Home | History | Annotate | Download | only in Scalar
      1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass identifies expensive constants to hoist and coalesces them to
     11 // better prepare it for SelectionDAG-based code generation. This works around
     12 // the limitations of the basic-block-at-a-time approach.
     13 //
     14 // First it scans all instructions for integer constants and calculates its
     15 // cost. If the constant can be folded into the instruction (the cost is
     16 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
     17 // consider it expensive and leave it alone. This is the default behavior and
     18 // the default implementation of getIntImmCost will always return TCC_Free.
     19 //
     20 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
     21 // into the instruction and it might be beneficial to hoist the constant.
     22 // Similar constants are coalesced to reduce register pressure and
     23 // materialization code.
     24 //
     25 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
     26 // be live-out of the basic block. Otherwise the constant would be just
     27 // duplicated and each basic block would have its own copy in the SelectionDAG.
     28 // The SelectionDAG recognizes such constants as opaque and doesn't perform
     29 // certain transformations on them, which would create a new expensive constant.
     30 //
     31 // This optimization is only applied to integer constants in instructions and
     32 // simple (this means not nested) constant cast expressions. For example:
     33 // %0 = load i64* inttoptr (i64 big_constant to i64*)
     34 //===----------------------------------------------------------------------===//
     35 
     36 #include "llvm/Transforms/Scalar.h"
     37 #include "llvm/ADT/SmallSet.h"
     38 #include "llvm/ADT/SmallVector.h"
     39 #include "llvm/ADT/Statistic.h"
     40 #include "llvm/Analysis/TargetTransformInfo.h"
     41 #include "llvm/IR/Constants.h"
     42 #include "llvm/IR/Dominators.h"
     43 #include "llvm/IR/IntrinsicInst.h"
     44 #include "llvm/Pass.h"
     45 #include "llvm/Support/Debug.h"
     46 #include <tuple>
     47 
     48 using namespace llvm;
     49 
     50 #define DEBUG_TYPE "consthoist"
     51 
     52 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
     53 STATISTIC(NumConstantsRebased, "Number of constants rebased");
     54 
     55 namespace {
     56 struct ConstantUser;
     57 struct RebasedConstantInfo;
     58 
     59 typedef SmallVector<ConstantUser, 8> ConstantUseListType;
     60 typedef SmallVector<RebasedConstantInfo, 4> RebasedConstantListType;
     61 
     62 /// \brief Keeps track of the user of a constant and the operand index where the
     63 /// constant is used.
     64 struct ConstantUser {
     65   Instruction *Inst;
     66   unsigned OpndIdx;
     67 
     68   ConstantUser(Instruction *Inst, unsigned Idx) : Inst(Inst), OpndIdx(Idx) { }
     69 };
     70 
     71 /// \brief Keeps track of a constant candidate and its uses.
     72 struct ConstantCandidate {
     73   ConstantUseListType Uses;
     74   ConstantInt *ConstInt;
     75   unsigned CumulativeCost;
     76 
     77   ConstantCandidate(ConstantInt *ConstInt)
     78     : ConstInt(ConstInt), CumulativeCost(0) { }
     79 
     80   /// \brief Add the user to the use list and update the cost.
     81   void addUser(Instruction *Inst, unsigned Idx, unsigned Cost) {
     82     CumulativeCost += Cost;
     83     Uses.push_back(ConstantUser(Inst, Idx));
     84   }
     85 };
     86 
     87 /// \brief This represents a constant that has been rebased with respect to a
     88 /// base constant. The difference to the base constant is recorded in Offset.
     89 struct RebasedConstantInfo {
     90   ConstantUseListType Uses;
     91   Constant *Offset;
     92 
     93   RebasedConstantInfo(ConstantUseListType &&Uses, Constant *Offset)
     94     : Uses(Uses), Offset(Offset) { }
     95 };
     96 
     97 /// \brief A base constant and all its rebased constants.
