Home | History | Annotate | Download | only in Scalar
      1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs various transformations related to eliminating memcpy
     11 // calls, or transforming sets of stores into memset's.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Scalar.h"
     16 #include "llvm/ADT/SmallVector.h"
     17 #include "llvm/ADT/Statistic.h"
     18 #include "llvm/Analysis/AliasAnalysis.h"
     19 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     20 #include "llvm/Analysis/ValueTracking.h"
     21 #include "llvm/IR/DataLayout.h"
     22 #include "llvm/IR/Dominators.h"
     23 #include "llvm/IR/GetElementPtrTypeIterator.h"
     24 #include "llvm/IR/GlobalVariable.h"
     25 #include "llvm/IR/IRBuilder.h"
     26 #include "llvm/IR/Instructions.h"
     27 #include "llvm/IR/IntrinsicInst.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 #include "llvm/Target/TargetLibraryInfo.h"
     31 #include "llvm/Transforms/Utils/Local.h"
     32 #include <list>
     33 using namespace llvm;
     34 
     35 #define DEBUG_TYPE "memcpyopt"
     36 
     37 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
     38 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
     39 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
     40 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
     41 
     42 static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
     43                                   bool &VariableIdxFound, const DataLayout &TD){
     44   // Skip over the first indices.
     45   gep_type_iterator GTI = gep_type_begin(GEP);
     46   for (unsigned i = 1; i != Idx; ++i, ++GTI)
     47     /*skip along*/;
     48 
     49   // Compute the offset implied by the rest of the indices.
     50   int64_t Offset = 0;
     51   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
     52     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
     53     if (!OpC)
     54       return VariableIdxFound = true;
     55     if (OpC->isZero()) continue;  // No offset.
     56 
     57     // Handle struct indices, which add their field offset to the pointer.
     58     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
     59       Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
     60       continue;
     61     }
     62 
     63     // Otherwise, we have a sequential type like an array or vector.  Multiply
     64     // the index by the ElementSize.
     65     uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
     66     Offset += Size*OpC->getSExtValue();
     67   }
     68 
     69   return Offset;
     70 }
     71 
     72 /// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
     73 /// constant offset, and return that constant offset.  For example, Ptr1 might
     74 /// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
     75 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
     76                             const DataLayout &TD) {
     77   Ptr1 = Ptr1->stripPointerCasts();
     78   Ptr2 = Ptr2->stripPointerCasts();
     79 
     80   // Handle the trivial case first.
     81   if (Ptr1 == Ptr2) {
     82     Offset = 0;
     83     return true;
     84   }
     85 
     86   GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
     87   GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
     88 
     89   bool VariableIdxFound = false;
     90 
     91   // If one pointer is a GEP and the other isn't, then see if the GEP is a
     92   // constant offset from the base, as in "P" and "gep P, 1".
     93   if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
     94     Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, TD);
     95     return !VariableIdxFound;
     96   }
     97 
     98   if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
     99     Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, TD);
    100     return !VariableIdxFound;
    101   }
    102 
    103   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
    104   // base.  After that base, they may have some number of common (and
    105   // potentially variable) indices.  After that they handle some constant
    106   // offset, which determines their offset from each other.  At this point, we
    107   // handle no other case.
    108   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
    109     return false;
    110 
    111   // Skip any common indices and track the GEP types.
    112   unsigned Idx = 1;
    113   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
    114     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
    115       break;
    116 
    117   int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
    118   int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
    119   if (VariableIdxFound) return false;
    120 
    121   Offset = Offset2-Offset1;
    122   return true;
    123 }
    124 
    125 
    126 /// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
    127 /// This allows us to analyze stores like:
    128 ///   store 0 -> P+1
    129 ///   store 0 -> P+0
    130 ///   store 0 -> P+3
    131 ///   store 0 -> P+2
    132 /// which sometimes happens with stores to arrays of structs etc.  When we see
    133 /// the first store, we make a range [1, 2).  The second store extends the range
    134 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
    135 /// two ranges into [0, 3) which is memset'able.
    136 namespace {
    137 struct MemsetRange {
    138   // Start/End - A semi range that describes the span that this range covers.
    139   // The range is closed at the start and open at the end: [Start, End).
    140   int64_t Start, End;
    141 
    142   /// StartPtr - The getelementptr instruction that points to the start of the
    143   /// range.
    144   Value *StartPtr;
    145 
    146   /// Alignment - The known alignment of the first store.
    147   unsigned Alignment;
    148 
    149   /// TheStores - The actual stores that make up this range.
