Home | History | Annotate | Download | only in IPO
      1 //===-- IPConstantPropagation.cpp - Propagate constants through calls -----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass implements an _extremely_ simple interprocedural constant
     11 // propagation pass.  It could certainly be improved in many different ways,
     12 // like using a worklist.  This pass makes arguments dead, but does not remove
     13 // them.  The existing dead argument elimination pass should be run after this
     14 // to clean up the mess.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "llvm/Transforms/IPO.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/Analysis/ValueTracking.h"
     22 #include "llvm/IR/CallSite.h"
     23 #include "llvm/IR/Constants.h"
     24 #include "llvm/IR/Instructions.h"
     25 #include "llvm/IR/Module.h"
     26 #include "llvm/Pass.h"
     27 using namespace llvm;
     28 
     29 #define DEBUG_TYPE "ipconstprop"
     30 
     31 STATISTIC(NumArgumentsProped, "Number of args turned into constants");
     32 STATISTIC(NumReturnValProped, "Number of return values turned into constants");
     33 
     34 namespace {
     35   /// IPCP - The interprocedural constant propagation pass
     36   ///
     37   struct IPCP : public ModulePass {
     38     static char ID; // Pass identification, replacement for typeid
     39     IPCP() : ModulePass(ID) {
     40       initializeIPCPPass(*PassRegistry::getPassRegistry());
     41     }
     42 
     43     bool runOnModule(Module &M) override;
     44   private:
     45     bool PropagateConstantsIntoArguments(Function &F);
     46     bool PropagateConstantReturn(Function &F);
     47   };
     48 }
     49 
     50 char IPCP::ID = 0;
     51 INITIALIZE_PASS(IPCP, "ipconstprop",
     52                 "Interprocedural constant propagation", false, false)
     53 
     54 ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); }
     55 
     56 bool IPCP::runOnModule(Module &M) {
     57   bool Changed = false;
     58   bool LocalChange = true;
     59 
     60   // FIXME: instead of using smart algorithms, we just iterate until we stop
     61   // making changes.
     62   while (LocalChange) {
     63     LocalChange = false;
     64     for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
     65       if (!I->isDeclaration()) {
     66         // Delete any klingons.
     67         I->removeDeadConstantUsers();
     68         if (I->hasLocalLinkage())
     69           LocalChange |= PropagateConstantsIntoArguments(*I);
     70         Changed |= PropagateConstantReturn(*I);
     71       }
     72     Changed |= LocalChange;
     73   }
     74   return Changed;
     75 }
     76 
     77 /// PropagateConstantsIntoArguments - Look at all uses of the specified
     78 /// function.  If all uses are direct call sites, and all pass a particular
     79 /// constant in for an argument, propagate that constant in as the argument.
     80 ///
     81 bool IPCP::PropagateConstantsIntoArguments(Function &F) {
     82   if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit.
     83 
     84   // For each argument, keep track of its constant value and whether it is a
     85   // constant or not.  The bool is driven to true when found to be non-constant.
     86   SmallVector<std::pair<Constant*, bool>, 16> ArgumentConstants;
     87   ArgumentConstants.resize(F.arg_size());
     88 
     89   unsigned NumNonconstant = 0;
     90   for (Use &U : F.uses()) {
     91     User *UR = U.getUser();
     92     // Ignore blockaddress uses.
     93     if (isa<BlockAddress>(UR)) continue;
     94 
     95     // Used by a non-instruction, or not the callee of a function, do not
     96     // transform.
     97     if (!isa<CallInst>(UR) && !isa<InvokeInst>(UR))
     98       return false;
     99 
    100     CallSite CS(cast<Instruction>(UR));
    101     if (!CS.isCallee(&U))
    102       return false;
    103 
    104     // Check out all of the potentially constant arguments.  Note that we don't
    105     // inspect varargs here.
    106     CallSite::arg_iterator AI = CS.arg_begin();
    107     Function::arg_iterator Arg = F.arg_begin();
    108     for (unsigned i = 0, e = ArgumentConstants.size(); i != e;
    109          ++i, ++AI, ++Arg) {
    110 
    111       // If this argument is known non-constant, ignore it.
    112       if (ArgumentConstants[i].second)
    113         continue;
    114 
    115       Constant *C = dyn_cast<Constant>(*AI);
    116       if (C && ArgumentConstants[i].first == nullptr) {
    117         ArgumentConstants[i].first = C;   // First constant seen.
    118       } else if (C && ArgumentConstants[i].first == C) {
    119         // Still the constant value we think it is.
    120       } else if (*AI == &*Arg) {
    121         // Ignore recursive calls passing argument down.
    122       } else {
    123         // Argument became non-constant.  If all arguments are non-constant now,
    124         // give up on this function.
    125         if (++NumNonconstant == ArgumentConstants.size())
    126           return false;
    127         ArgumentConstants[i].second = true;
    128       }
    129     }
    130   }
    131 
    132   // If we got to this point, there is a constant argument!
    133   assert(NumNonconstant != ArgumentConstants.size());
    134   bool MadeChange = false;
    135   Function::arg_iterator AI = F.arg_begin();
    136   for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) {
    137     // Do we have a constant argument?