     98 struct ConstantInfo {
     99   ConstantInt *BaseConstant;
    100   RebasedConstantListType RebasedConstants;
    101 };
    102 
    103 /// \brief The constant hoisting pass.
    104 class ConstantHoisting : public FunctionPass {
    105   typedef DenseMap<ConstantInt *, unsigned> ConstCandMapType;
    106   typedef std::vector<ConstantCandidate> ConstCandVecType;
    107 
    108   const TargetTransformInfo *TTI;
    109   DominatorTree *DT;
    110   BasicBlock *Entry;
    111 
    112   /// Keeps track of constant candidates found in the function.
    113   ConstCandVecType ConstCandVec;
    114 
    115   /// Keep track of cast instructions we already cloned.
    116   SmallDenseMap<Instruction *, Instruction *> ClonedCastMap;
    117 
    118   /// These are the final constants we decided to hoist.
    119   SmallVector<ConstantInfo, 8> ConstantVec;
    120 public:
    121   static char ID; // Pass identification, replacement for typeid
    122   ConstantHoisting() : FunctionPass(ID), TTI(nullptr), DT(nullptr),
    123                        Entry(nullptr) {
    124     initializeConstantHoistingPass(*PassRegistry::getPassRegistry());
    125   }
    126 
    127   bool runOnFunction(Function &Fn) override;
    128 
    129   const char *getPassName() const override { return "Constant Hoisting"; }
    130 
    131   void getAnalysisUsage(AnalysisUsage &AU) const override {
    132     AU.setPreservesCFG();
    133     AU.addRequired<DominatorTreeWrapperPass>();
    134     AU.addRequired<TargetTransformInfo>();
    135   }
    136 
    137 private:
    138   /// \brief Initialize the pass.
    139   void setup(Function &Fn) {
    140     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    141     TTI = &getAnalysis<TargetTransformInfo>();
    142     Entry = &Fn.getEntryBlock();
    143   }
    144 
    145   /// \brief Cleanup.
    146   void cleanup() {
    147     ConstantVec.clear();
    148     ClonedCastMap.clear();
    149     ConstCandVec.clear();
    150 
    151     TTI = nullptr;
    152     DT = nullptr;
    153     Entry = nullptr;
    154   }
    155 
    156   Instruction *findMatInsertPt(Instruction *Inst, unsigned Idx = ~0U) const;
    157   Instruction *findConstantInsertionPoint(const ConstantInfo &ConstInfo) const;
    158   void collectConstantCandidates(ConstCandMapType &ConstCandMap,
    159                                  Instruction *Inst, unsigned Idx,
    160                                  ConstantInt *ConstInt);
    161   void collectConstantCandidates(ConstCandMapType &ConstCandMap,
    162                                  Instruction *Inst);
    163   void collectConstantCandidates(Function &Fn);
    164   void findAndMakeBaseConstant(ConstCandVecType::iterator S,
    165                                ConstCandVecType::iterator E);
    166   void findBaseConstants();
    167   void emitBaseConstants(Instruction *Base, Constant *Offset,
    168                          const ConstantUser &ConstUser);
    169   bool emitBaseConstants();
    170   void deleteDeadCastInst() const;
    171   bool optimizeConstants(Function &Fn);
    172 };
    173 }
    174 
    175 char ConstantHoisting::ID = 0;
    176 INITIALIZE_PASS_BEGIN(ConstantHoisting, "consthoist", "Constant Hoisting",
    177                       false, false)
    178 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    179 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
    180 INITIALIZE_PASS_END(ConstantHoisting, "consthoist", "Constant Hoisting",
    181                     false, false)
    182 
    183 FunctionPass *llvm::createConstantHoistingPass() {
    184   return new ConstantHoisting();
    185 }
    186 
    187 /// \brief Perform the constant hoisting optimization for the given function.