    150   SmallVector<Instruction*, 16> TheStores;
    151 
    152   bool isProfitableToUseMemset(const DataLayout &TD) const;
    153 
    154 };
    155 } // end anon namespace
    156 
    157 bool MemsetRange::isProfitableToUseMemset(const DataLayout &TD) const {
    158   // If we found more than 4 stores to merge or 16 bytes, use memset.
    159   if (TheStores.size() >= 4 || End-Start >= 16) return true;
    160 
    161   // If there is nothing to merge, don't do anything.
    162   if (TheStores.size() < 2) return false;
    163 
    164   // If any of the stores are a memset, then it is always good to extend the
    165   // memset.
    166   for (unsigned i = 0, e = TheStores.size(); i != e; ++i)
    167     if (!isa<StoreInst>(TheStores[i]))
    168       return true;
    169 
    170   // Assume that the code generator is capable of merging pairs of stores
    171   // together if it wants to.
    172   if (TheStores.size() == 2) return false;
    173 
    174   // If we have fewer than 8 stores, it can still be worthwhile to do this.
    175   // For example, merging 4 i8 stores into an i32 store is useful almost always.
    176   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
    177   // memset will be split into 2 32-bit stores anyway) and doing so can
    178   // pessimize the llvm optimizer.
    179   //
    180   // Since we don't have perfect knowledge here, make some assumptions: assume
    181   // the maximum GPR width is the same size as the largest legal integer
    182   // size. If so, check to see whether we will end up actually reducing the
    183   // number of stores used.
    184   unsigned Bytes = unsigned(End-Start);
    185   unsigned MaxIntSize = TD.getLargestLegalIntTypeSize();
    186   if (MaxIntSize == 0)
    187     MaxIntSize = 1;
    188   unsigned NumPointerStores = Bytes / MaxIntSize;
    189 
    190   // Assume the remaining bytes if any are done a byte at a time.
    191   unsigned NumByteStores = Bytes - NumPointerStores * MaxIntSize;
    192 
    193   // If we will reduce the # stores (according to this heuristic), do the
    194   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
    195   // etc.
    196   return TheStores.size() > NumPointerStores+NumByteStores;
    197 }
    198 
    199 
    200 namespace {
    201 class MemsetRanges {
    202   /// Ranges - A sorted list of the memset ranges.  We use std::list here
    203   /// because each element is relatively large and expensive to copy.
    204   std::list<MemsetRange> Ranges;
    205   typedef std::list<MemsetRange>::iterator range_iterator;
    206   const DataLayout &DL;
    207 public:
    208   MemsetRanges(const DataLayout &DL) : DL(DL) {}
    209 
    210   typedef std::list<MemsetRange>::const_iterator const_iterator;
    211   const_iterator begin() const { return Ranges.begin(); }
    212   const_iterator end() const { return Ranges.end(); }
    213   bool empty() const { return Ranges.empty(); }
    214 
    215   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
    216     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
    217       addStore(OffsetFromFirst, SI);
    218     else
    219       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
    220   }
    221 
    222   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
    223     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
    224 
    225     addRange(OffsetFromFirst, StoreSize,
    226              SI->getPointerOperand(), SI->getAlignment(), SI);
    227   }
    228 
    229   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
    230     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
    231     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
    232   }
    233 
    234   void addRange(int64_t Start, int64_t Size, Value *Ptr,
    235                 unsigned Alignment, Instruction *Inst);
    236 
    237 };
    238 
    239 } // end anon namespace
    240 
    241 
    242 /// addRange - Add a new store to the MemsetRanges data structure.  This adds a
    243 /// new range for the specified store at the specified offset, merging into
    244 /// existing ranges as appropriate.
    245 ///
    246 /// Do a linear search of the ranges to see if this can be joined and/or to
    247 /// find the insertion point in the list.  We keep the ranges sorted for
    248 /// simplicity here.  This is a linear search of a linked list, which is ugly,
    249 /// however the number of ranges is limited, so this won't get crazy slow.
    250 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
    251                             unsigned Alignment, Instruction *Inst) {
    252   int64_t End = Start+Size;
    253   range_iterator I = Ranges.begin(), E = Ranges.end();
    254 
    255   while (I != E && Start > I->End)
    256     ++I;
    257 
    258   // We now know that I == E, in which case we didn't find anything to merge
    259   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
    260   // to insert a new range.  Handle this now.
    261   if (I == E || End < I->Start) {
    262     MemsetRange &R = *Ranges.insert(I, MemsetRange());
    263     R.Start        = Start;
    264     R.End          = End;
    265     R.StartPtr     = Ptr;
    266     R.Alignment    = Alignment;
    267     R.TheStores.push_back(Inst);
    268     return;
    269   }
    270 
    271   // This store overlaps with I, add it.
    272   I->TheStores.push_back(Inst);
    273 
    274   // At this point, we may have an interval that completely contains our store.
