = 8;
   4416       break;
   4417     case X86::FsFLD0SS:
   4418       Alignment = 4;
   4419       break;
   4420     default:
   4421       return nullptr;
   4422     }
   4423   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
   4424     unsigned NewOpc = 0;
   4425     switch (MI->getOpcode()) {
   4426     default: return nullptr;
   4427     case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
   4428     case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
   4429     case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
   4430     case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
   4431     }
   4432     // Change to CMPXXri r, 0 first.
   4433     MI->setDesc(get(NewOpc));
   4434     MI->getOperand(1).ChangeToImmediate(0);
   4435   } else if (Ops.size() != 1)
   4436     return nullptr;
   4437 
   4438   // Make sure the subregisters match.
   4439   // Otherwise we risk changing the size of the load.
   4440   if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
   4441     return nullptr;
   4442 
   4443   SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
   4444   switch (LoadMI->getOpcode()) {
   4445   case X86::V_SET0:
   4446   case X86::V_SETALLONES:
   4447   case X86::AVX2_SETALLONES:
   4448   case X86::AVX_SET0:
   4449   case X86::FsFLD0SD:
   4450   case X86::FsFLD0SS: {
   4451     // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
   4452     // Create a constant-pool entry and operands to load from it.
   4453 
   4454     // Medium and large mode can't fold loads this way.
   4455     if (MF.getTarget().getCodeModel() != CodeModel::Small &&
   4456         MF.getTarget().getCodeModel() != CodeModel::Kernel)
   4457       return nullptr;
   4458 
   4459     // x86-32 PIC requires a PIC base register for constant pools.
   4460     unsigned PICBase = 0;
   4461     if (MF.getTarget().getRelocationModel() == Reloc::PIC_) {
   4462       if (Subtarget.is64Bit())
   4463         PICBase = X86::RIP;
   4464       else
   4465         // FIXME: PICBase = getGlobalBaseReg(&MF);
   4466         // This doesn't work for several reasons.
   4467         // 1. GlobalBaseReg may have been spilled.
   4468         // 2. It may not be live at MI.
   4469         return nullptr;
   4470     }
   4471 
   4472     // Create a constant-pool entry.
   4473     MachineConstantPool &MCP = *MF.getConstantPool();
   4474     Type *Ty;
   4475     unsigned Opc = LoadMI->getOpcode();
   4476     if (Opc == X86::FsFLD0SS)
   4477       Ty = Type::getFloatTy(MF.getFunction()->getContext());
   4478     else if (Opc == X86::FsFLD0SD)
   4479       Ty = Type::getDoubleTy(MF.getFunction()->getContext());
   4480     else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0)
   4481       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
   4482     else
   4483       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
   4484 
   4485     bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES);
   4486     const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
   4487                                     Constant::getNullValue(Ty);
   4488     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
   4489 
   4490     // Create operands to load from the constant pool entry.
   4491     MOs.push_back(MachineOperand::CreateReg(PICBase, false));
   4492     MOs.push_back(MachineOperand::CreateImm(1));
   4493     MOs.push_back(MachineOperand::CreateReg(0, false));
   4494     MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
   4495     MOs.push_back(MachineOperand::CreateReg(0, false));
   4496     break;
   4497   }
   4498   default: {
   4499     if ((LoadMI->getOpcode() == X86::MOVSSrm ||
   4500          LoadMI->getOpcode() == X86::VMOVSSrm) &&
   4501         MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
   4502           > 4)
   4503       // These instructions only load 32 bits, we can't fold them if the
   4504       // destination register is wider than 32 bits (4 bytes).
   4505       return nullptr;
   4506     if ((LoadMI->getOpcode() == X86::MOVSDrm ||
   4507          LoadMI->getOpcode() == X86::VMOVSDrm) &&
   4508         MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
   4509           > 8)
   4510       // These instructions only load 64 bits, we can't fold them if the
   4511       // destination register is wider than 64 bits (8 bytes).
   4512       return nullptr;
   4513 
   4514     // Folding a normal load. Just copy the load's address operands.
   4515     for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
   4516       MOs.push_back(LoadMI->getOperand(i));
   4517     break;
   4518   }
   4519   }
   4520   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
   4521 }
   4522 
   4523 
   4524 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
   4525                                   const SmallVectorImpl<unsigned> &Ops) const {
   4526   // Check switch flag
   4527   if (NoFusing) return 0;
   4528 
   4529   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
   4530     switch (MI->getOpcode()) {
   4531     default: return false;
   4532     case X86::TEST8rr:
   4533     case X86::TEST16rr:
   4534     case X86::TEST32rr:
   4535     case X86::TEST64rr:
   4536       return true;
   4537     case X86::ADD32ri:
   4538       // FIXME: AsmPrinter doesn't know how to handle
   4539       // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
   4540       if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
   4541         return false;
   4542       break;
   4543     }
   4544   }
   4545 
   4546   if (Ops.size() != 1)
   4547     return false;
   4548 
   4549   unsigned OpNum = Ops[0];
   4550   unsigned Opc = MI->getOpcode();
   4551   unsigned NumOps = MI->getDesc().getNumOperands();
   4552   bool isTwoAddr = NumOps > 1 &&
   4553     MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
   4554 
   4555   // Folding a memory location into the two-address part of a two-address
   4556   // instruction is different than folding it other places.  It requires
   4557   // replacing the *two* registers with the memory location.
