Home | History | Annotate | Download | only in compiler
      1 /*
      2  * Copyright (C) 2009 Nicolai Haehnle.
      3  *
      4  * All Rights Reserved.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining
      7  * a copy of this software and associated documentation files (the
      8  * "Software"), to deal in the Software without restriction, including
      9  * without limitation the rights to use, copy, modify, merge, publish,
     10  * distribute, sublicense, and/or sell copies of the Software, and to
     11  * permit persons to whom the Software is furnished to do so, subject to
     12  * the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the
     15  * next paragraph) shall be included in all copies or substantial
     16  * portions of the Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     19  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
     21  * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
     22  * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
     23  * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
     24  * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     25  *
     26  */
     27 
     28 #ifndef RADEON_OPCODES_H
     29 #define RADEON_OPCODES_H
     30 
     31 #include <assert.h>
     32 
     33 /**
     34  * Opcodes understood by the Radeon compiler.
     35  */
     36 typedef enum {
     37 	RC_OPCODE_NOP = 0,
     38 	RC_OPCODE_ILLEGAL_OPCODE,
     39 
     40 	/** vec4 instruction: dst.c = abs(src0.c); */
     41 	RC_OPCODE_ABS,
     42 
     43 	/** vec4 instruction: dst.c = src0.c + src1.c; */
     44 	RC_OPCODE_ADD,
     45 
     46 	/** special instruction: load address register
     47 	 * dst.x = floor(src.x), where dst must be an address register */
     48 	RC_OPCODE_ARL,
     49 
     50 	/** vec4 instruction: dst.c = ceil(src0.c) */
     51 	RC_OPCODE_CEIL,
     52 
     53 	/** vec4 instruction: dst.c = clamp(src0.c, src1.c, src2.c) */
     54 	RC_OPCODE_CLAMP,
     55 
     56 	/** vec4 instruction: dst.c = src0.c < 0.0 ? src1.c : src2.c */
     57 	RC_OPCODE_CMP,
     58 
     59 	/** vec4 instruction: dst.c = src2.c > 0.5 ? src0.c : src1.c */
     60 	RC_OPCODE_CND,
     61 
     62 	/** scalar instruction: dst = cos(src0.x) */
     63 	RC_OPCODE_COS,
     64 
     65 	/** special instruction: take vec4 partial derivative in X direction
     66 	 * dst.c = d src0.c / dx */
     67 	RC_OPCODE_DDX,
     68 
     69 	/** special instruction: take vec4 partial derivative in Y direction
     70 	 * dst.c = d src0.c / dy */
     71 	RC_OPCODE_DDY,
     72 
     73 	/** scalar instruction: dst = src0.x*src1.x + src0.y*src1.y */
     74 	RC_OPCODE_DP2,
     75 
     76 	/** scalar instruction: dst = src0.x*src1.x + src0.y*src1.y + src0.z*src1.z */
     77 	RC_OPCODE_DP3,
     78 
     79 	/** scalar instruction: dst = src0.x*src1.x + src0.y*src1.y + src0.z*src1.z + src0.w*src1.w */
     80 	RC_OPCODE_DP4,
     81 
     82 	/** scalar instruction: dst = src0.x*src1.x + src0.y*src1.y + src0.z*src1.z + src1.w */
     83 	RC_OPCODE_DPH,
     84 
     85 	/** special instruction, see ARB_fragment_program */
     86 	RC_OPCODE_DST,
     87 
     88 	/** scalar instruction: dst = 2**src0.x */
     89 	RC_OPCODE_EX2,
     90 
     91 	/** special instruction, see ARB_vertex_program */
     92 	RC_OPCODE_EXP,
     93 
     94 	/** vec4 instruction: dst.c = floor(src0.c) */
     95 	RC_OPCODE_FLR,
     96 
     97 	/** vec4 instruction: dst.c = src0.c - floor(src0.c) */
     98 	RC_OPCODE_FRC,
     99 
    100 	/** special instruction: stop execution if any component of src0 is negative */
    101 	RC_OPCODE_KIL,
    102 
    103 	/** scalar instruction: dst = log_2(src0.x) */
    104 	RC_OPCODE_LG2,
    105 
    106 	/** special instruction, see ARB_vertex_program */