    275   // If so, just add it to the interval and return.
    276   if (I->Start <= Start && I->End >= End)
    277     return;
    278 
    279   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
    280   // but is not entirely contained within the range.
    281 
    282   // See if the range extends the start of the range.  In this case, it couldn't
    283   // possibly cause it to join the prior range, because otherwise we would have
    284   // stopped on *it*.
    285   if (Start < I->Start) {
    286     I->Start = Start;
    287     I->StartPtr = Ptr;
    288     I->Alignment = Alignment;
    289   }
    290 
    291   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
    292   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
    293   // End.
    294   if (End > I->End) {
    295     I->End = End;
    296     range_iterator NextI = I;
    297     while (++NextI != E && End >= NextI->Start) {
    298       // Merge the range in.
    299       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
    300       if (NextI->End > I->End)
    301         I->End = NextI->End;
    302       Ranges.erase(NextI);
    303       NextI = I;
    304     }
    305   }
    306 }
    307 
    308 //===----------------------------------------------------------------------===//
    309 //                         MemCpyOpt Pass
    310 //===----------------------------------------------------------------------===//
    311 
    312 namespace {
    313   class MemCpyOpt : public FunctionPass {
    314     MemoryDependenceAnalysis *MD;
    315     TargetLibraryInfo *TLI;
    316     const DataLayout *DL;
    317   public:
    318     static char ID; // Pass identification, replacement for typeid
    319     MemCpyOpt() : FunctionPass(ID) {
    320       initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
    321       MD = nullptr;
    322       TLI = nullptr;
    323       DL = nullptr;
    324     }
    325 
    326     bool runOnFunction(Function &F) override;
    327 
    328   private:
    329     // This transformation requires dominator postdominator info
    330     void getAnalysisUsage(AnalysisUsage &AU) const override {
    331       AU.setPreservesCFG();
    332       AU.addRequired<DominatorTreeWrapperPass>();
    333       AU.addRequired<MemoryDependenceAnalysis>();
    334       AU.addRequired<AliasAnalysis>();
    335       AU.addRequired<TargetLibraryInfo>();
    336       AU.addPreserved<AliasAnalysis>();
    337       AU.addPreserved<MemoryDependenceAnalysis>();
    338     }
    339 
    340     // Helper fuctions
    341     bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
    342     bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
    343     bool processMemCpy(MemCpyInst *M);
    344     bool processMemMove(MemMoveInst *M);
    345     bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
    346                               uint64_t cpyLen, unsigned cpyAlign, CallInst *C);
    347     bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
    348                                        uint64_t MSize);
    349     bool processByValArgument(CallSite CS, unsigned ArgNo);
    350     Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
    351                                       Value *ByteVal);
    352 
    353     bool iterateOnFunction(Function &F);
    354   };
    355 
    356   char MemCpyOpt::ID = 0;
    357 }
    358 
    359 // createMemCpyOptPass - The public interface to this file...
    360 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
    361 
    362 INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
    363                       false, false)
    364 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    365 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
    366 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    367 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    368 INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
    369                     false, false)
    370 
    371 /// tryMergingIntoMemset - When scanning forward over instructions, we look for
    372 /// some other patterns to fold away.  In particular, this looks for stores to
    373 /// neighboring locations of memory.  If it sees enough consecutive ones, it
    374 /// attempts to merge them together into a memcpy/memset.
    375 Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
    376                                              Value *StartPtr, Value *ByteVal) {
    377   if (!DL) return nullptr;
    378 
    379   // Okay, so we now have a single store that can be splatable.  Scan to find
    380   // all subsequent stores of the same value to offset from the same pointer.
    381   // Join these together into ranges, so we can decide whether contiguous blocks
    382   // are stored.
    383   MemsetRanges Ranges(*DL);
    384 
    385   BasicBlock::iterator BI = StartInst;
    386   for (++BI; !isa<TerminatorInst>(BI); ++BI) {
    387     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
    388       // If the instruction is readnone, ignore it, otherwise bail out.  We
    389       // don't even allow readonly here because we don't want something like:
    390       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
    391       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
    392         break;
    393       continue;
    394     }
    395 
    396     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
    397       // If this is a store, see if we can merge it in.
    398       if (!NextStore->isSimple()) break;
    399 
    400       // Check to see if this stored value is of the same byte-splattable value.
    401       if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
    402         break;
    403 
    404       // Check to see if this store is to a constant offset from the start ptr.
    405       int64_t Offset;
    406       if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(),
    407                            Offset, *DL))
    408         break;
    409 
    410       Ranges.addStore(Offset, NextStore);
    411     } else {
    412       MemSetInst *MSI = cast<MemSetInst>(BI);
    413 
    414       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
    415           !isa<ConstantInt>(MSI->getLength()))
    416         break;
    417 
    418       // Check to see if this store is to a constant offset from the start ptr.