   4558   const DenseMap<unsigned,
   4559                  std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
   4560   if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
   4561     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
   4562   } else if (OpNum == 0) { // If operand 0
   4563     if (Opc == X86::MOV32r0)
   4564       return true;
   4565 
   4566     OpcodeTablePtr = &RegOp2MemOpTable0;
   4567   } else if (OpNum == 1) {
   4568     OpcodeTablePtr = &RegOp2MemOpTable1;
   4569   } else if (OpNum == 2) {
   4570     OpcodeTablePtr = &RegOp2MemOpTable2;
   4571   } else if (OpNum == 3) {
   4572     OpcodeTablePtr = &RegOp2MemOpTable3;
   4573   }
   4574 
   4575   if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
   4576     return true;
   4577   return TargetInstrInfo::canFoldMemoryOperand(MI, Ops);
   4578 }
   4579 
   4580 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
   4581                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
   4582                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
   4583   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   4584     MemOp2RegOpTable.find(MI->getOpcode());
   4585   if (I == MemOp2RegOpTable.end())
   4586     return false;
   4587   unsigned Opc = I->second.first;
   4588   unsigned Index = I->second.second & TB_INDEX_MASK;
   4589   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
   4590   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
   4591   if (UnfoldLoad && !FoldedLoad)
   4592     return false;
   4593   UnfoldLoad &= FoldedLoad;
   4594   if (UnfoldStore && !FoldedStore)
   4595     return false;
   4596   UnfoldStore &= FoldedStore;
   4597 
   4598   const MCInstrDesc &MCID = get(Opc);
   4599   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
   4600   if (!MI->hasOneMemOperand() &&
   4601       RC == &X86::VR128RegClass &&
   4602       !Subtarget.isUnalignedMemAccessFast())
   4603     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
   4604     // conservatively assume the address is unaligned. That's bad for
   4605     // performance.
   4606     return false;
   4607   SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
   4608   SmallVector<MachineOperand,2> BeforeOps;
   4609   SmallVector<MachineOperand,2> AfterOps;
   4610   SmallVector<MachineOperand,4> ImpOps;
   4611   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   4612     MachineOperand &Op = MI->getOperand(i);
   4613     if (i >= Index && i < Index + X86::AddrNumOperands)
   4614       AddrOps.push_back(Op);
   4615     else if (Op.isReg() && Op.isImplicit())
   4616       ImpOps.push_back(Op);
   4617     else if (i < Index)
   4618       BeforeOps.push_back(Op);
   4619     else if (i > Index)
   4620       AfterOps.push_back(Op);
   4621   }
   4622 
   4623   // Emit the load instruction.
   4624   if (UnfoldLoad) {
   4625     std::pair<MachineInstr::mmo_iterator,
   4626               MachineInstr::mmo_iterator> MMOs =
   4627       MF.extractLoadMemRefs(MI->memoperands_begin(),
   4628                             MI->memoperands_end());
   4629     loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
   4630     if (UnfoldStore) {
   4631       // Address operands cannot be marked isKill.
   4632       for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
   4633         MachineOperand &MO = NewMIs[0]->getOperand(i);
   4634         if (MO.isReg())
   4635           MO.setIsKill(false);
   4636       }
   4637     }
   4638   }
   4639 
   4640   // Emit the data processing instruction.
   4641   MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
   4642   MachineInstrBuilder MIB(MF, DataMI);
   4643 
   4644   if (FoldedStore)
   4645     MIB.addReg(Reg, RegState::Define);
   4646   for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
   4647     MIB.addOperand(BeforeOps[i]);
   4648   if (FoldedLoad)
   4649     MIB.addReg(Reg);
   4650   for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
   4651     MIB.addOperand(AfterOps[i]);
   4652   for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
   4653     MachineOperand &MO = ImpOps[i];
   4654     MIB.addReg(MO.getReg(),
   4655                getDefRegState(MO.isDef()) |
   4656                RegState::Implicit |
   4657                getKillRegState(MO.isKill()) |
   4658                getDeadRegState(MO.isDead()) |
   4659                getUndefRegState(MO.isUndef()));
   4660   }
   4661   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
   4662   switch (DataMI->getOpcode()) {
   4663   default: break;
   4664   case X86::CMP64ri32:
   4665   case X86::CMP64ri8:
   4666   case X86::CMP32ri:
   4667   case X86::CMP32ri8:
   4668   case X86::CMP16ri:
   4669   case X86::CMP16ri8:
   4670   case X86::CMP8ri: {
   4671     MachineOperand &MO0 = DataMI->getOperand(0);
   4672     MachineOperand &MO1 = DataMI->getOperand(1);
   4673     if (MO1.getImm() == 0) {
   4674       unsigned NewOpc;
   4675       switch (DataMI->getOpcode()) {
   4676       default: llvm_unreachable("Unreachable!");
   4677       case X86::CMP64ri8:
   4678       case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
   4679       case X86::CMP32ri8:
   4680       case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
   4681       case X86::CMP16ri8:
   4682       case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
   4683       case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
   4684       }
   4685       DataMI->setDesc(get(NewOpc));
   4686       MO1.ChangeToRegister(MO0.getReg(), false);
   4687     }
   4688   }
   4689   }
   4690   NewMIs.push_back(DataMI);
   4691 
   4692   // Emit the store instruction.
