Home | History | Annotate | Download | only in TableGen
      1 //===- X86DisassemblerTables.cpp - Disassembler tables ----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is part of the X86 Disassembler Emitter.
     11 // It contains the implementation of the disassembler tables.
     12 // Documentation for the disassembler emitter in general can be found in
     13 //  X86DisasemblerEmitter.h.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "X86DisassemblerTables.h"
     18 #include "X86DisassemblerShared.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/Support/ErrorHandling.h"
     21 #include "llvm/Support/Format.h"
     22 #include <map>
     23 
     24 using namespace llvm;
     25 using namespace X86Disassembler;
     26 
     27 /// stringForContext - Returns a string containing the name of a particular
     28 ///   InstructionContext, usually for diagnostic purposes.
     29 ///
     30 /// @param insnContext  - The instruction class to transform to a string.
     31 /// @return           - A statically-allocated string constant that contains the
     32 ///                     name of the instruction class.
     33 static inline const char* stringForContext(InstructionContext insnContext) {
     34   switch (insnContext) {
     35   default:
     36     llvm_unreachable("Unhandled instruction class");
     37 #define ENUM_ENTRY(n, r, d)   case n: return #n; break;
     38 #define ENUM_ENTRY_K_B(n, r, d) ENUM_ENTRY(n, r, d) ENUM_ENTRY(n##_K_B, r, d)\
     39         ENUM_ENTRY(n##_KZ, r, d) ENUM_ENTRY(n##_K, r, d) ENUM_ENTRY(n##_B, r, d)\
     40         ENUM_ENTRY(n##_KZ_B, r, d)
     41   INSTRUCTION_CONTEXTS
     42 #undef ENUM_ENTRY
     43 #undef ENUM_ENTRY_K_B
     44   }
     45 }
     46 
     47 /// stringForOperandType - Like stringForContext, but for OperandTypes.
     48 static inline const char* stringForOperandType(OperandType type) {
     49   switch (type) {
     50   default:
     51     llvm_unreachable("Unhandled type");
     52 #define ENUM_ENTRY(i, d) case i: return #i;
     53   TYPES
     54 #undef ENUM_ENTRY
     55   }
     56 }
     57 
     58 /// stringForOperandEncoding - like stringForContext, but for
     59 ///   OperandEncodings.
     60 static inline const char* stringForOperandEncoding(OperandEncoding encoding) {
     61   switch (encoding) {
     62   default:
     63     llvm_unreachable("Unhandled encoding");
     64 #define ENUM_ENTRY(i, d) case i: return #i;
     65   ENCODINGS
     66 #undef ENUM_ENTRY
     67   }
     68 }
     69 
     70 /// inheritsFrom - Indicates whether all instructions in one class also belong
     71 ///   to another class.
     72 ///
     73 /// @param child  - The class that may be the subset
     74 /// @param parent - The class that may be the superset
     75 /// @return       - True if child is a subset of parent, false otherwise.
     76 static inline bool inheritsFrom(InstructionContext child,
     77                                 InstructionContext parent,
     78                                 bool VEX_LIG = false) {
     79   if (child == parent)
     80     return true;
     81 
     82   switch (parent) {
     83   case IC:
     84     return(inheritsFrom(child, IC_64BIT) ||
     85            inheritsFrom(child, IC_OPSIZE) ||
     86            inheritsFrom(child, IC_ADSIZE) ||
     87            inheritsFrom(child, IC_XD) ||
     88            inheritsFrom(child, IC_XS));
     89   case IC_64BIT:
     90     return(inheritsFrom(child, IC_64BIT_REXW)   ||
     91            inheritsFrom(child, IC_64BIT_OPSIZE) ||
     92            inheritsFrom(child, IC_64BIT_ADSIZE) ||
     93            inheritsFrom(child, IC_64BIT_XD)     ||
     94            inheritsFrom(child, IC_64BIT_XS));
     95   case IC_OPSIZE:
     96     return inheritsFrom(child, IC_64BIT_OPSIZE);
     97   case IC_ADSIZE:
     98   case IC_64BIT_ADSIZE:
     99     return false;
    100   case IC_XD:
    101     return inheritsFrom(child, IC_64BIT_XD);
    102   case IC_XS:
    103     return inheritsFrom(child, IC_64BIT_XS);
    104   case IC_XD_OPSIZE:
    105     return inheritsFrom(child, IC_64BIT_XD_OPSIZE);
    106   case IC_XS_OPSIZE:
    107     return inheritsFrom(child, IC_64BIT_XS_OPSIZE);
    108   case IC_64BIT_REXW:
    109     return(inheritsFrom(child, IC_64BIT_REXW_XS) ||
    110            inheritsFrom(child, IC_64BIT_REXW_XD) ||
    111            inheritsFrom(child, IC_64BIT_REXW_OPSIZE));
    112   case IC_64BIT_OPSIZE:
    113     return(inheritsFrom(child, IC_64BIT_REXW_OPSIZE));
    114   case IC_64BIT_XD:
    115     return(inheritsFrom(child, IC_64BIT_REXW_XD));
    116   case IC_64BIT_XS:
    117     return(inheritsFrom(child, IC_64BIT_REXW_XS));
    118   case IC_64BIT_XD_OPSIZE:
    119   case IC_64BIT_XS_OPSIZE:
    120     return false;
    121   case IC_64BIT_REXW_XD:
    122   case IC_64BIT_REXW_XS:
    123   case IC_64BIT_REXW_OPSIZE:
    124     return false;
    125   case IC_VEX:
    126     return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W)) ||
    127            inheritsFrom(child, IC_VEX_W) ||
    128            (VEX_LIG && inheritsFrom(child, IC_VEX_L));
    129   case IC_VEX_XS:
    130     return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XS)) ||
    131            inheritsFrom(child, IC_VEX_W_XS) ||
    132            (VEX_LIG && inheritsFrom(child, IC_VEX_L_XS));
    133   case IC_VEX_XD:
    134     return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XD)) ||
    135            inheritsFrom(child, IC_VEX_W_XD) ||
    136            (VEX_LIG && inheritsFrom(child, IC_VEX_L_XD));
    137   case IC_VEX_OPSIZE:
    138     return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W_OPSIZE)) ||
    139            inheritsFrom(child, IC_VEX_W_OPSIZE) ||
    140            (VEX_LIG && inheritsFrom(child, IC_VEX_L_OPSIZE));
    141   case IC_VEX_W:
    142     return VEX_LIG && inheritsFrom(child, IC_VEX_L_W);
    143   case IC_VEX_W_XS:
    144     return VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XS);
    145   case IC_VEX_W_XD:
    146     return VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XD);
    147   case IC_VEX_W_OPSIZE:
    148     return VEX_LIG && inheritsFrom(child, IC_VEX_L_W_OPSIZE);
    149   case IC_VEX_L:
    150     return inheritsFrom(child, IC_VEX_L_W);
    151   case IC_VEX_L_XS:
    152     return inheritsFrom(child, IC_VEX_L_W_XS);
    153   case IC_VEX_L_XD:
    154     return inheritsFrom(child, IC_VEX_L_W_XD);
    155   case IC_VEX_L_OPSIZE:
    156     return inheritsFrom(child, IC_VEX_L_W_OPSIZE);
    157   case IC_VEX_L_W:
    158   case IC_VEX_L_W_XS:
    159   case IC_VEX_L_W_XD:
    160   case IC_VEX_L_W_OPSIZE:
    161     return false;
    162   case IC_EVEX:
    163     return inheritsFrom(child, IC_EVEX_W) ||
    164            inheritsFrom(child, IC_EVEX_L_W);
    165   case IC_EVEX_XS:
    166     return inheritsFrom(child, IC_EVEX_W_XS) ||
    167            inheritsFrom(child, IC_EVEX_L_W_XS);
    168   case IC_EVEX_XD:
    169     return inheritsFrom(child, IC_EVEX_W_XD) ||
    170            inheritsFrom(child, IC_EVEX_L_W_XD);
    171   case IC_EVEX_OPSIZE:
    172     return inheritsFrom(child, IC_EVEX_W_OPSIZE) ||
    173            inheritsFrom(child, IC_EVEX_L_W_OPSIZE);
    174   case IC_EVEX_W:
    175   case IC_EVEX_W_XS:
    176   case IC_EVEX_W_XD:
    177   case IC_EVEX_W_OPSIZE:
    178     return false;
    179   case IC_EVEX_L:
    180   case IC_EVEX_L_XS:
    181   case IC_EVEX_L_XD:
    182   case IC_EVEX_L_OPSIZE:
    183     return false;
    184   case IC_EVEX_L_W:
    185   case IC_EVEX_L_W_XS:
    186   case IC_EVEX_L_W_XD:
    187   case IC_EVEX_L_W_OPSIZE:
    188     return false;
    189   case IC_EVEX_L2:
    190   case IC_EVEX_L2_XS:
    191   case IC_EVEX_L2_XD:
    192   case IC_EVEX_L2_OPSIZE:
    193     return false;
    194   case IC_EVEX_L2_W:
    195   case IC_EVEX_L2_W_XS:
    196   case IC_EVEX_L2_W_XD:
    197   case IC_EVEX_L2_W_OPSIZE:
    198     return false;