    419       int64_t Offset;
    420       if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *DL))
    421         break;
    422 
    423       Ranges.addMemSet(Offset, MSI);
    424     }
    425   }
    426 
    427   // If we have no ranges, then we just had a single store with nothing that
    428   // could be merged in.  This is a very common case of course.
    429   if (Ranges.empty())
    430     return nullptr;
    431 
    432   // If we had at least one store that could be merged in, add the starting
    433   // store as well.  We try to avoid this unless there is at least something
    434   // interesting as a small compile-time optimization.
    435   Ranges.addInst(0, StartInst);
    436 
    437   // If we create any memsets, we put it right before the first instruction that
    438   // isn't part of the memset block.  This ensure that the memset is dominated
    439   // by any addressing instruction needed by the start of the block.
    440   IRBuilder<> Builder(BI);
    441 
    442   // Now that we have full information about ranges, loop over the ranges and
    443   // emit memset's for anything big enough to be worthwhile.
    444   Instruction *AMemSet = nullptr;
    445   for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
    446        I != E; ++I) {
    447     const MemsetRange &Range = *I;
    448 
    449     if (Range.TheStores.size() == 1) continue;
    450 
    451     // If it is profitable to lower this range to memset, do so now.
    452     if (!Range.isProfitableToUseMemset(*DL))
    453       continue;
    454 
    455     // Otherwise, we do want to transform this!  Create a new memset.
    456     // Get the starting pointer of the block.
    457     StartPtr = Range.StartPtr;
    458 
    459     // Determine alignment
    460     unsigned Alignment = Range.Alignment;
    461     if (Alignment == 0) {
    462       Type *EltType =
    463         cast<PointerType>(StartPtr->getType())->getElementType();
    464       Alignment = DL->getABITypeAlignment(EltType);
    465     }
    466 
    467     AMemSet =
    468       Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
    469 
    470     DEBUG(dbgs() << "Replace stores:\n";
    471           for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
    472             dbgs() << *Range.TheStores[i] << '\n';
    473           dbgs() << "With: " << *AMemSet << '\n');
    474 
    475     if (!Range.TheStores.empty())
    476       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
    477 
    478     // Zap all the stores.
    479     for (SmallVectorImpl<Instruction *>::const_iterator
    480          SI = Range.TheStores.begin(),
    481          SE = Range.TheStores.end(); SI != SE; ++SI) {
    482       MD->removeInstruction(*SI);
    483       (*SI)->eraseFromParent();
    484     }
    485     ++NumMemSetInfer;
    486   }
    487 
    488   return AMemSet;
    489 }
    490 
    491 
    492 bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
    493   if (!SI->isSimple()) return false;
    494 
    495   if (!DL) return false;
    496 
    497   // Detect cases where we're performing call slot forwarding, but
    498   // happen to be using a load-store pair to implement it, rather than
    499   // a memcpy.
    500   if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
    501     if (LI->isSimple() && LI->hasOneUse() &&
    502         LI->getParent() == SI->getParent()) {
    503       MemDepResult ldep = MD->getDependency(LI);
    504       CallInst *C = nullptr;
    505       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
    506         C = dyn_cast<CallInst>(ldep.getInst());
    507 
    508       if (C) {
    509         // Check that nothing touches the dest of the "copy" between
    510         // the call and the store.
    511         AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
    512         AliasAnalysis::Location StoreLoc = AA.getLocation(SI);
    513         for (BasicBlock::iterator I = --BasicBlock::iterator(SI),
    514                                   E = C; I != E; --I) {
    515           if (AA.getModRefInfo(&*I, StoreLoc) != AliasAnalysis::NoModRef) {
    516             C = nullptr;
    517             break;
    518           }
    519         }
    520       }
    521 
    522       if (C) {
    523         unsigned storeAlign = SI->getAlignment();
    524         if (!storeAlign)
    525           storeAlign = DL->getABITypeAlignment(SI->getOperand(0)->getType());
    526         unsigned loadAlign = LI->getAlignment();
    527         if (!loadAlign)
    528           loadAlign = DL->getABITypeAlignment(LI->getType());
    529 
    530         bool changed = performCallSlotOptzn(LI,
    531                         SI->getPointerOperand()->stripPointerCasts(),
    532                         LI->getPointerOperand()->stripPointerCasts(),
    533                         DL->getTypeStoreSize(SI->getOperand(0)->getType()),
    534                         std::min(storeAlign, loadAlign), C);
    535         if (changed) {
    536           MD->removeInstruction(SI);
    537           SI->eraseFromParent();
    538           MD->removeInstruction(LI);
    539           LI->eraseFromParent();
    540           ++NumMemCpyInstr;
    541           return true;
    542         }
    543       }
    544     }
    545   }
    546 
    547   // There are two cases that are interesting for this code to handle: memcpy
    548   // and memset.  Right now we only handle memset.
