Home | History | Annotate | Download | only in llvmpipe
      1 /**************************************************************************
      2  *
      3  * Copyright 2009-2010 VMware, Inc.
      4  * All Rights Reserved.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the
      8  * "Software"), to deal in the Software without restriction, including
      9  * without limitation the rights to use, copy, modify, merge, publish,
     10  * distribute, sub license, and/or sell copies of the Software, and to
     11  * permit persons to whom the Software is furnished to do so, subject to
     12  * the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the
     15  * next paragraph) shall be included in all copies or substantial portions
     16  * of the Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
     21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
     22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
     23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
     24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     25  *
     26  **************************************************************************/
     27 
     28 
     29 /**
     30  * @file
     31  * Blend LLVM IR generation -- SoA layout.
     32  *
     33  * Blending in SoA is much faster than AoS, especially when separate rgb/alpha
     34  * factors/functions are used, since no channel masking/shuffling is necessary
     35  * and we can achieve the full throughput of the SIMD operations. Furthermore
     36  * the fragment shader output is also in SoA, so it fits nicely with the rest
     37  * of the fragment pipeline.
     38  *
     39  * The drawback is that to be displayed the color buffer needs to be in AoS
     40  * layout, so we need to tile/untile the color buffer before/after rendering.
     41  * A color buffer like
     42  *
     43  *  R11 G11 B11 A11 R12 G12 B12 A12  R13 G13 B13 A13 R14 G14 B14 A14  ...
     44  *  R21 G21 B21 A21 R22 G22 B22 A22  R23 G23 B23 A23 R24 G24 B24 A24  ...
     45  *
     46  *  R31 G31 B31 A31 R32 G32 B32 A32  R33 G33 B33 A33 R34 G34 B34 A34  ...
     47  *  R41 G41 B41 A41 R42 G42 B42 A42  R43 G43 B43 A43 R44 G44 B44 A44  ...
     48  *
     49  *  ... ... ... ... ... ... ... ...  ... ... ... ... ... ... ... ...  ...
     50  *
     51  * will actually be stored in memory as
     52  *
     53  *  R11 R12 R21 R22 R13 R14 R23 R24 ... G11 G12 G21 G22 G13 G14 G23 G24 ... B11 B12 B21 B22 B13 B14 B23 B24 ... A11 A12 A21 A22 A13 A14 A23 A24 ...
     54  *  R31 R32 R41 R42 R33 R34 R43 R44 ... G31 G32 G41 G42 G33 G34 G43 G44 ... B31 B32 B41 B42 B33 B34 B43 B44 ... A31 A32 A41 A42 A33 A34 A43 A44 ...
     55  *  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
     56  *
     57  * NOTE: Run lp_blend_test after any change to this file.
     58  *
     59  * You can also run lp_blend_test to obtain AoS vs SoA benchmarks. Invoking it
     60  * as:
     61  *
     62  *  lp_blend_test -o blend.tsv
     63  *
     64  * will generate a tab-seperated-file with the test results and performance
     65  * measurements.
     66  *
     67  * @author Jose Fonseca <jfonseca (at) vmware.com>
     68  */
     69 
     70 
     71 #include "pipe/p_state.h"
     72 #include "util/u_debug.h"
     73 
     74 #include "gallivm/lp_bld_type.h"
     75 #include "gallivm/lp_bld_arit.h"
     76 #include "gallivm/lp_bld_init.h"
     77 #include "lp_bld_blend.h"
     78 
     79 
     80 /**
     81  * We may use the same values several times, so we keep them here to avoid
     82  * recomputing them. Also reusing the values allows us to do simplifications
     83  * that LLVM optimization passes wouldn't normally be able to do.
     84  */
     85 struct lp_build_blend_soa_context
     86 {
     87    struct lp_build_context base;
     88 
     89    LLVMValueRef src[4];
     90    LLVMValueRef dst[4];
     91    LLVMValueRef con[4];
     92 
     93    LLVMValueRef inv_src[4];
     94    LLVMValueRef inv_dst[4];
     95    LLVMValueRef inv_con[4];
     96 
     97    LLVMValueRef src_alpha_saturate;
     98 
     99    /**
    100     * We store all factors in a table in order to eliminate redundant
    101     * multiplications later.
    102     * Indexes are: factor[src,dst][color,term][r,g,b,a]
    103     */
    104    LLVMValueRef factor[2][2][4];
    105 
    106    /**
    107     * Table with all terms.
    108     * Indexes are: term[src,dst][r,g,b,a]
    109     */
    110    LLVMValueRef term[2][4];
    111 };
    112 
    113 
    114 /**
    115  * Build a single SOA blend factor for a color channel.