    188 bool ConstantHoisting::runOnFunction(Function &Fn) {
    189   DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
    190   DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
    191 
    192   setup(Fn);
    193 
    194   bool MadeChange = optimizeConstants(Fn);
    195 
    196   if (MadeChange) {
    197     DEBUG(dbgs() << "********** Function after Constant Hoisting: "
    198                  << Fn.getName() << '\n');
    199     DEBUG(dbgs() << Fn);
    200   }
    201   DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
    202 
    203   cleanup();
    204 
    205   return MadeChange;
    206 }
    207 
    208 
    209 /// \brief Find the constant materialization insertion point.
    210 Instruction *ConstantHoisting::findMatInsertPt(Instruction *Inst,
    211                                                unsigned Idx) const {
    212   // If the operand is a cast instruction, then we have to materialize the
    213   // constant before the cast instruction.
    214   if (Idx != ~0U) {
    215     Value *Opnd = Inst->getOperand(Idx);
    216     if (auto CastInst = dyn_cast<Instruction>(Opnd))
    217       if (CastInst->isCast())
    218         return CastInst;
    219   }
    220 
    221   // The simple and common case. This also includes constant expressions.
    222   if (!isa<PHINode>(Inst) && !isa<LandingPadInst>(Inst))
    223     return Inst;
    224 
    225   // We can't insert directly before a phi node or landing pad. Insert before
    226   // the terminator of the incoming or dominating block.
    227   assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
    228   if (Idx != ~0U && isa<PHINode>(Inst))
    229     return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator();
    230 
    231   BasicBlock *IDom = DT->getNode(Inst->getParent())->getIDom()->getBlock();
    232   return IDom->getTerminator();
    233 }
    234 
    235 /// \brief Find an insertion point that dominates all uses.
    236 Instruction *ConstantHoisting::
    237 findConstantInsertionPoint(const ConstantInfo &ConstInfo) const {
    238   assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
    239   // Collect all basic blocks.
    240   SmallPtrSet<BasicBlock *, 8> BBs;
    241   for (auto const &RCI : ConstInfo.RebasedConstants)
    242     for (auto const &U : RCI.Uses)
    243       BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
    244 
    245   if (BBs.count(Entry))
    246     return &Entry->front();
    247 
    248   while (BBs.size() >= 2) {
    249     BasicBlock *BB, *BB1, *BB2;
    250     BB1 = *BBs.begin();
    251     BB2 = *std::next(BBs.begin());
    252     BB = DT->findNearestCommonDominator(BB1, BB2);
    253     if (BB == Entry)
    254       return &Entry->front();
    255     BBs.erase(BB1);
    256     BBs.erase(BB2);
    257     BBs.insert(BB);
    258   }
    259   assert((BBs.size() == 1) && "Expected only one element.");
    260   Instruction &FirstInst = (*BBs.begin())->front();
    261   return findMatInsertPt(&FirstInst);
    262 }
    263 
    264 
    265 /// \brief Record constant integer ConstInt for instruction Inst at operand
    266 /// index Idx.
    267 ///
    268 /// The operand at index Idx is not necessarily the constant integer itself. It
    269 /// could also be a cast instruction or a constant expression that uses the
    270 // constant integer.
    271 void ConstantHoisting::collectConstantCandidates(ConstCandMapType &ConstCandMap,
    272                                                  Instruction *Inst,
    273                                                  unsigned Idx,
    274                                                  ConstantInt *ConstInt) {
    275   unsigned Cost;
    276   // Ask the target about the cost of materializing the constant for the given
    277   // instruction and operand index.
    278   if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
    279     Cost = TTI->getIntImmCost(IntrInst->getIntrinsicID(), Idx,
    280                               ConstInt->getValue(), ConstInt->getType());
    281   else
    282     Cost = TTI->getIntImmCost(Inst->getOpcode(), Idx, ConstInt->getValue(),
    283                               ConstInt->getType());
    284 
    285   // Ignore cheap integer constants.