    199   case IC_EVEX_K:
    200     return inheritsFrom(child, IC_EVEX_W_K) ||
    201            inheritsFrom(child, IC_EVEX_L_W_K);
    202   case IC_EVEX_XS_K:
    203     return inheritsFrom(child, IC_EVEX_W_XS_K) ||
    204            inheritsFrom(child, IC_EVEX_L_W_XS_K);
    205   case IC_EVEX_XD_K:
    206     return inheritsFrom(child, IC_EVEX_W_XD_K) ||
    207            inheritsFrom(child, IC_EVEX_L_W_XD_K);
    208   case IC_EVEX_OPSIZE_K:
    209   case IC_EVEX_OPSIZE_B:
    210     return false;
    211   case IC_EVEX_W_K:
    212   case IC_EVEX_W_XS_K:
    213   case IC_EVEX_W_XD_K:
    214   case IC_EVEX_W_OPSIZE_K:
    215   case IC_EVEX_W_OPSIZE_B:
    216     return false;
    217   case IC_EVEX_L_K:
    218   case IC_EVEX_L_XS_K:
    219   case IC_EVEX_L_XD_K:
    220   case IC_EVEX_L_OPSIZE_K:
    221     return false;
    222   case IC_EVEX_W_KZ:
    223   case IC_EVEX_W_XS_KZ:
    224   case IC_EVEX_W_XD_KZ:
    225   case IC_EVEX_W_OPSIZE_KZ:
    226     return false;
    227   case IC_EVEX_L_KZ:
    228   case IC_EVEX_L_XS_KZ:
    229   case IC_EVEX_L_XD_KZ:
    230   case IC_EVEX_L_OPSIZE_KZ:
    231     return false;
    232   case IC_EVEX_L_W_K:
    233   case IC_EVEX_L_W_XS_K:
    234   case IC_EVEX_L_W_XD_K:
    235   case IC_EVEX_L_W_OPSIZE_K:
    236   case IC_EVEX_L_W_KZ:
    237   case IC_EVEX_L_W_XS_KZ:
    238   case IC_EVEX_L_W_XD_KZ:
    239   case IC_EVEX_L_W_OPSIZE_KZ:
    240     return false;
    241   case IC_EVEX_L2_K:
    242   case IC_EVEX_L2_B:
    243   case IC_EVEX_L2_K_B:
    244   case IC_EVEX_L2_KZ_B:
    245   case IC_EVEX_L2_XS_K:
    246   case IC_EVEX_L2_XS_B:
    247   case IC_EVEX_L2_XD_B:
    248   case IC_EVEX_L2_XD_K:
    249   case IC_EVEX_L2_OPSIZE_K:
    250   case IC_EVEX_L2_OPSIZE_B:
    251   case IC_EVEX_L2_OPSIZE_K_B:
    252   case IC_EVEX_L2_KZ:
    253   case IC_EVEX_L2_XS_KZ:
    254   case IC_EVEX_L2_XD_KZ:
    255   case IC_EVEX_L2_OPSIZE_KZ:
    256   case IC_EVEX_L2_OPSIZE_KZ_B:
    257     return false;
    258   case IC_EVEX_L2_W_K:
    259   case IC_EVEX_L2_W_B:
    260   case IC_EVEX_L2_W_XS_K:
    261   case IC_EVEX_L2_W_XD_K:
    262   case IC_EVEX_L2_W_XD_B:
    263   case IC_EVEX_L2_W_OPSIZE_K:
    264   case IC_EVEX_L2_W_OPSIZE_B:
    265   case IC_EVEX_L2_W_OPSIZE_K_B:
    266   case IC_EVEX_L2_W_KZ:
    267   case IC_EVEX_L2_W_XS_KZ:
    268   case IC_EVEX_L2_W_XD_KZ:
    269   case IC_EVEX_L2_W_OPSIZE_KZ:
    270   case IC_EVEX_L2_W_OPSIZE_KZ_B:
    271     return false;
    272   default:
    273     errs() << "Unknown instruction class: " <<
    274       stringForContext((InstructionContext)parent) << "\n";
    275     llvm_unreachable("Unknown instruction class");
    276   }
    277 }
    278 
    279 /// outranks - Indicates whether, if an instruction has two different applicable
    280 ///   classes, which class should be preferred when performing decode.  This
    281 ///   imposes a total ordering (ties are resolved toward "lower")
    282 ///
    283 /// @param upper  - The class that may be preferable
    284 /// @param lower  - The class that may be less preferable
    285 /// @return       - True if upper is to be preferred, false otherwise.
    286 static inline bool outranks(InstructionContext upper,
    287                             InstructionContext lower) {
    288   assert(upper < IC_max);
    289   assert(lower < IC_max);
    290 
    291 #define ENUM_ENTRY(n, r, d) r,
    292 #define ENUM_ENTRY_K_B(n, r, d) ENUM_ENTRY(n, r, d) \
    293   ENUM_ENTRY(n##_K_B, r, d) ENUM_ENTRY(n##_KZ_B, r, d) \
    294   ENUM_ENTRY(n##_KZ, r, d) ENUM_ENTRY(n##_K, r, d) ENUM_ENTRY(n##_B, r, d)
    295   static int ranks[IC_max] = {
    296     INSTRUCTION_CONTEXTS
    297   };
    298 #undef ENUM_ENTRY
    299 #undef ENUM_ENTRY_K_B
    300 
    301   return (ranks[upper] > ranks[lower]);
    302 }
    303 
    304 /// getDecisionType - Determines whether a ModRM decision with 255 entries can
    305 ///   be compacted by eliminating redundant information.
