Home | History | Annotate | Download | only in TableGen
      1 //===- DFAPacketizerEmitter.cpp - Packetization DFA for a VLIW machine-----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This class parses the Schedule.td file and produces an API that can be used
     11 // to reason about whether an instruction can be added to a packet on a VLIW
     12 // architecture. The class internally generates a deterministic finite
     13 // automaton (DFA) that models all possible mappings of machine instructions
     14 // to functional units as instructions are added to a packet.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "CodeGenTarget.h"
     19 #include "llvm/ADT/DenseSet.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/TableGen/Record.h"
     22 #include "llvm/TableGen/TableGenBackend.h"
     23 #include <list>
     24 #include <map>
     25 #include <string>
     26 using namespace llvm;
     27 
     28 //
     29 // class DFAPacketizerEmitter: class that generates and prints out the DFA
     30 // for resource tracking.
     31 //
     32 namespace {
     33 class DFAPacketizerEmitter {
     34 private:
     35   std::string TargetName;
     36   //
     37   // allInsnClasses is the set of all possible resources consumed by an
     38   // InstrStage.
     39   //
     40   DenseSet<unsigned> allInsnClasses;
     41   RecordKeeper &Records;
     42 
     43 public:
     44   DFAPacketizerEmitter(RecordKeeper &R);
     45 
     46   //
     47   // collectAllInsnClasses: Populate allInsnClasses which is a set of units
     48   // used in each stage.
     49   //
     50   void collectAllInsnClasses(const std::string &Name,
     51                              Record *ItinData,
     52                              unsigned &NStages,
     53                              raw_ostream &OS);
     54 
     55   void run(raw_ostream &OS);
     56 };
     57 } // End anonymous namespace.
     58 
     59 //
     60 //
     61 // State represents the usage of machine resources if the packet contains
     62 // a set of instruction classes.
     63 //
     64 // Specifically, currentState is a set of bit-masks.
     65 // The nth bit in a bit-mask indicates whether the nth resource is being used
     66 // by this state. The set of bit-masks in a state represent the different
     67 // possible outcomes of transitioning to this state.
     68 // For example: consider a two resource architecture: resource L and resource M
     69 // with three instruction classes: L, M, and L_or_M.
     70 // From the initial state (currentState = 0x00), if we add instruction class
     71 // L_or_M we will transition to a state with currentState = [0x01, 0x10]. This
     72 // represents the possible resource states that can result from adding a L_or_M
     73 // instruction
     74 //
     75 // Another way of thinking about this transition is we are mapping a NDFA with
     76 // two states [0x01] and [0x10] into a DFA with a single state [0x01, 0x10].
     77 //
     78 // A State instance also contains a collection of transitions from that state:
     79 // a map from inputs to new states.
     80 //
     81 namespace {
     82 class State {
     83  public:
     84   static int currentStateNum;
     85   // stateNum is the only member used for equality/ordering, all other members
     86   // can be mutated even in const State objects.
     87   const int stateNum;
     88   mutable bool isInitial;
     89   mutable std::set<unsigned> stateInfo;
     90   typedef std::map<unsigned, const State *> TransitionMap;
     91   mutable TransitionMap Transitions;
     92 
     93   State();
     94 
     95   bool operator<(const State &s) const {
     96     return stateNum < s.stateNum;
     97   }
     98 
     99   //
    100   // canAddInsnClass - Returns true if an instruction of type InsnClass is a
    101   // valid transition from this state, i.e., can an instruction of type InsnClass
    102   // be added to the packet represented by this state.
    103   //
    104   // PossibleStates is the set of valid resource states that ensue from valid
    105   // transitions.
    106   //
    107   bool canAddInsnClass(unsigned InsnClass) const;
    108   //
    109   // AddInsnClass - Return all combinations of resource reservation
    110   // which are possible from this state (PossibleStates).
    111   //
    112   void AddInsnClass(unsigned InsnClass, std::set<unsigned> &PossibleStates) const;
    113   //
    114   // addTransition - Add a transition from this state given the input InsnClass
    115   //
    116   void addTransition(unsigned InsnClass, const State *To) const;
    117   //
    118   // hasTransition - Returns true if there is a transition from this state
    119   // given the input InsnClass
    120   //
    121   bool hasTransition(unsigned InsnClass) const;
    122 };
    123 } // End anonymous namespace.
    124 
    125 //
    126 // class DFA: deterministic finite automaton for processor resource tracking.
    127 //
    128 namespace {
    129 class DFA {
    130 public:
    131   DFA();
    132 
    133   // Set of states. Need to keep this sorted to emit the transition table.
    134   typedef std::set<State> StateSet;
    135   StateSet states;
    136 
    137   State *currentState;
    138 
    139   //
    140   // Modify the DFA.