    286   if (Cost > TargetTransformInfo::TCC_Basic) {
    287     ConstCandMapType::iterator Itr;
    288     bool Inserted;
    289     std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(ConstInt, 0));
    290     if (Inserted) {
    291       ConstCandVec.push_back(ConstantCandidate(ConstInt));
    292       Itr->second = ConstCandVec.size() - 1;
    293     }
    294     ConstCandVec[Itr->second].addUser(Inst, Idx, Cost);
    295     DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx)))
    296             dbgs() << "Collect constant " << *ConstInt << " from " << *Inst
    297                    << " with cost " << Cost << '\n';
    298           else
    299           dbgs() << "Collect constant " << *ConstInt << " indirectly from "
    300                  << *Inst << " via " << *Inst->getOperand(Idx) << " with cost "
    301                  << Cost << '\n';
    302     );
    303   }
    304 }
    305 
    306 /// \brief Scan the instruction for expensive integer constants and record them
    307 /// in the constant candidate vector.
    308 void ConstantHoisting::collectConstantCandidates(ConstCandMapType &ConstCandMap,
    309                                                  Instruction *Inst) {
    310   // Skip all cast instructions. They are visited indirectly later on.
    311   if (Inst->isCast())
    312     return;
    313 
    314   // Can't handle inline asm. Skip it.
    315   if (auto Call = dyn_cast<CallInst>(Inst))
    316     if (isa<InlineAsm>(Call->getCalledValue()))
    317       return;
    318 
    319   // Scan all operands.
    320   for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
    321     Value *Opnd = Inst->getOperand(Idx);
    322 
    323     // Visit constant integers.
    324     if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
    325       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
    326       continue;
    327     }
    328 
    329     // Visit cast instructions that have constant integers.
    330     if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
    331       // Only visit cast instructions, which have been skipped. All other
    332       // instructions should have already been visited.
    333       if (!CastInst->isCast())
    334         continue;
    335 
    336       if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
    337         // Pretend the constant is directly used by the instruction and ignore
    338         // the cast instruction.
    339         collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
    340         continue;
    341       }
    342     }
    343 
    344     // Visit constant expressions that have constant integers.
    345     if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
    346       // Only visit constant cast expressions.
    347       if (!ConstExpr->isCast())
    348         continue;
    349 
    350       if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
    351         // Pretend the constant is directly used by the instruction and ignore
    352         // the constant expression.
    353         collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
    354         continue;
    355       }
    356     }
    357   } // end of for all operands
    358 }
    359 
    360 /// \brief Collect all integer constants in the function that cannot be folded
    361 /// into an instruction itself.
    362 void ConstantHoisting::collectConstantCandidates(Function &Fn) {
    363   ConstCandMapType ConstCandMap;
    364   for (Function::iterator BB : Fn)
    365     for (BasicBlock::iterator Inst : *BB)
    366       collectConstantCandidates(ConstCandMap, Inst);
    367 }
    368 
    369 /// \brief Find the base constant within the given range and rebase all other
    370 /// constants with respect to the base constant.
    371 void ConstantHoisting::findAndMakeBaseConstant(ConstCandVecType::iterator S,
    372                                                ConstCandVecType::iterator E) {
    373   auto MaxCostItr = S;
    374   unsigned NumUses = 0;
    375   // Use the constant that has the maximum cost as base constant.
    376   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
    377     NumUses += ConstCand->Uses.size();
    378     if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
    379       MaxCostItr = ConstCand;
    380   }
    381 
    382   // Don't hoist constants that have only one use.
    383   if (NumUses <= 1)
    384     return;
    385 
    386   ConstantInfo ConstInfo;
    387   ConstInfo.BaseConstant = MaxCostItr->ConstInt;
    388   Type *Ty = ConstInfo.BaseConstant->getType();
    389 
    390   // Rebase the constants with respect to the base constant.