    306 ///
    307 /// @param decision - The decision to be compacted.
    308 /// @return         - The compactest available representation for the decision.
    309 static ModRMDecisionType getDecisionType(ModRMDecision &decision) {
    310   bool satisfiesOneEntry = true;
    311   bool satisfiesSplitRM = true;
    312   bool satisfiesSplitReg = true;
    313   bool satisfiesSplitMisc = true;
    314 
    315   for (unsigned index = 0; index < 256; ++index) {
    316     if (decision.instructionIDs[index] != decision.instructionIDs[0])
    317       satisfiesOneEntry = false;
    318 
    319     if (((index & 0xc0) == 0xc0) &&
    320        (decision.instructionIDs[index] != decision.instructionIDs[0xc0]))
    321       satisfiesSplitRM = false;
    322 
    323     if (((index & 0xc0) != 0xc0) &&
    324        (decision.instructionIDs[index] != decision.instructionIDs[0x00]))
    325       satisfiesSplitRM = false;
    326 
    327     if (((index & 0xc0) == 0xc0) &&
    328        (decision.instructionIDs[index] != decision.instructionIDs[index&0xf8]))
    329       satisfiesSplitReg = false;
    330 
    331     if (((index & 0xc0) != 0xc0) &&
    332        (decision.instructionIDs[index] != decision.instructionIDs[index&0x38]))
    333       satisfiesSplitMisc = false;
    334   }
    335 
    336   if (satisfiesOneEntry)
    337     return MODRM_ONEENTRY;
    338 
    339   if (satisfiesSplitRM)
    340     return MODRM_SPLITRM;
    341 
    342   if (satisfiesSplitReg && satisfiesSplitMisc)
    343     return MODRM_SPLITREG;
    344 
    345   if (satisfiesSplitMisc)
    346     return MODRM_SPLITMISC;
    347 
    348   return MODRM_FULL;
    349 }
    350 
    351 /// stringForDecisionType - Returns a statically-allocated string corresponding
    352 ///   to a particular decision type.
    353 ///
    354 /// @param dt - The decision type.
    355 /// @return   - A pointer to the statically-allocated string (e.g.,
    356 ///             "MODRM_ONEENTRY" for MODRM_ONEENTRY).
    357 static const char* stringForDecisionType(ModRMDecisionType dt) {
    358 #define ENUM_ENTRY(n) case n: return #n;
    359   switch (dt) {
    360     default:
    361       llvm_unreachable("Unknown decision type");
    362     MODRMTYPES
    363   };
    364 #undef ENUM_ENTRY
    365 }
    366 
    367 DisassemblerTables::DisassemblerTables() {
    368   unsigned i;
    369 
    370   for (i = 0; i < array_lengthof(Tables); i++) {
    371     Tables[i] = new ContextDecision;
    372     memset(Tables[i], 0, sizeof(ContextDecision));
    373   }
    374 
    375   HasConflicts = false;
    376 }
    377 
    378 DisassemblerTables::~DisassemblerTables() {
    379   unsigned i;
    380 
    381   for (i = 0; i < array_lengthof(Tables); i++)
    382     delete Tables[i];
    383 }
    384 
    385 void DisassemblerTables::emitModRMDecision(raw_ostream &o1, raw_ostream &o2,
    386                                            unsigned &i1, unsigned &i2,
    387                                            unsigned &ModRMTableNum,
    388                                            ModRMDecision &decision) const {
    389   static uint32_t sTableNumber = 0;
    390   static uint32_t sEntryNumber = 1;
    391   ModRMDecisionType dt = getDecisionType(decision);
    392 
    393   if (dt == MODRM_ONEENTRY && decision.instructionIDs[0] == 0)
    394   {
    395     o2.indent(i2) << "{ /* ModRMDecision */" << "\n";
    396     i2++;
    397 
    398     o2.indent(i2) << stringForDecisionType(dt) << "," << "\n";
    399     o2.indent(i2) << 0 << " /* EmptyTable */\n";
    400 
    401     i2--;
    402     o2.indent(i2) << "}";
    403     return;
    404   }
    405 
    406   std::vector<unsigned> ModRMDecision;
    407 
    408   switch (dt) {
    409     default:
    410       llvm_unreachable("Unknown decision type");
    411     case MODRM_ONEENTRY:
    412       ModRMDecision.push_back(decision.instructionIDs[0]);
    413       break;
    414     case MODRM_SPLITRM:
    415       ModRMDecision.push_back(decision.instructionIDs[0x00]);
    416       ModRMDecision.push_back(decision.instructionIDs[0xc0]);
    417       break;
    418     case MODRM_SPLITREG:
    419       for (unsigned index = 0; index < 64; index += 8)
    420         ModRMDecision.push_back(decision.instructionIDs[index]);
    421       for (unsigned index = 0xc0; index < 256; index += 8)
    422         ModRMDecision.push_back(decision.instructionIDs[index]);
