Home | History | Annotate | Download | only in X86
      1 //=- X86SchedHaswell.td - X86 Haswell Scheduling -------------*- tablegen -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the machine model for Haswell to support instruction
     11 // scheduling and other instruction cost heuristics.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 def HaswellModel : SchedMachineModel {
     16   // All x86 instructions are modeled as a single micro-op, and HW can decode 4
     17   // instructions per cycle.
     18   let IssueWidth = 4;
     19   let MicroOpBufferSize = 192; // Based on the reorder buffer.
     20   let LoadLatency = 4;
     21   let MispredictPenalty = 16;
     22 
     23   // Based on the LSD (loop-stream detector) queue size and benchmarking data.
     24   let LoopMicroOpBufferSize = 50;
     25 
     26   // FIXME: SSE4 and AVX are unimplemented. This flag is set to allow
     27   // the scheduler to assign a default model to unrecognized opcodes.
     28   let CompleteModel = 0;
     29 }
     30 
     31 let SchedModel = HaswellModel in {
     32 
     33 // Haswell can issue micro-ops to 8 different ports in one cycle.
     34 
     35 // Ports 0, 1, 5, and 6 handle all computation.
     36 // Port 4 gets the data half of stores. Store data can be available later than
     37 // the store address, but since we don't model the latency of stores, we can
     38 // ignore that.
     39 // Ports 2 and 3 are identical. They handle loads and the address half of
     40 // stores. Port 7 can handle address calculations.
     41 def HWPort0 : ProcResource<1>;
     42 def HWPort1 : ProcResource<1>;
     43 def HWPort2 : ProcResource<1>;
     44 def HWPort3 : ProcResource<1>;
     45 def HWPort4 : ProcResource<1>;
     46 def HWPort5 : ProcResource<1>;
     47 def HWPort6 : ProcResource<1>;
     48 def HWPort7 : ProcResource<1>;
     49 
     50 // Many micro-ops are capable of issuing on multiple ports.
     51 def HWPort23  : ProcResGroup<[HWPort2, HWPort3]>;
     52 def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>;
     53 def HWPort05  : ProcResGroup<[HWPort0, HWPort5]>;
     54 def HWPort06 : ProcResGroup<[HWPort0, HWPort6]>;
     55 def HWPort15  : ProcResGroup<[HWPort1, HWPort5]>;
     56 def HWPort16  : ProcResGroup<[HWPort1, HWPort6]>;
     57 def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>;
     58 def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>;
     59 
     60 // 60 Entry Unified Scheduler
     61 def HWPortAny : ProcResGroup<[HWPort0, HWPort1, HWPort2, HWPort3, HWPort4,
     62                               HWPort5, HWPort6, HWPort7]> {
     63   let BufferSize=60;
     64 }
     65 
     66 // Integer division issued on port 0.
     67 def HWDivider : ProcResource<1>;
     68 
     69 // Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4
     70 // cycles after the memory operand.
     71 def : ReadAdvance<ReadAfterLd, 4>;
     72 
     73 // Many SchedWrites are defined in pairs with and without a folded load.
     74 // Instructions with folded loads are usually micro-fused, so they only appear
     75 // as two micro-ops when queued in the reservation station.
     76 // This multiclass defines the resource usage for variants with and without
     77 // folded loads.
     78 multiclass HWWriteResPair<X86FoldableSchedWrite SchedRW,
     79                           ProcResourceKind ExePort,
     80                           int Lat> {
     81   // Register variant is using a single cycle on ExePort.
     82   def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
     83 
     84   // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the
     85   // latency.
     86   def : WriteRes<SchedRW.Folded, [HWPort23, ExePort]> {
     87      let Latency = !add(Lat, 4);
     88   }
     89 }
     90 
     91 // A folded store needs a cycle on port 4 for the store data, but it does not
     92 // need an extra port 2/3 cycle to recompute the address.
     93 def : WriteRes<WriteRMW, [HWPort4]>;
     94 
     95 // Store_addr on 237.
     96 // Store_data on 4.