    549 
    550   // Ensure that the value being stored is something that can be memset'able a
    551   // byte at a time like "0" or "-1" or any width, as well as things like
    552   // 0xA0A0A0A0 and 0.0.
    553   if (Value *ByteVal = isBytewiseValue(SI->getOperand(0)))
    554     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
    555                                               ByteVal)) {
    556       BBI = I;  // Don't invalidate iterator.
    557       return true;
    558     }
    559 
    560   return false;
    561 }
    562 
    563 bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
    564   // See if there is another memset or store neighboring this memset which
    565   // allows us to widen out the memset to do a single larger store.
    566   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
    567     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
    568                                               MSI->getValue())) {
    569       BBI = I;  // Don't invalidate iterator.
    570       return true;
    571     }
    572   return false;
    573 }
    574 
    575 
    576 /// performCallSlotOptzn - takes a memcpy and a call that it depends on,
    577 /// and checks for the possibility of a call slot optimization by having
    578 /// the call write its result directly into the destination of the memcpy.
    579 bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
    580                                      Value *cpyDest, Value *cpySrc,
    581                                      uint64_t cpyLen, unsigned cpyAlign,
    582                                      CallInst *C) {
    583   // The general transformation to keep in mind is
    584   //
    585   //   call @func(..., src, ...)
    586   //   memcpy(dest, src, ...)
    587   //
    588   // ->
    589   //
    590   //   memcpy(dest, src, ...)
    591   //   call @func(..., dest, ...)
    592   //
    593   // Since moving the memcpy is technically awkward, we additionally check that
    594   // src only holds uninitialized values at the moment of the call, meaning that
    595   // the memcpy can be discarded rather than moved.
    596 
    597   // Deliberately get the source and destination with bitcasts stripped away,
    598   // because we'll need to do type comparisons based on the underlying type.
    599   CallSite CS(C);
    600 
    601   // Require that src be an alloca.  This simplifies the reasoning considerably.
    602   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
    603   if (!srcAlloca)
    604     return false;
    605 
    606   // Check that all of src is copied to dest.
    607   if (!DL) return false;
    608 
    609   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
    610   if (!srcArraySize)
    611     return false;
    612 
    613   uint64_t srcSize = DL->getTypeAllocSize(srcAlloca->getAllocatedType()) *
    614     srcArraySize->getZExtValue();
    615 
    616   if (cpyLen < srcSize)
    617     return false;
    618 
    619   // Check that accessing the first srcSize bytes of dest will not cause a
    620   // trap.  Otherwise the transform is invalid since it might cause a trap
    621   // to occur earlier than it otherwise would.
    622   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
    623     // The destination is an alloca.  Check it is larger than srcSize.
    624     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
    625     if (!destArraySize)
    626       return false;
    627 
    628     uint64_t destSize = DL->getTypeAllocSize(A->getAllocatedType()) *
    629       destArraySize->getZExtValue();
    630 
    631     if (destSize < srcSize)
    632       return false;
    633   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
    634     // If the destination is an sret parameter then only accesses that are
    635     // outside of the returned struct type can trap.
    636     if (!A->hasStructRetAttr())
    637       return false;
    638 
    639     Type *StructTy = cast<PointerType>(A->getType())->getElementType();
    640     if (!StructTy->isSized()) {
    641       // The call may never return and hence the copy-instruction may never
    642       // be executed, and therefore it's not safe to say "the destination
    643       // has at least <cpyLen> bytes, as implied by the copy-instruction",
    644       return false;
    645     }
    646 
    647     uint64_t destSize = DL->getTypeAllocSize(StructTy);
    648     if (destSize < srcSize)
    649       return false;
    650   } else {
    651     return false;
    652   }
    653 
    654   // Check that dest points to memory that is at least as aligned as src.
    655   unsigned srcAlign = srcAlloca->getAlignment();
    656   if (!srcAlign)
    657     srcAlign = DL->getABITypeAlignment(srcAlloca->getAllocatedType());
    658   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
    659   // If dest is not aligned enough and we can't increase its alignment then
    660   // bail out.
    661   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
    662     return false;
    663 
    664   // Check that src is not accessed except via the call and the memcpy.  This
    665   // guarantees that it holds only undefined values when passed in (so the final
    666   // memcpy can be dropped), that it is not read or written between the call and
    667   // the memcpy, and that writing beyond the end of it is undefined.