    423       break;
    424     case MODRM_SPLITMISC:
    425       for (unsigned index = 0; index < 64; index += 8)
    426         ModRMDecision.push_back(decision.instructionIDs[index]);
    427       for (unsigned index = 0xc0; index < 256; ++index)
    428         ModRMDecision.push_back(decision.instructionIDs[index]);
    429       break;
    430     case MODRM_FULL:
    431       for (unsigned index = 0; index < 256; ++index)
    432         ModRMDecision.push_back(decision.instructionIDs[index]);
    433       break;
    434   }
    435 
    436   unsigned &EntryNumber = ModRMTable[ModRMDecision];
    437   if (EntryNumber == 0) {
    438     EntryNumber = ModRMTableNum;
    439 
    440     ModRMTableNum += ModRMDecision.size();
    441     o1 << "/* Table" << EntryNumber << " */\n";
    442     i1++;
    443     for (std::vector<unsigned>::const_iterator I = ModRMDecision.begin(),
    444            E = ModRMDecision.end(); I != E; ++I) {
    445       o1.indent(i1 * 2) << format("0x%hx", *I) << ", /* "
    446                         << InstructionSpecifiers[*I].name << " */\n";
    447     }
    448     i1--;
    449   }
    450 
    451   o2.indent(i2) << "{ /* struct ModRMDecision */" << "\n";
    452   i2++;
    453 
    454   o2.indent(i2) << stringForDecisionType(dt) << "," << "\n";
    455   o2.indent(i2) << EntryNumber << " /* Table" << EntryNumber << " */\n";
    456 
    457   i2--;
    458   o2.indent(i2) << "}";
    459 
    460   switch (dt) {
    461     default:
    462       llvm_unreachable("Unknown decision type");
    463     case MODRM_ONEENTRY:
    464       sEntryNumber += 1;
    465       break;
    466     case MODRM_SPLITRM:
    467       sEntryNumber += 2;
    468       break;
    469     case MODRM_SPLITREG:
    470       sEntryNumber += 16;
    471       break;
    472     case MODRM_SPLITMISC:
    473       sEntryNumber += 8 + 64;
    474       break;
    475     case MODRM_FULL:
    476       sEntryNumber += 256;
    477       break;
    478   }
    479 
    480   // We assume that the index can fit into uint16_t.
    481   assert(sEntryNumber < 65536U &&
    482          "Index into ModRMDecision is too large for uint16_t!");
    483 
    484   ++sTableNumber;
    485 }
    486 
    487 void DisassemblerTables::emitOpcodeDecision(raw_ostream &o1, raw_ostream &o2,
    488                                             unsigned &i1, unsigned &i2,
    489                                             unsigned &ModRMTableNum,
    490                                             OpcodeDecision &decision) const {
    491   o2.indent(i2) << "{ /* struct OpcodeDecision */" << "\n";
    492   i2++;
    493   o2.indent(i2) << "{" << "\n";
    494   i2++;
    495 
    496   for (unsigned index = 0; index < 256; ++index) {
    497     o2.indent(i2);
    498 
    499     o2 << "/* 0x" << format("%02hhx", index) << " */" << "\n";
    500 
    501     emitModRMDecision(o1, o2, i1, i2, ModRMTableNum,
    502                       decision.modRMDecisions[index]);
    503 
    504     if (index <  255)
    505       o2 << ",";
    506 
    507     o2 << "\n";
    508   }
    509 
    510   i2--;
    511   o2.indent(i2) << "}" << "\n";
    512   i2--;
    513   o2.indent(i2) << "}" << "\n";
    514 }
    515 
    516 void DisassemblerTables::emitContextDecision(raw_ostream &o1, raw_ostream &o2,
    517                                              unsigned &i1, unsigned &i2,
    518                                              unsigned &ModRMTableNum,
    519                                              ContextDecision &decision,
    520                                              const char* name) const {
    521   o2.indent(i2) << "static const struct ContextDecision " << name << " = {\n";
    522   i2++;
    523   o2.indent(i2) << "{ /* opcodeDecisions */" << "\n";
    524   i2++;
    525 
    526   for (unsigned index = 0; index < IC_max; ++index) {
    527     o2.indent(i2) << "/* ";
    528     o2 << stringForContext((InstructionContext)index);
    529     o2 << " */";
    530     o2 << "\n";
    531 
    532     emitOpcodeDecision(o1, o2, i1, i2, ModRMTableNum,
    533                        decision.opcodeDecisions[index]);
    534 
    535     if (index + 1 < IC_max)
    536       o2 << ", ";
    537   }
    538 
    539   i2--;
    540   o2.indent(i2) << "}" << "\n";
    541   i2--;
    542   o2.indent(i2) << "};" << "\n";
    543 }
    544 