    141   //
    142   const State &newState();
    143 
    144   //
    145   // writeTable: Print out a table representing the DFA.
    146   //
    147   void writeTableAndAPI(raw_ostream &OS, const std::string &ClassName);
    148 };
    149 } // End anonymous namespace.
    150 
    151 
    152 //
    153 // Constructors and destructors for State and DFA
    154 //
    155 State::State() :
    156   stateNum(currentStateNum++), isInitial(false) {}
    157 
    158 DFA::DFA(): currentState(nullptr) {}
    159 
    160 //
    161 // addTransition - Add a transition from this state given the input InsnClass
    162 //
    163 void State::addTransition(unsigned InsnClass, const State *To) const {
    164   assert(!Transitions.count(InsnClass) &&
    165       "Cannot have multiple transitions for the same input");
    166   Transitions[InsnClass] = To;
    167 }
    168 
    169 //
    170 // hasTransition - Returns true if there is a transition from this state
    171 // given the input InsnClass
    172 //
    173 bool State::hasTransition(unsigned InsnClass) const {
    174   return Transitions.count(InsnClass) > 0;
    175 }
    176 
    177 //
    178 // AddInsnClass - Return all combinations of resource reservation
    179 // which are possible from this state (PossibleStates).
    180 //
    181 void State::AddInsnClass(unsigned InsnClass,
    182                             std::set<unsigned> &PossibleStates) const {
    183   //
    184   // Iterate over all resource states in currentState.
    185   //
    186 
    187   for (std::set<unsigned>::iterator SI = stateInfo.begin();
    188        SI != stateInfo.end(); ++SI) {
    189     unsigned thisState = *SI;
    190 
    191     //
    192     // Iterate over all possible resources used in InsnClass.
    193     // For ex: for InsnClass = 0x11, all resources = {0x01, 0x10}.
    194     //
    195 
    196     DenseSet<unsigned> VisitedResourceStates;
    197     for (unsigned int j = 0; j < sizeof(InsnClass) * 8; ++j) {
    198       if ((0x1 << j) & InsnClass) {
    199         //
    200         // For each possible resource used in InsnClass, generate the
    201         // resource state if that resource was used.
    202         //
    203         unsigned ResultingResourceState = thisState | (0x1 << j);
    204         //
    205         // Check if the resulting resource state can be accommodated in this
    206         // packet.
    207         // We compute ResultingResourceState OR thisState.
    208         // If the result of the OR is different than thisState, it implies
    209         // that there is at least one resource that can be used to schedule
    210         // InsnClass in the current packet.
    211         // Insert ResultingResourceState into PossibleStates only if we haven't
    212         // processed ResultingResourceState before.
    213         //
    214         if ((ResultingResourceState != thisState) &&
    215             (VisitedResourceStates.count(ResultingResourceState) == 0)) {
    216           VisitedResourceStates.insert(ResultingResourceState);
    217           PossibleStates.insert(ResultingResourceState);
    218         }
    219       }
    220     }
    221   }
    222 
    223 }
    224 
    225 
    226 //
    227 // canAddInsnClass - Quickly verifies if an instruction of type InsnClass is a
    228 // valid transition from this state i.e., can an instruction of type InsnClass
    229 // be added to the packet represented by this state.
    230 //
    231 bool State::canAddInsnClass(unsigned InsnClass) const {
    232   for (std::set<unsigned>::const_iterator SI = stateInfo.begin();
    233        SI != stateInfo.end(); ++SI) {
    234     if (~*SI & InsnClass)
    235       return true;
    236   }
    237   return false;
    238 }
    239 
    240 
    241 const State &DFA::newState() {
    242   auto IterPair = states.insert(State());
    243   assert(IterPair.second && "State already exists");
    244   return *IterPair.first;
    245 }
    246 
    247 
    248 int State::currentStateNum = 0;
    249 
    250 DFAPacketizerEmitter::DFAPacketizerEmitter(RecordKeeper &R):
    251   TargetName(CodeGenTarget(R).getName()),
    252   allInsnClasses(), Records(R) {}
    253 
    254 
    255 //
    256 // writeTableAndAPI - Print out a table representing the DFA and the
    257 // associated API to create a DFA packetizer.
    258 //
    259 // Format:
    260 // DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid
    261 //                           transitions.
    262 // DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable for
    263 //                         the ith state.
    264 //
    265 //
    266 void DFA::writeTableAndAPI(raw_ostream &OS, const std::string &TargetName) {
    267   static const std::string SentinelEntry = "{-1, -1}";
    268   DFA::StateSet::iterator SI = states.begin();
    269   // This table provides a map to the beginning of the transitions for State s
    270   // in DFAStateInputTable.