    116  * \param i  the color channel in [0,3]
    117  */
    118 static LLVMValueRef
    119 lp_build_blend_soa_factor(struct lp_build_blend_soa_context *bld,
    120                           unsigned factor, unsigned i)
    121 {
    122    /*
    123     * Compute src/first term RGB
    124     */
    125    switch (factor) {
    126    case PIPE_BLENDFACTOR_ONE:
    127       return bld->base.one;
    128    case PIPE_BLENDFACTOR_SRC_COLOR:
    129       return bld->src[i];
    130    case PIPE_BLENDFACTOR_SRC_ALPHA:
    131       return bld->src[3];
    132    case PIPE_BLENDFACTOR_DST_COLOR:
    133       return bld->dst[i];
    134    case PIPE_BLENDFACTOR_DST_ALPHA:
    135       return bld->dst[3];
    136    case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
    137       if(i == 3)
    138          return bld->base.one;
    139       else {
    140          if(!bld->inv_dst[3])
    141             bld->inv_dst[3] = lp_build_comp(&bld->base, bld->dst[3]);
    142          if(!bld->src_alpha_saturate)
    143             bld->src_alpha_saturate = lp_build_min(&bld->base, bld->src[3], bld->inv_dst[3]);
    144          return bld->src_alpha_saturate;
    145       }
    146    case PIPE_BLENDFACTOR_CONST_COLOR:
    147       return bld->con[i];
    148    case PIPE_BLENDFACTOR_CONST_ALPHA:
    149       return bld->con[3];
    150    case PIPE_BLENDFACTOR_SRC1_COLOR:
    151       /* TODO */
    152       assert(0);
    153       return bld->base.zero;
    154    case PIPE_BLENDFACTOR_SRC1_ALPHA:
    155       /* TODO */
    156       assert(0);
    157       return bld->base.zero;
    158    case PIPE_BLENDFACTOR_ZERO:
    159       return bld->base.zero;
    160    case PIPE_BLENDFACTOR_INV_SRC_COLOR:
    161       if(!bld->inv_src[i])
    162          bld->inv_src[i] = lp_build_comp(&bld->base, bld->src[i]);
    163       return bld->inv_src[i];
    164    case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
    165       if(!bld->inv_src[3])
    166          bld->inv_src[3] = lp_build_comp(&bld->base, bld->src[3]);
    167       return bld->inv_src[3];
    168    case PIPE_BLENDFACTOR_INV_DST_COLOR:
    169       if(!bld->inv_dst[i])
    170          bld->inv_dst[i] = lp_build_comp(&bld->base, bld->dst[i]);
    171       return bld->inv_dst[i];
    172    case PIPE_BLENDFACTOR_INV_DST_ALPHA:
    173       if(!bld->inv_dst[3])
    174          bld->inv_dst[3] = lp_build_comp(&bld->base, bld->dst[3]);
    175       return bld->inv_dst[3];
    176    case PIPE_BLENDFACTOR_INV_CONST_COLOR:
    177       if(!bld->inv_con[i])
    178          bld->inv_con[i] = lp_build_comp(&bld->base, bld->con[i]);
    179       return bld->inv_con[i];
    180    case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
    181       if(!bld->inv_con[3])
    182          bld->inv_con[3] = lp_build_comp(&bld->base, bld->con[3]);
    183       return bld->inv_con[3];
    184    case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
    185       /* TODO */
    186       assert(0);
    187       return bld->base.zero;
    188    case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
    189       /* TODO */
    190       assert(0);
    191       return bld->base.zero;
    192    default:
    193       assert(0);
    194       return bld->base.zero;
    195    }
    196 }
    197 
    198 
    199 /**
    200  * Generate blend code in SOA mode.
    201  * \param rt  render target index (to index the blend / colormask state)
    202  * \param src  src/fragment color
    203  * \param dst  dst/framebuffer color
    204  * \param con  constant blend color
    205  * \param res  the result/output
    206  */
    207 void
    208 lp_build_blend_soa(struct gallivm_state *gallivm,
    209                    const struct pipe_blend_state *blend,
    210                    struct lp_type type,
    211                    unsigned rt,
    212                    LLVMValueRef src[4],
    213                    LLVMValueRef dst[4],
    214                    LLVMValueRef con[4],
    215                    LLVMValueRef res[4])
    216 {
    217    LLVMBuilderRef builder = gallivm->builder;
    218    struct lp_build_blend_soa_context bld;
    219    unsigned i, j, k;
    220 
    221    assert(rt < PIPE_MAX_COLOR_BUFS);
    222 
    223    /* Setup build context */
    224    memset(&bld, 0, sizeof bld);
    225    lp_build_context_init(&bld.base, gallivm, type);
    226    for (i = 0; i < 4; ++i) {
    227       bld.src[i] = src[i];
    228       bld.dst[i] = dst[i];
    229       bld.con[i] = con[i];
    230    }
    231 
    232    for (i = 0; i < 4; ++i) {
    233       /* only compute blending for the color channels enabled for writing */
    234       if (blend->rt[rt].colormask & (1 << i)) {
    235          if (blend->logicop_enable) {
    236             if(!type.floating) {
    237                res[i] = lp_build_logicop(builder, blend->logicop_func, src[i], dst[i]);
    238             }
    239             else
    240                res[i] = dst[i];
    241          }
    242          else if (blend->rt[rt].blend_enable) {
    243             unsigned src_factor = i < 3 ? blend->rt[rt].rgb_src_factor : blend->rt[rt].alpha_src_factor;
    244             unsigned dst_factor = i < 3 ? blend->rt[rt].rgb_dst_factor : blend->rt[rt].alpha_dst_factor;
    245             unsigned func = i < 3 ? blend->rt[rt].rgb_func : blend->rt[rt].alpha_func;
    246             boolean func_commutative = lp_build_blend_func_commutative(func);
    247 
    248             /*
    249              * Compute src/dst factors.