   4693   if (UnfoldStore) {
   4694     const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
   4695     std::pair<MachineInstr::mmo_iterator,
   4696               MachineInstr::mmo_iterator> MMOs =
   4697       MF.extractStoreMemRefs(MI->memoperands_begin(),
   4698                              MI->memoperands_end());
   4699     storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
   4700   }
   4701 
   4702   return true;
   4703 }
   4704 
   4705 bool
   4706 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
   4707                                   SmallVectorImpl<SDNode*> &NewNodes) const {
   4708   if (!N->isMachineOpcode())
   4709     return false;
   4710 
   4711   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   4712     MemOp2RegOpTable.find(N->getMachineOpcode());
   4713   if (I == MemOp2RegOpTable.end())
   4714     return false;
   4715   unsigned Opc = I->second.first;
   4716   unsigned Index = I->second.second & TB_INDEX_MASK;
   4717   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
   4718   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
   4719   const MCInstrDesc &MCID = get(Opc);
   4720   MachineFunction &MF = DAG.getMachineFunction();
   4721   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
   4722   unsigned NumDefs = MCID.NumDefs;
   4723   std::vector<SDValue> AddrOps;
   4724   std::vector<SDValue> BeforeOps;
   4725   std::vector<SDValue> AfterOps;
   4726   SDLoc dl(N);
   4727   unsigned NumOps = N->getNumOperands();
   4728   for (unsigned i = 0; i != NumOps-1; ++i) {
   4729     SDValue Op = N->getOperand(i);
   4730     if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
   4731       AddrOps.push_back(Op);
   4732     else if (i < Index-NumDefs)
   4733       BeforeOps.push_back(Op);
   4734     else if (i > Index-NumDefs)
   4735       AfterOps.push_back(Op);
   4736   }
   4737   SDValue Chain = N->getOperand(NumOps-1);
   4738   AddrOps.push_back(Chain);
   4739 
   4740   // Emit the load instruction.
   4741   SDNode *Load = nullptr;
   4742   if (FoldedLoad) {
   4743     EVT VT = *RC->vt_begin();
   4744     std::pair<MachineInstr::mmo_iterator,
   4745               MachineInstr::mmo_iterator> MMOs =
   4746       MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
   4747                             cast<MachineSDNode>(N)->memoperands_end());
   4748     if (!(*MMOs.first) &&
   4749         RC == &X86::VR128RegClass &&
   4750         !Subtarget.isUnalignedMemAccessFast())
   4751       // Do not introduce a slow unaligned load.
   4752       return false;
   4753     unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   4754     bool isAligned = (*MMOs.first) &&
   4755                      (*MMOs.first)->getAlignment() >= Alignment;
   4756     Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
   4757                               VT, MVT::Other, AddrOps);
   4758     NewNodes.push_back(Load);
   4759 
   4760     // Preserve memory reference information.
   4761     cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
   4762   }
   4763 
   4764   // Emit the data processing instruction.
   4765   std::vector<EVT> VTs;
   4766   const TargetRegisterClass *DstRC = nullptr;
   4767   if (MCID.getNumDefs() > 0) {
   4768     DstRC = getRegClass(MCID, 0, &RI, MF);
   4769     VTs.push_back(*DstRC->vt_begin());
   4770   }
   4771   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
   4772     EVT VT = N->getValueType(i);
   4773     if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
   4774       VTs.push_back(VT);
   4775   }
   4776   if (Load)
   4777     BeforeOps.push_back(SDValue(Load, 0));
   4778   std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
   4779   SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
   4780   NewNodes.push_back(NewNode);
   4781 
   4782   // Emit the store instruction.
   4783   if (FoldedStore) {
   4784     AddrOps.pop_back();
   4785     AddrOps.push_back(SDValue(NewNode, 0));
   4786     AddrOps.push_back(Chain);
   4787     std::pair<MachineInstr::mmo_iterator,
   4788               MachineInstr::mmo_iterator> MMOs =
   4789       MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
   4790                              cast<MachineSDNode>(N)->memoperands_end());
   4791     if (!(*MMOs.first) &&
   4792         RC == &X86::VR128RegClass &&
   4793         !Subtarget.isUnalignedMemAccessFast())
   4794       // Do not introduce a slow unaligned store.
   4795       return false;
   4796     unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   4797     bool isAligned = (*MMOs.first) &&
   4798                      (*MMOs.first)->getAlignment() >= Alignment;
   4799     SDNode *Store =
   4800         DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
   4801                            dl, MVT::Other, AddrOps);
   4802     NewNodes.push_back(Store);
   4803 
   4804     // Preserve memory reference information.