    668   SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
    669                                    srcAlloca->user_end());
    670   while (!srcUseList.empty()) {
    671     User *U = srcUseList.pop_back_val();
    672 
    673     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
    674       for (User *UU : U->users())
    675         srcUseList.push_back(UU);
    676     } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
    677       if (G->hasAllZeroIndices())
    678         for (User *UU : U->users())
    679           srcUseList.push_back(UU);
    680       else
    681         return false;
    682     } else if (U != C && U != cpy) {
    683       return false;
    684     }
    685   }
    686 
    687   // Since we're changing the parameter to the callsite, we need to make sure
    688   // that what would be the new parameter dominates the callsite.
    689   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    690   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
    691     if (!DT.dominates(cpyDestInst, C))
    692       return false;
    693 
    694   // In addition to knowing that the call does not access src in some
    695   // unexpected manner, for example via a global, which we deduce from
    696   // the use analysis, we also need to know that it does not sneakily
    697   // access dest.  We rely on AA to figure this out for us.
    698   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
    699   AliasAnalysis::ModRefResult MR = AA.getModRefInfo(C, cpyDest, srcSize);
    700   // If necessary, perform additional analysis.
    701   if (MR != AliasAnalysis::NoModRef)
    702     MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
    703   if (MR != AliasAnalysis::NoModRef)
    704     return false;
    705 
    706   // All the checks have passed, so do the transformation.
    707   bool changedArgument = false;
    708   for (unsigned i = 0; i < CS.arg_size(); ++i)
    709     if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
    710       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
    711         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
    712                                       cpyDest->getName(), C);
    713       changedArgument = true;
    714       if (CS.getArgument(i)->getType() == Dest->getType())
    715         CS.setArgument(i, Dest);
    716       else
    717         CS.setArgument(i, CastInst::CreatePointerCast(Dest,
    718                           CS.getArgument(i)->getType(), Dest->getName(), C));
    719     }
    720 
    721   if (!changedArgument)
    722     return false;
    723 
    724   // If the destination wasn't sufficiently aligned then increase its alignment.
    725   if (!isDestSufficientlyAligned) {
    726     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
    727     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
    728   }
    729 
    730   // Drop any cached information about the call, because we may have changed
    731   // its dependence information by changing its parameter.
    732   MD->removeInstruction(C);
    733 
    734   // Remove the memcpy.
    735   MD->removeInstruction(cpy);
    736   ++NumMemCpyInstr;
    737 
    738   return true;
    739 }
    740 
    741 /// processMemCpyMemCpyDependence - We've found that the (upward scanning)
    742 /// memory dependence of memcpy 'M' is the memcpy 'MDep'.  Try to simplify M to
    743 /// copy from MDep's input if we can.  MSize is the size of M's copy.
    744 ///
    745 bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
    746                                               uint64_t MSize) {
    747   // We can only transforms memcpy's where the dest of one is the source of the
    748   // other.
    749   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
    750     return false;
    751 
    752   // If dep instruction is reading from our current input, then it is a noop
    753   // transfer and substituting the input won't change this instruction.  Just
    754   // ignore the input and let someone else zap MDep.  This handles cases like:
    755   //    memcpy(a <- a)
    756   //    memcpy(b <- a)
    757   if (M->getSource() == MDep->getSource())
    758     return false;
    759 
    760   // Second, the length of the memcpy's must be the same, or the preceding one
    761   // must be larger than the following one.
    762   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
    763   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
    764   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
    765     return false;
    766 
    767   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
    768 
    769   // Verify that the copied-from memory doesn't change in between the two
    770   // transfers.  For example, in:
    771   //    memcpy(a <- b)
    772   //    *b = 42;
    773   //    memcpy(c <- a)
    774   // It would be invalid to transform the second memcpy into memcpy(c <- b).
    775   //
    776   // TODO: If the code between M and MDep is transparent to the destination "c",
    777   // then we could still perform the xform by moving M up to the first memcpy.
    778   //
    779   // NOTE: This is conservative, it will stop on any read from the source loc,
    780   // not just the defining memcpy.
    781   MemDepResult SourceDep =
    782     MD->getPointerDependencyFrom(AA.getLocationForSource(MDep),
    783                                  false, M, M->getParent());
    784   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
    785     return false;
    786 
    787   // If the dest of the second might alias the source of the first, then the
    788   // source and dest might overlap.  We still want to eliminate the intermediate
    789   // value, but we have to generate a memmove instead of memcpy.
    790   bool UseMemMove = false;
    791   if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(MDep)))
    792     UseMemMove = true;
    793 
    794   // If all checks passed, then we can transform M.