    271   std::vector<int> StateEntry(states.size());
    272 
    273   OS << "namespace llvm {\n\n";
    274   OS << "const int " << TargetName << "DFAStateInputTable[][2] = {\n";
    275 
    276   // Tracks the total valid transitions encountered so far. It is used
    277   // to construct the StateEntry table.
    278   int ValidTransitions = 0;
    279   for (unsigned i = 0; i < states.size(); ++i, ++SI) {
    280     assert ((SI->stateNum == (int) i) && "Mismatch in state numbers");
    281     StateEntry[i] = ValidTransitions;
    282     for (State::TransitionMap::iterator
    283         II = SI->Transitions.begin(), IE = SI->Transitions.end();
    284         II != IE; ++II) {
    285       OS << "{" << II->first << ", "
    286          << II->second->stateNum
    287          << "},    ";
    288     }
    289     ValidTransitions += SI->Transitions.size();
    290 
    291     // If there are no valid transitions from this stage, we need a sentinel
    292     // transition.
    293     if (ValidTransitions == StateEntry[i]) {
    294       OS << SentinelEntry << ",";
    295       ++ValidTransitions;
    296     }
    297 
    298     OS << "\n";
    299   }
    300 
    301   // Print out a sentinel entry at the end of the StateInputTable. This is
    302   // needed to iterate over StateInputTable in DFAPacketizer::ReadTable()
    303   OS << SentinelEntry << "\n";
    304 
    305   OS << "};\n\n";
    306   OS << "const unsigned int " << TargetName << "DFAStateEntryTable[] = {\n";
    307 
    308   // Multiply i by 2 since each entry in DFAStateInputTable is a set of
    309   // two numbers.
    310   for (unsigned i = 0; i < states.size(); ++i)
    311     OS << StateEntry[i] << ", ";
    312 
    313   // Print out the index to the sentinel entry in StateInputTable
    314   OS << ValidTransitions << ", ";
    315 
    316   OS << "\n};\n";
    317   OS << "} // namespace\n";
    318 
    319 
    320   //
    321   // Emit DFA Packetizer tables if the target is a VLIW machine.
    322   //
    323   std::string SubTargetClassName = TargetName + "GenSubtargetInfo";
    324   OS << "\n" << "#include \"llvm/CodeGen/DFAPacketizer.h\"\n";
    325   OS << "namespace llvm {\n";
    326   OS << "DFAPacketizer *" << SubTargetClassName << "::"
    327      << "createDFAPacketizer(const InstrItineraryData *IID) const {\n"
    328      << "   return new DFAPacketizer(IID, " << TargetName
    329      << "DFAStateInputTable, " << TargetName << "DFAStateEntryTable);\n}\n\n";
    330   OS << "} // End llvm namespace \n";
    331 }
    332 
    333 
    334 //
    335 // collectAllInsnClasses - Populate allInsnClasses which is a set of units
    336 // used in each stage.
    337 //
    338 void DFAPacketizerEmitter::collectAllInsnClasses(const std::string &Name,
    339                                   Record *ItinData,
    340                                   unsigned &NStages,
    341                                   raw_ostream &OS) {
    342   // Collect processor itineraries.
    343   std::vector<Record*> ProcItinList =
    344     Records.getAllDerivedDefinitions("ProcessorItineraries");
    345 
    346   // If just no itinerary then don't bother.
    347   if (ProcItinList.size() < 2)
    348     return;
    349   std::map<std::string, unsigned> NameToBitsMap;
    350 
    351   // Parse functional units for all the itineraries.
    352   for (unsigned i = 0, N = ProcItinList.size(); i < N; ++i) {
    353     Record *Proc = ProcItinList[i];
    354     std::vector<Record*> FUs = Proc->getValueAsListOfDefs("FU");
    355 
    356     // Convert macros to bits for each stage.
    357     for (unsigned i = 0, N = FUs.size(); i < N; ++i)
    358       NameToBitsMap[FUs[i]->getName()] = (unsigned) (1U << i);
    359   }
    360 
    361   const std::vector<Record*> &StageList =
    362     ItinData->getValueAsListOfDefs("Stages");
    363 
    364   // The number of stages.
    365   NStages = StageList.size();
    366 
    367   // For each unit.
    368   unsigned UnitBitValue = 0;
    369 
    370   // Compute the bitwise or of each unit used in this stage.
    371   for (unsigned i = 0; i < NStages; ++i) {
    372     const Record *Stage = StageList[i];
    373 
    374     // Get unit list.
    375     const std::vector<Record*> &UnitList =
    376       Stage->getValueAsListOfDefs("Units");
    377 
    378     for (unsigned j = 0, M = UnitList.size(); j < M; ++j) {
    379       // Conduct bitwise or.