   4805     cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
   4806   }
   4807 
   4808   return true;
   4809 }
   4810 
   4811 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
   4812                                       bool UnfoldLoad, bool UnfoldStore,
   4813                                       unsigned *LoadRegIndex) const {
   4814   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   4815     MemOp2RegOpTable.find(Opc);
   4816   if (I == MemOp2RegOpTable.end())
   4817     return 0;
   4818   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
   4819   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
   4820   if (UnfoldLoad && !FoldedLoad)
   4821     return 0;
   4822   if (UnfoldStore && !FoldedStore)
   4823     return 0;
   4824   if (LoadRegIndex)
   4825     *LoadRegIndex = I->second.second & TB_INDEX_MASK;
   4826   return I->second.first;
   4827 }
   4828 
   4829 bool
   4830 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
   4831                                      int64_t &Offset1, int64_t &Offset2) const {
   4832   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
   4833     return false;
   4834   unsigned Opc1 = Load1->getMachineOpcode();
   4835   unsigned Opc2 = Load2->getMachineOpcode();
   4836   switch (Opc1) {
   4837   default: return false;
   4838   case X86::MOV8rm:
   4839   case X86::MOV16rm:
   4840   case X86::MOV32rm:
   4841   case X86::MOV64rm:
   4842   case X86::LD_Fp32m:
   4843   case X86::LD_Fp64m:
   4844   case X86::LD_Fp80m:
   4845   case X86::MOVSSrm:
   4846   case X86::MOVSDrm:
   4847   case X86::MMX_MOVD64rm:
   4848   case X86::MMX_MOVQ64rm:
   4849   case X86::FsMOVAPSrm:
   4850   case X86::FsMOVAPDrm:
   4851   case X86::MOVAPSrm:
   4852   case X86::MOVUPSrm:
   4853   case X86::MOVAPDrm:
   4854   case X86::MOVDQArm:
   4855   case X86::MOVDQUrm:
   4856   // AVX load instructions
   4857   case X86::VMOVSSrm:
   4858   case X86::VMOVSDrm:
   4859   case X86::FsVMOVAPSrm:
   4860   case X86::FsVMOVAPDrm:
   4861   case X86::VMOVAPSrm:
   4862   case X86::VMOVUPSrm:
   4863   case X86::VMOVAPDrm:
   4864   case X86::VMOVDQArm:
   4865   case X86::VMOVDQUrm:
   4866   case X86::VMOVAPSYrm:
   4867   case X86::VMOVUPSYrm:
   4868   case X86::VMOVAPDYrm:
   4869   case X86::VMOVDQAYrm:
   4870   case X86::VMOVDQUYrm:
   4871     break;
   4872   }
   4873   switch (Opc2) {
   4874   default: return false;
   4875   case X86::MOV8rm:
   4876   case X86::MOV16rm:
   4877   case X86::MOV32rm:
   4878   case X86::MOV64rm:
   4879   case X86::LD_Fp32m:
   4880   case X86::LD_Fp64m:
   4881   case X86::LD_Fp80m:
   4882   case X86::MOVSSrm:
   4883   case X86::MOVSDrm:
   4884   case X86::MMX_MOVD64rm:
   4885   case X86::MMX_MOVQ64rm:
   4886   case X86::FsMOVAPSrm:
   4887   case X86::FsMOVAPDrm:
   4888   case X86::MOVAPSrm:
   4889   case X86::MOVUPSrm:
   4890   case X86::MOVAPDrm:
   4891   case X86::MOVDQArm:
   4892   case X86::MOVDQUrm:
   4893   // AVX load instructions
   4894   case X86::VMOVSSrm:
   4895   case X86::VMOVSDrm:
   4896   case X86::FsVMOVAPSrm:
   4897   case X86::FsVMOVAPDrm:
   4898   case X86::VMOVAPSrm:
   4899   case X86::VMOVUPSrm:
   4900   case X86::VMOVAPDrm:
   4901   case X86::VMOVDQArm:
   4902   case X86::VMOVDQUrm:
   4903   case X86::VMOVAPSYrm:
   4904   case X86::VMOVUPSYrm:
   4905   case X86::VMOVAPDYrm:
   4906   case X86::VMOVDQAYrm:
   4907   case X86::VMOVDQUYrm:
   4908     break;
   4909   }
   4910 
   4911   // Check if chain operands and base addresses match.
   4912   if (Load1->getOperand(0) != Load2->getOperand(0) ||
   4913       Load1->getOperand(5) != Load2->getOperand(5))
   4914     return false;
   4915   // Segment operands should match as well.
   4916   if (Load1->getOperand(4) != Load2->getOperand(4))
   4917     return false;
   4918   // Scale should be 1, Index should be Reg0.
   4919   if (Load1->getOperand(1) == Load2->getOperand(1) &&
   4920       Load1->getOperand(2) == Load2->getOperand(2)) {
   4921     if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
   4922       return false;
   4923 
   4924     // Now let's examine the displacements.
   4925     if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
   4926         isa<ConstantSDNode>(Load2->getOperand(3))) {
   4927       Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
   4928       Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
   4929       return true;
   4930     }
   4931   }
   4932   return false;
   4933 }
   4934 
   4935 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
   4936                                            int64_t Offset1, int64_t Offset2,
   4937                                            unsigned NumLoads) const {
   4938   assert(Offset2 > Offset1);
   4939   if ((Offset2 - Offset1) / 8 > 64)
   4940     return false;
   4941 
   4942   unsigned Opc1 = Load1->getMachineOpcode();
   4943   unsigned Opc2 = Load2->getMachineOpcode();
   4944   if (Opc1 != Opc2)
   4945     return false;  // FIXME: overly conservative?
   4946 
   4947   switch (Opc1) {
   4948   default: break;
   4949   case X86::LD_Fp32m:
   4950   case X86::LD_Fp64m:
   4951   case X86::LD_Fp80m:
   4952   case X86::MMX_MOVD64rm:
   4953   case X86::MMX_MOVQ64rm:
   4954     return false;
   4955   }
   4956 
   4957   EVT VT = Load1->getValueType(0);
   4958   switch (VT.getSimpleVT().SimpleTy) {
   4959   default:
   4960     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
   4961     // have 16 of them to play with.
   4962     if (Subtarget.is64Bit()) {
   4963       if (NumLoads >= 3)
   4964         return false;
   4965     } else if (NumLoads) {
   4966       return false;
   4967     }
   4968     break;
   4969   case MVT::i8:
   4970   case MVT::i16:
   4971   case MVT::i32:
   4972   case MVT::i64:
   4973   case MVT::f32:
   4974   case MVT::f64:
   4975     if (NumLoads)
   4976       return false;
   4977     break;
   4978   }
   4979 
   4980   return true;
   4981 }
   4982 
   4983 bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First,
   4984                                           MachineInstr *Second) const {
   4985   // Check if this processor supports macro-fusion. Since this is a minor
   4986   // heuristic, we haven't specifically reserved a feature. hasAVX is a decent
   4987   // proxy for SandyBridge+.