    795 
    796   // Make sure to use the lesser of the alignment of the source and the dest
    797   // since we're changing where we're reading from, but don't want to increase
    798   // the alignment past what can be read from or written to.
    799   // TODO: Is this worth it if we're creating a less aligned memcpy? For
    800   // example we could be moving from movaps -> movq on x86.
    801   unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
    802 
    803   IRBuilder<> Builder(M);
    804   if (UseMemMove)
    805     Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
    806                           Align, M->isVolatile());
    807   else
    808     Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
    809                          Align, M->isVolatile());
    810 
    811   // Remove the instruction we're replacing.
    812   MD->removeInstruction(M);
    813   M->eraseFromParent();
    814   ++NumMemCpyInstr;
    815   return true;
    816 }
    817 
    818 
    819 /// processMemCpy - perform simplification of memcpy's.  If we have memcpy A
    820 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
    821 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
    822 /// circumstances). This allows later passes to remove the first memcpy
    823 /// altogether.
    824 bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
    825   // We can only optimize non-volatile memcpy's.
    826   if (M->isVolatile()) return false;
    827 
    828   // If the source and destination of the memcpy are the same, then zap it.
    829   if (M->getSource() == M->getDest()) {
    830     MD->removeInstruction(M);
    831     M->eraseFromParent();
    832     return false;
    833   }
    834 
    835   // If copying from a constant, try to turn the memcpy into a memset.
    836   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
    837     if (GV->isConstant() && GV->hasDefinitiveInitializer())
    838       if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
    839         IRBuilder<> Builder(M);
    840         Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
    841                              M->getAlignment(), false);
    842         MD->removeInstruction(M);
    843         M->eraseFromParent();
    844         ++NumCpyToSet;
    845         return true;
    846       }
    847 
    848   // The optimizations after this point require the memcpy size.
    849   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
    850   if (!CopySize) return false;
    851 
    852   // The are three possible optimizations we can do for memcpy:
    853   //   a) memcpy-memcpy xform which exposes redundance for DSE.
    854   //   b) call-memcpy xform for return slot optimization.
    855   //   c) memcpy from freshly alloca'd space or space that has just started its
    856   //      lifetime copies undefined data, and we can therefore eliminate the
    857   //      memcpy in favor of the data that was already at the destination.
    858   MemDepResult DepInfo = MD->getDependency(M);
    859   if (DepInfo.isClobber()) {
    860     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
    861       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
    862                                CopySize->getZExtValue(), M->getAlignment(),
    863                                C)) {
    864         MD->removeInstruction(M);
    865         M->eraseFromParent();
    866         return true;
    867       }
    868     }
    869   }
    870 
    871   AliasAnalysis::Location SrcLoc = AliasAnalysis::getLocationForSource(M);
    872   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(SrcLoc, true,
    873                                                          M, M->getParent());
    874   if (SrcDepInfo.isClobber()) {
    875     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
    876       return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue());
    877   } else if (SrcDepInfo.isDef()) {
    878     Instruction *I = SrcDepInfo.getInst();
    879     bool hasUndefContents = false;
    880 
    881     if (isa<AllocaInst>(I)) {
    882       hasUndefContents = true;
    883     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    884       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
    885         if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
    886           if (LTSize->getZExtValue() >= CopySize->getZExtValue())
    887             hasUndefContents = true;
    888     }
    889 
    890     if (hasUndefContents) {
    891       MD->removeInstruction(M);
    892       M->eraseFromParent();
    893       ++NumMemCpyInstr;
    894       return true;
    895     }
    896   }
    897 
    898   return false;
    899 }
    900 
    901 /// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
    902 /// are guaranteed not to alias.
    903 bool MemCpyOpt::processMemMove(MemMoveInst *M) {
    904   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
    905 
    906   if (!TLI->has(LibFunc::memmove))
    907     return false;
    908 
    909   // See if the pointers alias.
    910   if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(M)))
    911     return false;
    912 
    913   DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
    914 
    915   // If not, then we know we can transform this.
    916   Module *Mod = M->getParent()->getParent()->getParent();
    917   Type *ArgTys[3] = { M->getRawDest()->getType(),
    918                       M->getRawSource()->getType(),
    919                       M->getLength()->getType() };
    920   M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
    921                                                  ArgTys));
    922 
    923   // MemDep may have over conservative information about this instruction, just
    924   // conservatively flush it from the cache.
    925   MD->removeInstruction(M);
    926 
    927   ++NumMoveToCpy;
    928   return true;
    929 }
    930 
    931 /// processByValArgument - This is called on every byval argument in call sites.
    932 bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
    933   if (!DL) return false;
    934 
    935   // Find out what feeds this byval argument.