    545 void DisassemblerTables::emitInstructionInfo(raw_ostream &o,
    546                                              unsigned &i) const {
    547   unsigned NumInstructions = InstructionSpecifiers.size();
    548 
    549   o << "static const struct OperandSpecifier x86OperandSets[]["
    550     << X86_MAX_OPERANDS << "] = {\n";
    551 
    552   typedef std::vector<std::pair<const char *, const char *> > OperandListTy;
    553   std::map<OperandListTy, unsigned> OperandSets;
    554 
    555   unsigned OperandSetNum = 0;
    556   for (unsigned Index = 0; Index < NumInstructions; ++Index) {
    557     OperandListTy OperandList;
    558 
    559     for (unsigned OperandIndex = 0; OperandIndex < X86_MAX_OPERANDS;
    560          ++OperandIndex) {
    561       const char *Encoding =
    562         stringForOperandEncoding((OperandEncoding)InstructionSpecifiers[Index]
    563                                  .operands[OperandIndex].encoding);
    564       const char *Type =
    565         stringForOperandType((OperandType)InstructionSpecifiers[Index]
    566                              .operands[OperandIndex].type);
    567       OperandList.push_back(std::make_pair(Encoding, Type));
    568     }
    569     unsigned &N = OperandSets[OperandList];
    570     if (N != 0) continue;
    571 
    572     N = ++OperandSetNum;
    573 
    574     o << "  { /* " << (OperandSetNum - 1) << " */\n";
    575     for (unsigned i = 0, e = OperandList.size(); i != e; ++i) {
    576       o << "    { " << OperandList[i].first << ", "
    577         << OperandList[i].second << " },\n";
    578     }
    579     o << "  },\n";
    580   }
    581   o << "};" << "\n\n";
    582 
    583   o.indent(i * 2) << "static const struct InstructionSpecifier ";
    584   o << INSTRUCTIONS_STR "[" << InstructionSpecifiers.size() << "] = {\n";
    585 
    586   i++;
    587 
    588   for (unsigned index = 0; index < NumInstructions; ++index) {
    589     o.indent(i * 2) << "{ /* " << index << " */" << "\n";
    590     i++;
    591 
    592     OperandListTy OperandList;
    593     for (unsigned OperandIndex = 0; OperandIndex < X86_MAX_OPERANDS;
    594          ++OperandIndex) {
    595       const char *Encoding =
    596         stringForOperandEncoding((OperandEncoding)InstructionSpecifiers[index]
    597                                  .operands[OperandIndex].encoding);
    598       const char *Type =
    599         stringForOperandType((OperandType)InstructionSpecifiers[index]
    600                              .operands[OperandIndex].type);
    601       OperandList.push_back(std::make_pair(Encoding, Type));
    602     }
    603     o.indent(i * 2) << (OperandSets[OperandList] - 1) << ",\n";
    604 
    605     o.indent(i * 2) << "/* " << InstructionSpecifiers[index].name << " */";
    606     o << "\n";
    607 
    608     i--;
    609     o.indent(i * 2) << "}";
    610 
    611     if (index + 1 < NumInstructions)
    612       o << ",";
    613 
    614     o << "\n";
    615   }
    616 
    617   i--;
    618   o.indent(i * 2) << "};" << "\n";
    619 }
    620 
    621 void DisassemblerTables::emitContextTable(raw_ostream &o, unsigned &i) const {
    622   const unsigned int tableSize = 16384;
    623   o.indent(i * 2) << "static const uint8_t " CONTEXTS_STR
    624                      "[" << tableSize << "] = {\n";
    625   i++;
    626 
    627   for (unsigned index = 0; index < tableSize; ++index) {
    628     o.indent(i * 2);
    629 
    630     if (index & ATTR_EVEX) {
    631       o << "IC_EVEX";
    632       if (index & ATTR_EVEXL2)
    633         o << "_L2";
    634       else if (index & ATTR_EVEXL)
    635         o << "_L";
    636       if (index & ATTR_REXW)
    637         o << "_W";
    638       if (index & ATTR_OPSIZE)
    639         o << "_OPSIZE";
    640       else if (index & ATTR_XD)
    641         o << "_XD";
    642       else if (index & ATTR_XS)
    643         o << "_XS";
    644       if (index & ATTR_EVEXKZ)
    645         o << "_KZ";
    646       else if (index & ATTR_EVEXK)
    647         o << "_K";
    648       if (index & ATTR_EVEXB)
    649         o << "_B";
    650     }
    651     else if ((index & ATTR_VEXL) && (index & ATTR_REXW) && (index & ATTR_OPSIZE))
    652       o << "IC_VEX_L_W_OPSIZE";
    653     else if ((index & ATTR_VEXL) && (index & ATTR_REXW) && (index & ATTR_XD))
    654       o << "IC_VEX_L_W_XD";