   4988   if (!Subtarget.hasAVX())
   4989     return false;
   4990 
   4991   enum {
   4992     FuseTest,
   4993     FuseCmp,
   4994     FuseInc
   4995   } FuseKind;
   4996 
   4997   switch(Second->getOpcode()) {
   4998   default:
   4999     return false;
   5000   case X86::JE_4:
   5001   case X86::JNE_4:
   5002   case X86::JL_4:
   5003   case X86::JLE_4:
   5004   case X86::JG_4:
   5005   case X86::JGE_4:
   5006     FuseKind = FuseInc;
   5007     break;
   5008   case X86::JB_4:
   5009   case X86::JBE_4:
   5010   case X86::JA_4:
   5011   case X86::JAE_4:
   5012     FuseKind = FuseCmp;
   5013     break;
   5014   case X86::JS_4:
   5015   case X86::JNS_4:
   5016   case X86::JP_4:
   5017   case X86::JNP_4:
   5018   case X86::JO_4:
   5019   case X86::JNO_4:
   5020     FuseKind = FuseTest;
   5021     break;
   5022   }
   5023   switch (First->getOpcode()) {
   5024   default:
   5025     return false;
   5026   case X86::TEST8rr:
   5027   case X86::TEST16rr:
   5028   case X86::TEST32rr:
   5029   case X86::TEST64rr:
   5030   case X86::TEST8ri:
   5031   case X86::TEST16ri:
   5032   case X86::TEST32ri:
   5033   case X86::TEST32i32:
   5034   case X86::TEST64i32:
   5035   case X86::TEST64ri32:
   5036   case X86::TEST8rm:
   5037   case X86::TEST16rm:
   5038   case X86::TEST32rm:
   5039   case X86::TEST64rm:
   5040   case X86::TEST8ri_NOREX:
   5041   case X86::AND16i16:
   5042   case X86::AND16ri:
   5043   case X86::AND16ri8:
   5044   case X86::AND16rm:
   5045   case X86::AND16rr:
   5046   case X86::AND32i32:
   5047   case X86::AND32ri:
   5048   case X86::AND32ri8:
   5049   case X86::AND32rm:
   5050   case X86::AND32rr:
   5051   case X86::AND64i32:
   5052   case X86::AND64ri32:
   5053   case X86::AND64ri8:
   5054   case X86::AND64rm:
   5055   case X86::AND64rr:
   5056   case X86::AND8i8:
   5057   case X86::AND8ri:
   5058   case X86::AND8rm:
   5059   case X86::AND8rr:
   5060     return true;
   5061   case X86::CMP16i16:
   5062   case X86::CMP16ri:
   5063   case X86::CMP16ri8:
   5064   case X86::CMP16rm:
   5065   case X86::CMP16rr:
   5066   case X86::CMP32i32:
   5067   case X86::CMP32ri:
   5068   case X86::CMP32ri8:
   5069   case X86::CMP32rm:
   5070   case X86::CMP32rr:
   5071   case X86::CMP64i32:
   5072   case X86::CMP64ri32:
   5073   case X86::CMP64ri8:
   5074   case X86::CMP64rm:
   5075   case X86::CMP64rr:
   5076   case X86::CMP8i8:
   5077   case X86::CMP8ri:
   5078   case X86::CMP8rm:
   5079   case X86::CMP8rr:
   5080   case X86::ADD16i16:
   5081   case X86::ADD16ri:
   5082   case X86::ADD16ri8:
   5083   case X86::ADD16ri8_DB:
   5084   case X86::ADD16ri_DB:
   5085   case X86::ADD16rm:
   5086   case X86::ADD16rr:
   5087   case X86::ADD16rr_DB:
   5088   case X86::ADD32i32:
   5089   case X86::ADD32ri:
   5090   case X86::ADD32ri8:
   5091   case X86::ADD32ri8_DB:
   5092   case X86::ADD32ri_DB:
   5093   case X86::ADD32rm:
   5094   case X86::ADD32rr:
   5095   case X86::ADD32rr_DB:
   5096   case X86::ADD64i32:
   5097   case X86::ADD64ri32:
   5098   case X86::ADD64ri32_DB:
   5099   case X86::ADD64ri8:
   5100   case X86::ADD64ri8_DB:
   5101   case X86::ADD64rm:
   5102   case X86::ADD64rr:
   5103   case X86::ADD64rr_DB:
   5104   case X86::ADD8i8:
   5105   case X86::ADD8mi:
   5106   case X86::ADD8mr:
   5107   case X86::ADD8ri:
   5108   case X86::ADD8rm:
   5109   case X86::ADD8rr:
   5110   case X86::SUB16i16:
   5111   case X86::SUB16ri:
   5112   case X86::SUB16ri8:
   5113   case X86::SUB16rm:
   5114   case X86::SUB16rr:
   5115   case X86::SUB32i32:
   5116   case X86::SUB32ri:
   5117   case X86::SUB32ri8:
   5118   case X86::SUB32rm:
   5119   case X86::SUB32rr:
   5120   case X86::SUB64i32:
   5121   case X86::SUB64ri32:
   5122   case X86::SUB64ri8:
   5123   case X86::SUB64rm:
   5124   case X86::SUB64rr:
   5125   case X86::SUB8i8:
   5126   case X86::SUB8ri:
   5127   case X86::SUB8rm:
   5128   case X86::SUB8rr:
   5129     return FuseKind == FuseCmp || FuseKind == FuseInc;
   5130   case X86::INC16r:
   5131   case X86::INC32r:
   5132   case X86::INC64_16r:
   5133   case X86::INC64_32r:
   5134   case X86::INC64r:
   5135   case X86::INC8r:
   5136   case X86::DEC16r:
   5137   case X86::DEC32r:
   5138   case X86::DEC64_16r:
   5139   case X86::DEC64_32r:
   5140   case X86::DEC64r:
   5141   case X86::DEC8r:
   5142     return FuseKind == FuseInc;
   5143   }
   5144 }
   5145 
   5146 bool X86InstrInfo::
   5147 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
   5148   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
   5149   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
   5150   if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
   5151     return true;
   5152   Cond[0].setImm(GetOppositeBranchCondition(CC));
   5153   return false;
   5154 }
   5155 
   5156 bool X86InstrInfo::
   5157 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
   5158   // FIXME: Return false for x87 stack register classes for now. We can't
   5159   // allow any loads of these registers before FpGet_ST0_80.