     97 def : WriteRes<WriteStore, [HWPort237, HWPort4]>;
     98 def : WriteRes<WriteLoad,  [HWPort23]> { let Latency = 4; }
     99 def : WriteRes<WriteMove,  [HWPort0156]>;
    100 def : WriteRes<WriteZero,  []>;
    101 
    102 defm : HWWriteResPair<WriteALU,   HWPort0156, 1>;
    103 defm : HWWriteResPair<WriteIMul,  HWPort1,   3>;
    104 def  : WriteRes<WriteIMulH, []> { let Latency = 3; }
    105 defm : HWWriteResPair<WriteShift, HWPort06,  1>;
    106 defm : HWWriteResPair<WriteJump,  HWPort06,   1>;
    107 
    108 // This is for simple LEAs with one or two input operands.
    109 // The complex ones can only execute on port 1, and they require two cycles on
    110 // the port to read all inputs. We don't model that.
    111 def : WriteRes<WriteLEA, [HWPort15]>;
    112 
    113 // This is quite rough, latency depends on the dividend.
    114 def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> {
    115   let Latency = 25;
    116   let ResourceCycles = [1, 10];
    117 }
    118 def : WriteRes<WriteIDivLd, [HWPort23, HWPort0, HWDivider]> {
    119   let Latency = 29;
    120   let ResourceCycles = [1, 1, 10];
    121 }
    122 
    123 // Scalar and vector floating point.
    124 defm : HWWriteResPair<WriteFAdd,   HWPort1, 3>;
    125 defm : HWWriteResPair<WriteFMul,   HWPort0, 5>;
    126 defm : HWWriteResPair<WriteFDiv,   HWPort0, 12>; // 10-14 cycles.
    127 defm : HWWriteResPair<WriteFRcp,   HWPort0, 5>;
    128 defm : HWWriteResPair<WriteFSqrt,  HWPort0, 15>;
    129 defm : HWWriteResPair<WriteCvtF2I, HWPort1, 3>;
    130 defm : HWWriteResPair<WriteCvtI2F, HWPort1, 4>;
    131 defm : HWWriteResPair<WriteCvtF2F, HWPort1, 3>;
    132 defm : HWWriteResPair<WriteFShuffle,  HWPort5,  1>;
    133 defm : HWWriteResPair<WriteFBlend,  HWPort015,  1>;
    134 defm : HWWriteResPair<WriteFShuffle256,  HWPort5,  3>;
    135 
    136 def : WriteRes<WriteFVarBlend, [HWPort5]> {
    137   let Latency = 2;
    138   let ResourceCycles = [2];
    139 }
    140 def : WriteRes<WriteFVarBlendLd, [HWPort5, HWPort23]> {
    141   let Latency = 6;
    142   let ResourceCycles = [2, 1];
    143 }
    144 
    145 // Vector integer operations.
    146 defm : HWWriteResPair<WriteVecShift, HWPort0,  1>;
    147 defm : HWWriteResPair<WriteVecLogic, HWPort015, 1>;
    148 defm : HWWriteResPair<WriteVecALU,   HWPort15,  1>;
    149 defm : HWWriteResPair<WriteVecIMul,  HWPort0,   5>;
    150 defm : HWWriteResPair<WriteShuffle,  HWPort5,  1>;
    151 defm : HWWriteResPair<WriteBlend,  HWPort15,  1>;
    152 defm : HWWriteResPair<WriteShuffle256,  HWPort5,  3>;
    153 
    154 def : WriteRes<WriteVarBlend, [HWPort5]> {
    155   let Latency = 2;
    156   let ResourceCycles = [2];
    157 }
    158 def : WriteRes<WriteVarBlendLd, [HWPort5, HWPort23]> {
    159   let Latency = 6;
    160   let ResourceCycles = [2, 1];
    161 }
    162 
    163 def : WriteRes<WriteVarVecShift, [HWPort0, HWPort5]> {
    164   let Latency = 2;
    165   let ResourceCycles = [2, 1];
    166 }
    167 def : WriteRes<WriteVarVecShiftLd, [HWPort0, HWPort5, HWPort23]> {
    168   let Latency = 6;
    169   let ResourceCycles = [2, 1, 1];
    170 }
    171 
    172 def : WriteRes<WriteMPSAD, [HWPort0, HWPort5]> {
    173   let Latency = 6;
    174   let ResourceCycles = [1, 2];
    175 }
    176 def : WriteRes<WriteMPSADLd, [HWPort23, HWPort0, HWPort5]> {
    177   let Latency = 6;
    178   let ResourceCycles = [1, 1, 2];
    179 }
    180 
    181 // String instructions.