    138     if (ArgumentConstants[i].second || AI->use_empty() ||
    139         AI->hasInAllocaAttr() || (AI->hasByValAttr() && !F.onlyReadsMemory()))
    140       continue;
    141 
    142     Value *V = ArgumentConstants[i].first;
    143     if (!V) V = UndefValue::get(AI->getType());
    144     AI->replaceAllUsesWith(V);
    145     ++NumArgumentsProped;
    146     MadeChange = true;
    147   }
    148   return MadeChange;
    149 }
    150 
    151 
    152 // Check to see if this function returns one or more constants. If so, replace
    153 // all callers that use those return values with the constant value. This will
    154 // leave in the actual return values and instructions, but deadargelim will
    155 // clean that up.
    156 //
    157 // Additionally if a function always returns one of its arguments directly,
    158 // callers will be updated to use the value they pass in directly instead of
    159 // using the return value.
    160 bool IPCP::PropagateConstantReturn(Function &F) {
    161   if (F.getReturnType()->isVoidTy())
    162     return false; // No return value.
    163 
    164   // If this function could be overridden later in the link stage, we can't
    165   // propagate information about its results into callers.
    166   if (F.mayBeOverridden())
    167     return false;
    168 
    169   // Check to see if this function returns a constant.
    170   SmallVector<Value *,4> RetVals;
    171   StructType *STy = dyn_cast<StructType>(F.getReturnType());
    172   if (STy)
    173     for (unsigned i = 0, e = STy->getNumElements(); i < e; ++i)
    174       RetVals.push_back(UndefValue::get(STy->getElementType(i)));
    175   else
    176     RetVals.push_back(UndefValue::get(F.getReturnType()));
    177 
    178   unsigned NumNonConstant = 0;
    179   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    180     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
    181       for (unsigned i = 0, e = RetVals.size(); i != e; ++i) {
    182         // Already found conflicting return values?
    183         Value *RV = RetVals[i];
    184         if (!RV)
    185           continue;
    186 
    187         // Find the returned value
    188         Value *V;
    189         if (!STy)
    190           V = RI->getOperand(0);
    191         else
    192           V = FindInsertedValue(RI->getOperand(0), i);
    193 
    194         if (V) {
    195           // Ignore undefs, we can change them into anything
    196           if (isa<UndefValue>(V))
    197             continue;
    198 
    199           // Try to see if all the rets return the same constant or argument.
    200           if (isa<Constant>(V) || isa<Argument>(V)) {
    201             if (isa<UndefValue>(RV)) {
    202               // No value found yet? Try the current one.
    203               RetVals[i] = V;
    204               continue;
    205             }
    206             // Returning the same value? Good.
    207             if (RV == V)
    208               continue;
    209           }
    210         }
    211         // Different or no known return value? Don't propagate this return
    212         // value.
    213         RetVals[i] = nullptr;
    214         // All values non-constant? Stop looking.
    215         if (++NumNonConstant == RetVals.size())
    216           return false;
    217       }
    218     }
    219 
    220   // If we got here, the function returns at least one constant value.  Loop
    221   // over all users, replacing any uses of the return value with the returned
    222   // constant.
    223   bool MadeChange = false;
    224   for (Use &U : F.uses()) {
    225     CallSite CS(U.getUser());
    226     Instruction* Call = CS.getInstruction();
    227 
    228     // Not a call instruction or a call instruction that's not calling F
    229     // directly?
    230     if (!Call || !CS.isCallee(&U))
    231       continue;
    232 
    233     // Call result not used?
    234     if (Call->use_empty())
    235       continue;
    236 
    237     MadeChange = true;
    238 
    239     if (!STy) {
    240       Value* New = RetVals[0];
    241       if (Argument *A = dyn_cast<Argument>(New))
    242         // Was an argument returned? Then find the corresponding argument in
    243         // the call instruction and use that.
    244         New = CS.getArgument(A->getArgNo());
    245       Call->replaceAllUsesWith(New);
    246       continue;
    247     }
    248 
    249     for (auto I = Call->user_begin(), E = Call->user_end(); I != E;) {
    250       Instruction *Ins = cast<Instruction>(*I);
    251 
    252       // Increment now, so we can remove the use
    253       ++I;
    254 
    255       // Find the index of the retval to replace with
    256       int index = -1;
    257       if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Ins))
    258         if (EV->hasIndices())
    259           index = *EV->idx_begin();
    260 
    261       // If this use uses a specific return value, and we have a replacement,
    262       // replace it.
    263       if (index != -1) {
    264         Value *New = RetVals[index];
    265         if (New) {
    266           if (Argument *A = dyn_cast<Argument>(New))
    267             // Was an argument returned? Then find the corresponding argument in
    268             // the call instruction and use that.
    269             New = CS.getArgument(A->getArgNo());
    270           Ins->replaceAllUsesWith(New);
    271           Ins->eraseFromParent();
    272         }
    273       }
    274     }
    275   }
    276 
    277   if (MadeChange) ++NumReturnValProped;
    278   return MadeChange;
    279 }
    280