   5160   return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
   5161            RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
   5162 }
   5163 
   5164 /// getGlobalBaseReg - Return a virtual register initialized with the
   5165 /// the global base register value. Output instructions required to
   5166 /// initialize the register in the function entry block, if necessary.
   5167 ///
   5168 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
   5169 ///
   5170 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
   5171   assert(!Subtarget.is64Bit() &&
   5172          "X86-64 PIC uses RIP relative addressing");
   5173 
   5174   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
   5175   unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
   5176   if (GlobalBaseReg != 0)
   5177     return GlobalBaseReg;
   5178 
   5179   // Create the register. The code to initialize it is inserted
   5180   // later, by the CGBR pass (below).
   5181   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   5182   GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
   5183   X86FI->setGlobalBaseReg(GlobalBaseReg);
   5184   return GlobalBaseReg;
   5185 }
   5186 
   5187 // These are the replaceable SSE instructions. Some of these have Int variants
   5188 // that we don't include here. We don't want to replace instructions selected
   5189 // by intrinsics.
   5190 static const uint16_t ReplaceableInstrs[][3] = {
   5191   //PackedSingle     PackedDouble    PackedInt
   5192   { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
   5193   { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
   5194   { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
   5195   { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
   5196   { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
   5197   { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
   5198   { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
   5199   { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
   5200   { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
   5201   { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
   5202   { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
   5203   { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
   5204   { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
   5205   { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
   5206   // AVX 128-bit support
   5207   { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
   5208   { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
   5209   { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
   5210   { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
   5211   { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
   5212   { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
   5213   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
   5214   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
   5215   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
   5216   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
   5217   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
   5218   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
   5219   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
   5220   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
   5221   // AVX 256-bit support
   5222   { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
   5223   { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
   5224   { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
   5225   { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
   5226   { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
   5227   { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr }
   5228 };
   5229 
   5230 static const uint16_t ReplaceableInstrsAVX2[][3] = {
   5231   //PackedSingle       PackedDouble       PackedInt
   5232   { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
   5233   { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
   5234   { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
   5235   { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
   5236   { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
   5237   { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
   5238   { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
   5239   { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
   5240   { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
   5241   { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
   5242   { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
   5243   { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
   5244   { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
   5245   { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
   5246   { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
   5247   { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
   5248   { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
   5249   { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
   5250   { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
   5251   { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}
   5252 };
   5253 
   5254 // FIXME: Some shuffle and unpack instructions have equivalents in different
   5255 // domains, but they require a bit more work than just switching opcodes.
   5256 
   5257 static const uint16_t *lookup(unsigned opcode, unsigned domain) {
   5258   for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
   5259     if (ReplaceableInstrs[i][domain-1] == opcode)
   5260       return ReplaceableInstrs[i];
   5261   return nullptr;
   5262 }
   5263 
   5264 static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