    182 // Packed Compare Implicit Length Strings, Return Mask
    183 def : WriteRes<WritePCmpIStrM, [HWPort0]> {
    184   let Latency = 10;
    185   let ResourceCycles = [3];
    186 }
    187 def : WriteRes<WritePCmpIStrMLd, [HWPort0, HWPort23]> {
    188   let Latency = 10;
    189   let ResourceCycles = [3, 1];
    190 }
    191 
    192 // Packed Compare Explicit Length Strings, Return Mask
    193 def : WriteRes<WritePCmpEStrM, [HWPort0, HWPort16, HWPort5]> {
    194   let Latency = 10;
    195   let ResourceCycles = [3, 2, 4];
    196 }
    197 def : WriteRes<WritePCmpEStrMLd, [HWPort05, HWPort16, HWPort23]> {
    198   let Latency = 10;
    199   let ResourceCycles = [6, 2, 1];
    200 }
    201 
    202 // Packed Compare Implicit Length Strings, Return Index
    203 def : WriteRes<WritePCmpIStrI, [HWPort0]> {
    204   let Latency = 11;
    205   let ResourceCycles = [3];
    206 }
    207 def : WriteRes<WritePCmpIStrILd, [HWPort0, HWPort23]> {
    208   let Latency = 11;
    209   let ResourceCycles = [3, 1];
    210 }
    211 
    212 // Packed Compare Explicit Length Strings, Return Index
    213 def : WriteRes<WritePCmpEStrI, [HWPort05, HWPort16]> {
    214   let Latency = 11;
    215   let ResourceCycles = [6, 2];
    216 }
    217 def : WriteRes<WritePCmpEStrILd, [HWPort0, HWPort16, HWPort5, HWPort23]> {
    218   let Latency = 11;
    219   let ResourceCycles = [3, 2, 2, 1];
    220 }
    221 
    222 // AES Instructions.
    223 def : WriteRes<WriteAESDecEnc, [HWPort5]> {
    224   let Latency = 7;
    225   let ResourceCycles = [1];
    226 }
    227 def : WriteRes<WriteAESDecEncLd, [HWPort5, HWPort23]> {
    228   let Latency = 7;
    229   let ResourceCycles = [1, 1];
    230 }
    231 
    232 def : WriteRes<WriteAESIMC, [HWPort5]> {
    233   let Latency = 14;
    234   let ResourceCycles = [2];
    235 }
    236 def : WriteRes<WriteAESIMCLd, [HWPort5, HWPort23]> {
    237   let Latency = 14;
    238   let ResourceCycles = [2, 1];
    239 }
    240 
    241 def : WriteRes<WriteAESKeyGen, [HWPort0, HWPort5]> {
    242   let Latency = 10;
    243   let ResourceCycles = [2, 8];
    244 }
    245 def : WriteRes<WriteAESKeyGenLd, [HWPort0, HWPort5, HWPort23]> {
    246   let Latency = 10;
    247   let ResourceCycles = [2, 7, 1];
    248 }
    249 
    250 // Carry-less multiplication instructions.
    251 def : WriteRes<WriteCLMul, [HWPort0, HWPort5]> {
    252   let Latency = 7;
    253   let ResourceCycles = [2, 1];
    254 }
    255 def : WriteRes<WriteCLMulLd, [HWPort0, HWPort5, HWPort23]> {
    256   let Latency = 7;
    257   let ResourceCycles = [2, 1, 1];
    258 }
    259 
    260 def : WriteRes<WriteSystem,     [HWPort0156]> { let Latency = 100; }
    261 def : WriteRes<WriteMicrocoded, [HWPort0156]> { let Latency = 100; }
    262 def : WriteRes<WriteFence,  [HWPort23, HWPort4]>;
    263 def : WriteRes<WriteNop, []>;
    264 } // SchedModel
    265