    380       std::string UnitName = UnitList[j]->getName();
    381       assert(NameToBitsMap.count(UnitName));
    382       UnitBitValue |= NameToBitsMap[UnitName];
    383     }
    384 
    385     if (UnitBitValue != 0)
    386       allInsnClasses.insert(UnitBitValue);
    387   }
    388 }
    389 
    390 
    391 //
    392 // Run the worklist algorithm to generate the DFA.
    393 //
    394 void DFAPacketizerEmitter::run(raw_ostream &OS) {
    395 
    396   // Collect processor iteraries.
    397   std::vector<Record*> ProcItinList =
    398     Records.getAllDerivedDefinitions("ProcessorItineraries");
    399 
    400   //
    401   // Collect the instruction classes.
    402   //
    403   for (unsigned i = 0, N = ProcItinList.size(); i < N; i++) {
    404     Record *Proc = ProcItinList[i];
    405 
    406     // Get processor itinerary name.
    407     const std::string &Name = Proc->getName();
    408 
    409     // Skip default.
    410     if (Name == "NoItineraries")
    411       continue;
    412 
    413     // Sanity check for at least one instruction itinerary class.
    414     unsigned NItinClasses =
    415       Records.getAllDerivedDefinitions("InstrItinClass").size();
    416     if (NItinClasses == 0)
    417       return;
    418 
    419     // Get itinerary data list.
    420     std::vector<Record*> ItinDataList = Proc->getValueAsListOfDefs("IID");
    421 
    422     // Collect instruction classes for all itinerary data.
    423     for (unsigned j = 0, M = ItinDataList.size(); j < M; j++) {
    424       Record *ItinData = ItinDataList[j];
    425       unsigned NStages;
    426       collectAllInsnClasses(Name, ItinData, NStages, OS);
    427     }
    428   }
    429 
    430 
    431   //
    432   // Run a worklist algorithm to generate the DFA.
    433   //
    434   DFA D;
    435   const State *Initial = &D.newState();
    436   Initial->isInitial = true;
    437   Initial->stateInfo.insert(0x0);
    438   SmallVector<const State*, 32> WorkList;
    439   std::map<std::set<unsigned>, const State*> Visited;
    440 
    441   WorkList.push_back(Initial);
    442 
    443   //
    444   // Worklist algorithm to create a DFA for processor resource tracking.
    445   // C = {set of InsnClasses}
    446   // Begin with initial node in worklist. Initial node does not have
    447   // any consumed resources,
    448   //     ResourceState = 0x0
    449   // Visited = {}
    450   // While worklist != empty
    451   //    S = first element of worklist
    452   //    For every instruction class C
    453   //      if we can accommodate C in S:
    454   //          S' = state with resource states = {S Union C}
    455   //          Add a new transition: S x C -> S'
    456   //          If S' is not in Visited:
    457   //             Add S' to worklist
    458   //             Add S' to Visited
    459   //
    460   while (!WorkList.empty()) {
    461     const State *current = WorkList.pop_back_val();
    462     for (DenseSet<unsigned>::iterator CI = allInsnClasses.begin(),
    463            CE = allInsnClasses.end(); CI != CE; ++CI) {
    464       unsigned InsnClass = *CI;
    465 
    466       std::set<unsigned> NewStateResources;
    467       //
    468       // If we haven't already created a transition for this input
    469       // and the state can accommodate this InsnClass, create a transition.
    470       //
    471       if (!current->hasTransition(InsnClass) &&
    472           current->canAddInsnClass(InsnClass)) {
    473         const State *NewState;
    474         current->AddInsnClass(InsnClass, NewStateResources);
    475         assert(NewStateResources.size() && "New states must be generated");
    476 
    477         //
    478         // If we have seen this state before, then do not create a new state.
    479         //
    480         //
    481         auto VI = Visited.find(NewStateResources);
    482         if (VI != Visited.end())
    483           NewState = VI->second;
    484         else {
    485           NewState = &D.newState();
    486           NewState->stateInfo = NewStateResources;
    487           Visited[NewStateResources] = NewState;
    488           WorkList.push_back(NewState);
    489         }
    490 
    491         current->addTransition(InsnClass, NewState);
    492       }
    493     }
    494   }
    495 
    496   // Print out the table.
    497   D.writeTableAndAPI(OS, TargetName);
    498 }
    499 
    500 namespace llvm {
    501 
    502 void EmitDFAPacketizer(RecordKeeper &RK, raw_ostream &OS) {
    503   emitSourceFileHeader("Target DFA Packetizer Tables", OS);
    504   DFAPacketizerEmitter(RK).run(OS);
    505 }
    506 
    507 } // End llvm namespace
    508