    250              */
    251 
    252             bld.factor[0][0][i] = src[i];
    253             bld.factor[0][1][i] = lp_build_blend_soa_factor(&bld, src_factor, i);
    254             bld.factor[1][0][i] = dst[i];
    255             bld.factor[1][1][i] = lp_build_blend_soa_factor(&bld, dst_factor, i);
    256 
    257             /*
    258              * Check if lp_build_blend can perform any optimisations
    259              */
    260             res[i] = lp_build_blend(&bld.base,
    261                                     func,
    262                                     src_factor,
    263                                     dst_factor,
    264                                     bld.factor[0][0][i],
    265                                     bld.factor[1][0][i],
    266                                     bld.factor[0][1][i],
    267                                     bld.factor[1][1][i],
    268                                     true,
    269                                     true);
    270 
    271             if (res[i]) {
    272                continue;
    273             }
    274 
    275             /*
    276              * Compute src/dst terms
    277              */
    278 
    279             for(k = 0; k < 2; ++k) {
    280                /* See if this multiplication has been previously computed */
    281                for(j = 0; j < i; ++j) {
    282                   if((bld.factor[k][0][j] == bld.factor[k][0][i] &&
    283                       bld.factor[k][1][j] == bld.factor[k][1][i]) ||
    284                      (bld.factor[k][0][j] == bld.factor[k][1][i] &&
    285                       bld.factor[k][1][j] == bld.factor[k][0][i]))
    286                      break;
    287                }
    288 
    289                if(j < i && bld.term[k][j])
    290                   bld.term[k][i] = bld.term[k][j];
    291                else
    292                   bld.term[k][i] = lp_build_mul(&bld.base, bld.factor[k][0][i], bld.factor[k][1][i]);
    293 
    294                if (src_factor == PIPE_BLENDFACTOR_ZERO &&
    295                    (dst_factor == PIPE_BLENDFACTOR_DST_ALPHA ||
    296                     dst_factor == PIPE_BLENDFACTOR_INV_DST_ALPHA)) {
    297                   /* XXX special case these combos to work around an apparent
    298                    * bug in LLVM.
    299                    * This hack disables the check for multiplication by zero
    300                    * in lp_bld_mul().  When we optimize away the
    301                    * multiplication, something goes wrong during code
    302                    * generation and we segfault at runtime.
    303                    */
    304                   LLVMValueRef zeroSave = bld.base.zero;
    305                   bld.base.zero = NULL;
    306                   bld.term[k][i] = lp_build_mul(&bld.base, bld.factor[k][0][i],
    307                                                 bld.factor[k][1][i]);
    308                   bld.base.zero = zeroSave;
    309                }
    310             }
    311 
    312             /*
    313              * Combine terms
    314              */
    315 
    316             /* See if this function has been previously applied */
    317             for(j = 0; j < i; ++j) {
    318                unsigned prev_func = j < 3 ? blend->rt[rt].rgb_func : blend->rt[rt].alpha_func;
    319                unsigned func_reverse = lp_build_blend_func_reverse(func, prev_func);
    320 
    321                if((!func_reverse &&
    322                    bld.term[0][j] == bld.term[0][i] &&
    323                    bld.term[1][j] == bld.term[1][i]) ||
    324                   ((func_commutative || func_reverse) &&
    325                    bld.term[0][j] == bld.term[1][i] &&
    326                    bld.term[1][j] == bld.term[0][i]))
    327                   break;
    328             }
    329 
    330             if(j < i)
    331                res[i] = res[j];
    332             else
    333                res[i] = lp_build_blend_func(&bld.base, func, bld.term[0][i], bld.term[1][i]);
    334          }
    335          else {
    336             res[i] = src[i];
    337          }
    338       }
    339       else {
    340          res[i] = dst[i];
    341       }
    342    }
    343 }
    344