   5265   for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
   5266     if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
   5267       return ReplaceableInstrsAVX2[i];
   5268   return nullptr;
   5269 }
   5270 
   5271 std::pair<uint16_t, uint16_t>
   5272 X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
   5273   uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
   5274   bool hasAVX2 = Subtarget.hasAVX2();
   5275   uint16_t validDomains = 0;
   5276   if (domain && lookup(MI->getOpcode(), domain))
   5277     validDomains = 0xe;
   5278   else if (domain && lookupAVX2(MI->getOpcode(), domain))
   5279     validDomains = hasAVX2 ? 0xe : 0x6;
   5280   return std::make_pair(domain, validDomains);
   5281 }
   5282 
   5283 void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
   5284   assert(Domain>0 && Domain<4 && "Invalid execution domain");
   5285   uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
   5286   assert(dom && "Not an SSE instruction");
   5287   const uint16_t *table = lookup(MI->getOpcode(), dom);
   5288   if (!table) { // try the other table
   5289     assert((Subtarget.hasAVX2() || Domain < 3) &&
   5290            "256-bit vector operations only available in AVX2");
   5291     table = lookupAVX2(MI->getOpcode(), dom);
   5292   }
   5293   assert(table && "Cannot change domain");
   5294   MI->setDesc(get(table[Domain-1]));
   5295 }
   5296 
   5297 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
   5298 void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
   5299   NopInst.setOpcode(X86::NOOP);
   5300 }
   5301 
   5302 void X86InstrInfo::getUnconditionalBranch(
   5303     MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const {
   5304   Branch.setOpcode(X86::JMP_4);
   5305   Branch.addOperand(MCOperand::CreateExpr(BranchTarget));
   5306 }
   5307 
   5308 void X86InstrInfo::getTrap(MCInst &MI) const {
   5309   MI.setOpcode(X86::TRAP);
   5310 }
   5311 
   5312 bool X86InstrInfo::isHighLatencyDef(int opc) const {
   5313   switch (opc) {
   5314   default: return false;
   5315   case X86::DIVSDrm:
   5316   case X86::DIVSDrm_Int:
   5317   case X86::DIVSDrr:
   5318   case X86::DIVSDrr_Int:
   5319   case X86::DIVSSrm:
   5320   case X86::DIVSSrm_Int:
   5321   case X86::DIVSSrr:
   5322   case X86::DIVSSrr_Int:
   5323   case X86::SQRTPDm:
   5324   case X86::SQRTPDr:
   5325   case X86::SQRTPSm:
   5326   case X86::SQRTPSr:
   5327   case X86::SQRTSDm:
   5328   case X86::SQRTSDm_Int:
   5329   case X86::SQRTSDr:
   5330   case X86::SQRTSDr_Int:
   5331   case X86::SQRTSSm:
   5332   case X86::SQRTSSm_Int:
   5333   case X86::SQRTSSr:
   5334   case X86::SQRTSSr_Int:
   5335   // AVX instructions with high latency
   5336   case X86::VDIVSDrm:
   5337   case X86::VDIVSDrm_Int:
   5338   case X86::VDIVSDrr:
   5339   case X86::VDIVSDrr_Int:
   5340   case X86::VDIVSSrm:
   5341   case X86::VDIVSSrm_Int:
   5342   case X86::VDIVSSrr:
   5343   case X86::VDIVSSrr_Int:
   5344   case X86::VSQRTPDm:
   5345   case X86::VSQRTPDr:
   5346   case X86::VSQRTPSm:
   5347   case X86::VSQRTPSr:
   5348   case X86::VSQRTSDm:
   5349   case X86::VSQRTSDm_Int:
   5350   case X86::VSQRTSDr:
   5351   case X86::VSQRTSSm:
   5352   case X86::VSQRTSSm_Int:
   5353   case X86::VSQRTSSr:
   5354   case X86::VSQRTPDZrm:
   5355   case X86::VSQRTPDZrr:
   5356   case X86::VSQRTPSZrm:
   5357   case X86::VSQRTPSZrr:
   5358   case X86::VSQRTSDZm:
   5359   case X86::VSQRTSDZm_Int:
   5360   case X86::VSQRTSDZr:
   5361   case X86::VSQRTSSZm_Int:
   5362   case X86::VSQRTSSZr:
   5363   case X86::VSQRTSSZm:
   5364   case X86::VDIVSDZrm:
   5365   case X86::VDIVSDZrr:
   5366   case X86::VDIVSSZrm:
   5367   case X86::VDIVSSZrr:
   5368 
   5369   case X86::VGATHERQPSZrm:
   5370   case X86::VGATHERQPDZrm:
   5371   case X86::VGATHERDPDZrm:
   5372   case X86::VGATHERDPSZrm:
   5373   case X86::VPGATHERQDZrm:
   5374   case X86::VPGATHERQQZrm:
   5375   case X86::VPGATHERDDZrm:
   5376   case X86::VPGATHERDQZrm:
   5377   case X86::VSCATTERQPDZmr:
   5378   case X86::VSCATTERQPSZmr:
   5379   case X86::VSCATTERDPDZmr:
   5380   case X86::VSCATTERDPSZmr:
   5381   case X86::VPSCATTERQDZmr:
   5382   case X86::VPSCATTERQQZmr:
   5383   case X86::VPSCATTERDDZmr:
   5384   case X86::VPSCATTERDQZmr:
   5385     return true;
   5386   }
   5387 }
   5388 
   5389 bool X86InstrInfo::
   5390 hasHighOperandLatency(const InstrItineraryData *ItinData,
   5391                       const MachineRegisterInfo *MRI,
   5392                       const MachineInstr *DefMI, unsigned DefIdx,
   5393                       const MachineInstr *UseMI, unsigned UseIdx) const {
   5394   return isHighLatencyDef(DefMI->getOpcode());
   5395 }
   5396 
   5397 namespace {
   5398   /// CGBR - Create Global Base Reg pass. This initializes the PIC
   5399   /// global base register for x86-32.
   5400   struct CGBR : public MachineFunctionPass {
   5401     static char ID;
   5402     CGBR() : MachineFunctionPass(ID) {}
   5403 
   5404     bool runOnMachineFunction(MachineFunction &MF) override {
   5405       const X86TargetMachine *TM =
   5406         static_cast<const X86TargetMachine *>(&MF.getTarget());
   5407 
   5408       // Don't do anything if this is 64-bit as 64-bit PIC
   5409       // uses RIP relative addressing.
   5410       if (TM->getSubtarget<X86Subtarget>().is64Bit())
   5411         return false;
   5412 
   5413       // Only emit a global base reg in PIC mode.
   5414       if (TM->getRelocationModel() != Reloc::PIC_)
   5415         return false;
   5416 
   5417       X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   5418       unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
   5419 
   5420       // If we didn't need a GlobalBaseReg, don't insert code.