    655     else if ((index & ATTR_VEXL) && (index & ATTR_REXW) && (index & ATTR_XS))
    656       o << "IC_VEX_L_W_XS";
    657     else if ((index & ATTR_VEXL) && (index & ATTR_REXW))
    658       o << "IC_VEX_L_W";
    659     else if ((index & ATTR_VEXL) && (index & ATTR_OPSIZE))
    660       o << "IC_VEX_L_OPSIZE";
    661     else if ((index & ATTR_VEXL) && (index & ATTR_XD))
    662       o << "IC_VEX_L_XD";
    663     else if ((index & ATTR_VEXL) && (index & ATTR_XS))
    664       o << "IC_VEX_L_XS";
    665     else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_OPSIZE))
    666       o << "IC_VEX_W_OPSIZE";
    667     else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_XD))
    668       o << "IC_VEX_W_XD";
    669     else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_XS))
    670       o << "IC_VEX_W_XS";
    671     else if (index & ATTR_VEXL)
    672       o << "IC_VEX_L";
    673     else if ((index & ATTR_VEX) && (index & ATTR_REXW))
    674       o << "IC_VEX_W";
    675     else if ((index & ATTR_VEX) && (index & ATTR_OPSIZE))
    676       o << "IC_VEX_OPSIZE";
    677     else if ((index & ATTR_VEX) && (index & ATTR_XD))
    678       o << "IC_VEX_XD";
    679     else if ((index & ATTR_VEX) && (index & ATTR_XS))
    680       o << "IC_VEX_XS";
    681     else if (index & ATTR_VEX)
    682       o << "IC_VEX";
    683     else if ((index & ATTR_64BIT) && (index & ATTR_REXW) && (index & ATTR_XS))
    684       o << "IC_64BIT_REXW_XS";
    685     else if ((index & ATTR_64BIT) && (index & ATTR_REXW) && (index & ATTR_XD))
    686       o << "IC_64BIT_REXW_XD";
    687     else if ((index & ATTR_64BIT) && (index & ATTR_REXW) &&
    688              (index & ATTR_OPSIZE))
    689       o << "IC_64BIT_REXW_OPSIZE";
    690     else if ((index & ATTR_64BIT) && (index & ATTR_XD) && (index & ATTR_OPSIZE))
    691       o << "IC_64BIT_XD_OPSIZE";
    692     else if ((index & ATTR_64BIT) && (index & ATTR_XS) && (index & ATTR_OPSIZE))
    693       o << "IC_64BIT_XS_OPSIZE";
    694     else if ((index & ATTR_64BIT) && (index & ATTR_XS))
    695       o << "IC_64BIT_XS";
    696     else if ((index & ATTR_64BIT) && (index & ATTR_XD))
    697       o << "IC_64BIT_XD";
    698     else if ((index & ATTR_64BIT) && (index & ATTR_OPSIZE))
    699       o << "IC_64BIT_OPSIZE";
    700     else if ((index & ATTR_64BIT) && (index & ATTR_ADSIZE))
    701       o << "IC_64BIT_ADSIZE";
    702     else if ((index & ATTR_64BIT) && (index & ATTR_REXW))
    703       o << "IC_64BIT_REXW";
    704     else if ((index & ATTR_64BIT))
    705       o << "IC_64BIT";
    706     else if ((index & ATTR_XS) && (index & ATTR_OPSIZE))
    707       o << "IC_XS_OPSIZE";
    708     else if ((index & ATTR_XD) && (index & ATTR_OPSIZE))
    709       o << "IC_XD_OPSIZE";
    710     else if (index & ATTR_XS)
    711       o << "IC_XS";
    712     else if (index & ATTR_XD)
    713       o << "IC_XD";
    714     else if (index & ATTR_OPSIZE)
    715       o << "IC_OPSIZE";
    716     else if (index & ATTR_ADSIZE)
    717       o << "IC_ADSIZE";
    718     else
    719       o << "IC";
    720 
    721     if (index < tableSize - 1)
    722       o << ",";
    723     else
    724       o << " ";
    725 
    726     o << " /* " << index << " */";
    727 
    728     o << "\n";
    729   }
    730 
    731   i--;
    732   o.indent(i * 2) << "};" << "\n";
    733 }
    734 
    735 void DisassemblerTables::emitContextDecisions(raw_ostream &o1, raw_ostream &o2,
    736                                               unsigned &i1, unsigned &i2,
    737                                               unsigned &ModRMTableNum) const {
    738   emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[0], ONEBYTE_STR);
    739   emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[1], TWOBYTE_STR);
    740   emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[2], THREEBYTE38_STR);
    741   emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[3], THREEBYTE3A_STR);
    742   emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[4], XOP8_MAP_STR);
    743   emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[5], XOP9_MAP_STR);
    744   emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[6], XOPA_MAP_STR);
    745 }
    746 
    747 void DisassemblerTables::emit(raw_ostream &o) const {
    748   unsigned i1 = 0;
    749   unsigned i2 = 0;
    750 
    751   std::string s1;
    752   std::string s2;
    753 