    391   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
    392     APInt Diff = ConstCand->ConstInt->getValue() -
    393                  ConstInfo.BaseConstant->getValue();
    394     Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
    395     ConstInfo.RebasedConstants.push_back(
    396       RebasedConstantInfo(std::move(ConstCand->Uses), Offset));
    397   }
    398   ConstantVec.push_back(ConstInfo);
    399 }
    400 
    401 /// \brief Finds and combines constant candidates that can be easily
    402 /// rematerialized with an add from a common base constant.
    403 void ConstantHoisting::findBaseConstants() {
    404   // Sort the constants by value and type. This invalidates the mapping!
    405   std::sort(ConstCandVec.begin(), ConstCandVec.end(),
    406             [](const ConstantCandidate &LHS, const ConstantCandidate &RHS) {
    407     if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
    408       return LHS.ConstInt->getType()->getBitWidth() <
    409              RHS.ConstInt->getType()->getBitWidth();
    410     return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
    411   });
    412 
    413   // Simple linear scan through the sorted constant candidate vector for viable
    414   // merge candidates.
    415   auto MinValItr = ConstCandVec.begin();
    416   for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
    417        CC != E; ++CC) {
    418     if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
    419       // Check if the constant is in range of an add with immediate.
    420       APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
    421       if ((Diff.getBitWidth() <= 64) &&
    422           TTI->isLegalAddImmediate(Diff.getSExtValue()))
    423         continue;
    424     }
    425     // We either have now a different constant type or the constant is not in
    426     // range of an add with immediate anymore.
    427     findAndMakeBaseConstant(MinValItr, CC);
    428     // Start a new base constant search.
    429     MinValItr = CC;
    430   }
    431   // Finalize the last base constant search.
    432   findAndMakeBaseConstant(MinValItr, ConstCandVec.end());
    433 }
    434 
    435 /// \brief Updates the operand at Idx in instruction Inst with the result of
    436 ///        instruction Mat. If the instruction is a PHI node then special
    437 ///        handling for duplicate values form the same incomming basic block is
    438 ///        required.
    439 /// \return The update will always succeed, but the return value indicated if
    440 ///         Mat was used for the update or not.
    441 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
    442   if (auto PHI = dyn_cast<PHINode>(Inst)) {
    443     // Check if any previous operand of the PHI node has the same incoming basic
    444     // block. This is a very odd case that happens when the incoming basic block
    445     // has a switch statement. In this case use the same value as the previous
    446     // operand(s), otherwise we will fail verification due to different values.
    447     // The values are actually the same, but the variable names are different
    448     // and the verifier doesn't like that.
    449     BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
    450     for (unsigned i = 0; i < Idx; ++i) {
    451       if (PHI->getIncomingBlock(i) == IncomingBB) {
    452         Value *IncomingVal = PHI->getIncomingValue(i);
    453         Inst->setOperand(Idx, IncomingVal);
    454         return false;
    455       }
    456     }
    457   }
    458 
    459   Inst->setOperand(Idx, Mat);
    460   return true;
    461 }
    462 
    463 /// \brief Emit materialization code for all rebased constants and update their
    464 /// users.
    465 void ConstantHoisting::emitBaseConstants(Instruction *Base, Constant *Offset,
    466                                          const ConstantUser &ConstUser) {
    467   Instruction *Mat = Base;
    468   if (Offset) {
    469     Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
    470                                                ConstUser.OpndIdx);
    471     Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
    472                                  "const_mat", InsertionPt);
    473 
    474     DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
    475                  << " + " << *Offset << ") in BB "
    476                  << Mat->getParent()->getName() << '\n' << *Mat << '\n');
    477     Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
    478   }
    479   Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
    480 
    481   // Visit constant integer.
    482   if (isa<ConstantInt>(Opnd)) {
    483     DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
    484     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
    485       Mat->eraseFromParent();
    486     DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
    487     return;
    488   }
    489 
    490   // Visit cast instruction.
    491   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
    492     assert(CastInst->isCast() && "Expected an cast instruction!");
    493     // Check if we already have visited this cast instruction before to avoid
    494     // unnecessary cloning.