   5421       if (GlobalBaseReg == 0)
   5422         return false;
   5423 
   5424       // Insert the set of GlobalBaseReg into the first MBB of the function
   5425       MachineBasicBlock &FirstMBB = MF.front();
   5426       MachineBasicBlock::iterator MBBI = FirstMBB.begin();
   5427       DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
   5428       MachineRegisterInfo &RegInfo = MF.getRegInfo();
   5429       const X86InstrInfo *TII = TM->getInstrInfo();
   5430 
   5431       unsigned PC;
   5432       if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
   5433         PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
   5434       else
   5435         PC = GlobalBaseReg;
   5436 
   5437       // Operand of MovePCtoStack is completely ignored by asm printer. It's
   5438       // only used in JIT code emission as displacement to pc.
   5439       BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
   5440 
   5441       // If we're using vanilla 'GOT' PIC style, we should use relative addressing
   5442       // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
   5443       if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
   5444         // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
   5445         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
   5446           .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
   5447                                         X86II::MO_GOT_ABSOLUTE_ADDRESS);
   5448       }
   5449 
   5450       return true;
   5451     }
   5452 
   5453     const char *getPassName() const override {
   5454       return "X86 PIC Global Base Reg Initialization";
   5455     }
   5456 
   5457     void getAnalysisUsage(AnalysisUsage &AU) const override {
   5458       AU.setPreservesCFG();
   5459       MachineFunctionPass::getAnalysisUsage(AU);
   5460     }
   5461   };
   5462 }
   5463 
   5464 char CGBR::ID = 0;
   5465 FunctionPass*
   5466 llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
   5467 
   5468 namespace {
   5469   struct LDTLSCleanup : public MachineFunctionPass {
   5470     static char ID;
   5471     LDTLSCleanup() : MachineFunctionPass(ID) {}
   5472 
   5473     bool runOnMachineFunction(MachineFunction &MF) override {
   5474       X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
   5475       if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
   5476         // No point folding accesses if there isn't at least two.
   5477         return false;
   5478       }
   5479 
   5480       MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
   5481       return VisitNode(DT->getRootNode(), 0);
   5482     }
   5483 
   5484     // Visit the dominator subtree rooted at Node in pre-order.
   5485     // If TLSBaseAddrReg is non-null, then use that to replace any
   5486     // TLS_base_addr instructions. Otherwise, create the register
   5487     // when the first such instruction is seen, and then use it
   5488     // as we encounter more instructions.
   5489     bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
   5490       MachineBasicBlock *BB = Node->getBlock();
   5491       bool Changed = false;
   5492 
   5493       // Traverse the current block.
   5494       for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
   5495            ++I) {
   5496         switch (I->getOpcode()) {
   5497           case X86::TLS_base_addr32:
   5498           case X86::TLS_base_addr64:
   5499             if (TLSBaseAddrReg)
   5500               I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
   5501             else
   5502               I = SetRegister(I, &TLSBaseAddrReg);
   5503             Changed = true;
   5504             break;
   5505           default:
   5506             break;
   5507         }
   5508       }
   5509 
   5510       // Visit the children of this block in the dominator tree.
   5511       for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
   5512            I != E; ++I) {
   5513         Changed |= VisitNode(*I, TLSBaseAddrReg);
   5514       }
   5515 
   5516       return Changed;
   5517     }
   5518 
   5519     // Replace the TLS_base_addr instruction I with a copy from
   5520     // TLSBaseAddrReg, returning the new instruction.
   5521     MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
   5522                                          unsigned TLSBaseAddrReg) {
   5523       MachineFunction *MF = I->getParent()->getParent();
   5524       const X86TargetMachine *TM =
   5525           static_cast<const X86TargetMachine *>(&MF->getTarget());
   5526       const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
   5527       const X86InstrInfo *TII = TM->getInstrInfo();
   5528 
   5529       // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
   5530       MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
   5531                                    TII->get(TargetOpcode::COPY),
   5532                                    is64Bit ? X86::RAX : X86::EAX)
   5533                                    .addReg(TLSBaseAddrReg);
   5534 
   5535       // Erase the TLS_base_addr instruction.
   5536       I->eraseFromParent();
   5537 
   5538       return Copy;
   5539     }
   5540 
   5541     // Create a virtal register in *TLSBaseAddrReg, and populate it by
   5542     // inserting a copy instruction after I. Returns the new instruction.
   5543     MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
   5544       MachineFunction *MF = I->getParent()->getParent();
   5545       const X86TargetMachine *TM =
   5546           static_cast<const X86TargetMachine *>(&MF->getTarget());
   5547       const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
   5548       const X86InstrInfo *TII = TM->getInstrInfo();
   5549 
   5550       // Create a virtual register for the TLS base address.
   5551       MachineRegisterInfo &RegInfo = MF->getRegInfo();
   5552       *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
   5553                                                       ? &X86::GR64RegClass
   5554                                                       : &X86::GR32RegClass);
   5555 
   5556       // Insert a copy from RAX/EAX to TLSBaseAddrReg.
   5557       MachineInstr *Next = I->getNextNode();
   5558       MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
   5559                                    TII->get(TargetOpcode::COPY),
   5560                                    *TLSBaseAddrReg)
   5561                                    .addReg(is64Bit ? X86::RAX : X86::EAX);
   5562 
   5563       return Copy;
   5564     }
   5565 
   5566     const char *getPassName() const override {
   5567       return "Local Dynamic TLS Access Clean-up";
   5568     }
   5569 
   5570     void getAnalysisUsage(AnalysisUsage &AU) const override {
   5571       AU.setPreservesCFG();
   5572       AU.addRequired<MachineDominatorTree>();
   5573       MachineFunctionPass::getAnalysisUsage(AU);
   5574     }
   5575   };
   5576 }
   5577 
   5578 char LDTLSCleanup::ID = 0;
   5579 FunctionPass*
   5580 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
   5581