    754   raw_string_ostream o1(s1);
    755   raw_string_ostream o2(s2);
    756 
    757   emitInstructionInfo(o, i2);
    758   o << "\n";
    759 
    760   emitContextTable(o, i2);
    761   o << "\n";
    762 
    763   unsigned ModRMTableNum = 0;
    764 
    765   o << "static const InstrUID modRMTable[] = {\n";
    766   i1++;
    767   std::vector<unsigned> EmptyTable(1, 0);
    768   ModRMTable[EmptyTable] = ModRMTableNum;
    769   ModRMTableNum += EmptyTable.size();
    770   o1 << "/* EmptyTable */\n";
    771   o1.indent(i1 * 2) << "0x0,\n";
    772   i1--;
    773   emitContextDecisions(o1, o2, i1, i2, ModRMTableNum);
    774 
    775   o << o1.str();
    776   o << "  0x0\n";
    777   o << "};\n";
    778   o << "\n";
    779   o << o2.str();
    780   o << "\n";
    781   o << "\n";
    782 }
    783 
    784 void DisassemblerTables::setTableFields(ModRMDecision     &decision,
    785                                         const ModRMFilter &filter,
    786                                         InstrUID          uid,
    787                                         uint8_t           opcode) {
    788   for (unsigned index = 0; index < 256; ++index) {
    789     if (filter.accepts(index)) {
    790       if (decision.instructionIDs[index] == uid)
    791         continue;
    792 
    793       if (decision.instructionIDs[index] != 0) {
    794         InstructionSpecifier &newInfo =
    795           InstructionSpecifiers[uid];
    796         InstructionSpecifier &previousInfo =
    797           InstructionSpecifiers[decision.instructionIDs[index]];
    798 
    799         // Instructions such as MOV8ao8 and MOV8ao8_16 differ only in the
    800         // presence of the AdSize prefix. However, the disassembler doesn't
    801         // care about that difference in the instruction definition; it
    802         // handles 16-bit vs. 32-bit addressing for itself based purely
    803         // on the 0x67 prefix and the CPU mode. So there's no need to
    804         // disambiguate between them; just let them conflict/coexist.
    805         if (previousInfo.name + "_16" == newInfo.name)
    806           continue;
    807 
    808         if(previousInfo.name == "NOOP" && (newInfo.name == "XCHG16ar" ||
    809                                            newInfo.name == "XCHG32ar" ||
    810                                            newInfo.name == "XCHG32ar64" ||
    811                                            newInfo.name == "XCHG64ar"))
    812           continue; // special case for XCHG*ar and NOOP
    813 
    814         if (outranks(previousInfo.insnContext, newInfo.insnContext))
    815           continue;
    816 
    817         if (previousInfo.insnContext == newInfo.insnContext) {
    818           errs() << "Error: Primary decode conflict: ";
    819           errs() << newInfo.name << " would overwrite " << previousInfo.name;
    820           errs() << "\n";
    821           errs() << "ModRM   " << index << "\n";
    822           errs() << "Opcode  " << (uint16_t)opcode << "\n";
    823           errs() << "Context " << stringForContext(newInfo.insnContext) << "\n";
    824           HasConflicts = true;
    825         }
    826       }
    827 
    828       decision.instructionIDs[index] = uid;
    829     }
    830   }
    831 }
    832 
    833 void DisassemblerTables::setTableFields(OpcodeType          type,
    834                                         InstructionContext  insnContext,
    835                                         uint8_t             opcode,
    836                                         const ModRMFilter   &filter,
    837                                         InstrUID            uid,
    838                                         bool                is32bit,
    839                                         bool                ignoresVEX_L) {
    840   ContextDecision &decision = *Tables[type];
    841 
    842   for (unsigned index = 0; index < IC_max; ++index) {
    843     if (is32bit && inheritsFrom((InstructionContext)index, IC_64BIT))
    844       continue;
    845 
    846     if (inheritsFrom((InstructionContext)index,
    847                      InstructionSpecifiers[uid].insnContext, ignoresVEX_L))
    848       setTableFields(decision.opcodeDecisions[index].modRMDecisions[opcode],
    849                      filter,
    850                      uid,
    851                      opcode);
    852   }
    853 }
    854