    495     Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
    496     if (!ClonedCastInst) {
    497       ClonedCastInst = CastInst->clone();
    498       ClonedCastInst->setOperand(0, Mat);
    499       ClonedCastInst->insertAfter(CastInst);
    500       // Use the same debug location as the original cast instruction.
    501       ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
    502       DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
    503                    << "To               : " << *ClonedCastInst << '\n');
    504     }
    505 
    506     DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
    507     updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
    508     DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
    509     return;
    510   }
    511 
    512   // Visit constant expression.
    513   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
    514     Instruction *ConstExprInst = ConstExpr->getAsInstruction();
    515     ConstExprInst->setOperand(0, Mat);
    516     ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
    517                                                 ConstUser.OpndIdx));
    518 
    519     // Use the same debug location as the instruction we are about to update.
    520     ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
    521 
    522     DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
    523                  << "From              : " << *ConstExpr << '\n');
    524     DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
    525     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
    526       ConstExprInst->eraseFromParent();
    527       if (Offset)
    528         Mat->eraseFromParent();
    529     }
    530     DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
    531     return;
    532   }
    533 }
    534 
    535 /// \brief Hoist and hide the base constant behind a bitcast and emit
    536 /// materialization code for derived constants.
    537 bool ConstantHoisting::emitBaseConstants() {
    538   bool MadeChange = false;
    539   for (auto const &ConstInfo : ConstantVec) {
    540     // Hoist and hide the base constant behind a bitcast.
    541     Instruction *IP = findConstantInsertionPoint(ConstInfo);
    542     IntegerType *Ty = ConstInfo.BaseConstant->getType();
    543     Instruction *Base =
    544       new BitCastInst(ConstInfo.BaseConstant, Ty, "const", IP);
    545     DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseConstant << ") to BB "
    546                  << IP->getParent()->getName() << '\n' << *Base << '\n');
    547     NumConstantsHoisted++;
    548 
    549     // Emit materialization code for all rebased constants.
    550     for (auto const &RCI : ConstInfo.RebasedConstants) {
    551       NumConstantsRebased++;
    552       for (auto const &U : RCI.Uses)
    553         emitBaseConstants(Base, RCI.Offset, U);
    554     }
    555 
    556     // Use the same debug location as the last user of the constant.
    557     assert(!Base->use_empty() && "The use list is empty!?");
    558     assert(isa<Instruction>(Base->user_back()) &&
    559            "All uses should be instructions.");
    560     Base->setDebugLoc(cast<Instruction>(Base->user_back())->getDebugLoc());
    561 
    562     // Correct for base constant, which we counted above too.
    563     NumConstantsRebased--;
    564     MadeChange = true;
    565   }
    566   return MadeChange;
    567 }
    568 
    569 /// \brief Check all cast instructions we made a copy of and remove them if they
    570 /// have no more users.
    571 void ConstantHoisting::deleteDeadCastInst() const {
    572   for (auto const &I : ClonedCastMap)
    573     if (I.first->use_empty())
    574       I.first->eraseFromParent();
    575 }
    576 
    577 /// \brief Optimize expensive integer constants in the given function.
    578 bool ConstantHoisting::optimizeConstants(Function &Fn) {
    579   // Collect all constant candidates.
    580   collectConstantCandidates(Fn);
    581 
    582   // There are no constant candidates to worry about.
    583   if (ConstCandVec.empty())
    584     return false;
    585 
    586   // Combine constants that can be easily materialized with an add from a common
    587   // base constant.
    588   findBaseConstants();
    589 
    590   // There are no constants to emit.
    591   if (ConstantVec.empty())
    592     return false;
    593 
    594   // Finally hoist the base constant and emit materialization code for dependent
    595   // constants.
    596   bool MadeChange = emitBaseConstants();
    597 
    598   // Cleanup dead instructions.
    599   deleteDeadCastInst();
    600 
    601   return MadeChange;
    602 }
    603