    936   Value *ByValArg = CS.getArgument(ArgNo);
    937   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
    938   uint64_t ByValSize = DL->getTypeAllocSize(ByValTy);
    939   MemDepResult DepInfo =
    940     MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
    941                                  true, CS.getInstruction(),
    942                                  CS.getInstruction()->getParent());
    943   if (!DepInfo.isClobber())
    944     return false;
    945 
    946   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
    947   // a memcpy, see if we can byval from the source of the memcpy instead of the
    948   // result.
    949   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
    950   if (!MDep || MDep->isVolatile() ||
    951       ByValArg->stripPointerCasts() != MDep->getDest())
    952     return false;
    953 
    954   // The length of the memcpy must be larger or equal to the size of the byval.
    955   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
    956   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
    957     return false;
    958 
    959   // Get the alignment of the byval.  If the call doesn't specify the alignment,
    960   // then it is some target specific value that we can't know.
    961   unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
    962   if (ByValAlign == 0) return false;
    963 
    964   // If it is greater than the memcpy, then we check to see if we can force the
    965   // source of the memcpy to the alignment we need.  If we fail, we bail out.
    966   if (MDep->getAlignment() < ByValAlign &&
    967       getOrEnforceKnownAlignment(MDep->getSource(),ByValAlign, DL) < ByValAlign)
    968     return false;
    969 
    970   // Verify that the copied-from memory doesn't change in between the memcpy and
    971   // the byval call.
    972   //    memcpy(a <- b)
    973   //    *b = 42;
    974   //    foo(*a)
    975   // It would be invalid to transform the second memcpy into foo(*b).
    976   //
    977   // NOTE: This is conservative, it will stop on any read from the source loc,
    978   // not just the defining memcpy.
    979   MemDepResult SourceDep =
    980     MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep),
    981                                  false, CS.getInstruction(), MDep->getParent());
    982   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
    983     return false;
    984 
    985   Value *TmpCast = MDep->getSource();
    986   if (MDep->getSource()->getType() != ByValArg->getType())
    987     TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
    988                               "tmpcast", CS.getInstruction());
    989 
    990   DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
    991                << "  " << *MDep << "\n"
    992                << "  " << *CS.getInstruction() << "\n");
    993 
    994   // Otherwise we're good!  Update the byval argument.
    995   CS.setArgument(ArgNo, TmpCast);
    996   ++NumMemCpyInstr;
    997   return true;
    998 }
    999 
   1000 /// iterateOnFunction - Executes one iteration of MemCpyOpt.
   1001 bool MemCpyOpt::iterateOnFunction(Function &F) {
   1002   bool MadeChange = false;
   1003 
   1004   // Walk all instruction in the function.
   1005   for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
   1006     for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
   1007       // Avoid invalidating the iterator.
   1008       Instruction *I = BI++;
   1009 
   1010       bool RepeatInstruction = false;
   1011 
   1012       if (StoreInst *SI = dyn_cast<StoreInst>(I))
   1013         MadeChange |= processStore(SI, BI);
   1014       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
   1015         RepeatInstruction = processMemSet(M, BI);
   1016       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
   1017         RepeatInstruction = processMemCpy(M);
   1018       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
   1019         RepeatInstruction = processMemMove(M);
   1020       else if (CallSite CS = (Value*)I) {
   1021         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
   1022           if (CS.isByValArgument(i))
   1023             MadeChange |= processByValArgument(CS, i);
   1024       }
   1025 
   1026       // Reprocess the instruction if desired.
   1027       if (RepeatInstruction) {
   1028         if (BI != BB->begin()) --BI;
   1029         MadeChange = true;
   1030       }
   1031     }
   1032   }
   1033 
   1034   return MadeChange;
   1035 }
   1036 
   1037 // MemCpyOpt::runOnFunction - This is the main transformation entry point for a
   1038 // function.
   1039 //
   1040 bool MemCpyOpt::runOnFunction(Function &F) {
   1041   if (skipOptnoneFunction(F))
   1042     return false;
   1043 
   1044   bool MadeChange = false;
   1045   MD = &getAnalysis<MemoryDependenceAnalysis>();
   1046   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
   1047   DL = DLP ? &DLP->getDataLayout() : nullptr;
   1048   TLI = &getAnalysis<TargetLibraryInfo>();
   1049 
   1050   // If we don't have at least memset and memcpy, there is little point of doing
   1051   // anything here.  These are required by a freestanding implementation, so if
   1052   // even they are disabled, there is no point in trying hard.
   1053   if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy))
   1054     return false;
   1055 
   1056   while (1) {
   1057     if (!iterateOnFunction(F))
   1058       break;
   1059     MadeChange = true;
   1060   }
   1061 
   1062   MD = nullptr;
   1063   return MadeChange;
   1064 }
   1065