    107 	RC_OPCODE_LIT,
    108 
    109 	/** special instruction, see ARB_vertex_program */
    110 	RC_OPCODE_LOG,
    111 
    112 	/** vec4 instruction: dst.c = src0.c*src1.c + (1 - src0.c)*src2.c */
    113 	RC_OPCODE_LRP,
    114 
    115 	/** vec4 instruction: dst.c = src0.c*src1.c + src2.c */
    116 	RC_OPCODE_MAD,
    117 
    118 	/** vec4 instruction: dst.c = max(src0.c, src1.c) */
    119 	RC_OPCODE_MAX,
    120 
    121 	/** vec4 instruction: dst.c = min(src0.c, src1.c) */
    122 	RC_OPCODE_MIN,
    123 
    124 	/** vec4 instruction: dst.c = src0.c */
    125 	RC_OPCODE_MOV,
    126 
    127 	/** vec4 instruction: dst.c = src0.c*src1.c */
    128 	RC_OPCODE_MUL,
    129 
    130 	/** scalar instruction: dst = src0.x ** src1.x */
    131 	RC_OPCODE_POW,
    132 
    133 	/** scalar instruction: dst = 1 / src0.x */
    134 	RC_OPCODE_RCP,
    135 
    136 	/** vec4 instruction: dst.c = floor(src0.c + 0.5) */
    137 	RC_OPCODE_ROUND,
    138 
    139 	/** scalar instruction: dst = 1 / sqrt(src0.x) */
    140 	RC_OPCODE_RSQ,
    141 
    142 	/** special instruction, see ARB_fragment_program */
    143 	RC_OPCODE_SCS,
    144 
    145 	/** vec4 instruction: dst.c = (src0.c == src1.c) ? 1.0 : 0.0 */
    146 	RC_OPCODE_SEQ,
    147 
    148 	/** vec4 instruction: dst.c = 0.0 */
    149 	RC_OPCODE_SFL,
    150 
    151 	/** vec4 instruction: dst.c = (src0.c >= src1.c) ? 1.0 : 0.0 */
    152 	RC_OPCODE_SGE,
    153 
    154 	/** vec4 instruction: dst.c = (src0.c > src1.c) ? 1.0 : 0.0 */
    155 	RC_OPCODE_SGT,
    156 
    157 	/** scalar instruction: dst = sin(src0.x) */
    158 	RC_OPCODE_SIN,
    159 
    160 	/** vec4 instruction: dst.c = (src0.c <= src1.c) ? 1.0 : 0.0 */
    161 	RC_OPCODE_SLE,
    162 
    163 	/** vec4 instruction: dst.c = (src0.c < src1.c) ? 1.0 : 0.0 */
    164 	RC_OPCODE_SLT,
    165 
    166 	/** vec4 instruction: dst.c = (src0.c != src1.c) ? 1.0 : 0.0 */
    167 	RC_OPCODE_SNE,
    168 
    169 	/** vec4 instruction: dst.c = (src0.c < 0 ?) -1 : ((src0.c > 0) : 1 : 0) */
    170 	RC_OPCODE_SSG,
    171 
    172 	/** vec4 instruction: dst.c = src0.c - src1.c */
    173 	RC_OPCODE_SUB,
    174 
    175 	/** vec4 instruction: dst.c = src0.c */
    176 	RC_OPCODE_SWZ,
    177 
    178 	/** vec4 instruction: dst.c = (abs(src0.c) - fract(abs(src0.c))) * sgn(src0.c) */
    179 	RC_OPCODE_TRUNC,
    180 
    181 	/** special instruction, see ARB_fragment_program */
    182 	RC_OPCODE_XPD,
    183 
    184 	RC_OPCODE_TEX,
    185 	RC_OPCODE_TXB,
    186 	RC_OPCODE_TXD,
    187 	RC_OPCODE_TXL,
    188 	RC_OPCODE_TXP,
    189 
    190 	/** branch instruction:
    191 	 * If src0.x != 0.0, continue with the next instruction;
    192 	 * otherwise, jump to matching RC_OPCODE_ELSE or RC_OPCODE_ENDIF.
    193 	 */
    194 	RC_OPCODE_IF,
    195 
    196 	/** branch instruction: jump to matching RC_OPCODE_ENDIF */
    197 	RC_OPCODE_ELSE,
    198 
    199 	/** branch instruction: has no effect */
    200 	RC_OPCODE_ENDIF,
    201 
    202 	RC_OPCODE_BGNLOOP,
    203 
    204 	RC_OPCODE_BRK,
    205 
    206 	RC_OPCODE_ENDLOOP,
    207 
    208 	RC_OPCODE_CONT,
    209 
    210 	/** special instruction, used in R300-R500 fragment program pair instructions
    211 	 * indicates that the result of the alpha operation shall be replicated
    212 	 * across all other channels */
    213 	RC_OPCODE_REPL_ALPHA,
    214 
    215 	/** special instruction, used in R300-R500 fragment programs
    216 	 * to indicate the start of a block of texture instructions that
    217 	 * can run simultaneously. */
    218 	RC_OPCODE_BEGIN_TEX,
    219 
    220 	/** Stop execution of the shader (GLSL discard) */
    221 	RC_OPCODE_KILP,
    222 
    223 	/* Vertex shader CF Instructions */
    224 	RC_ME_PRED_SEQ,
    225 	RC_ME_PRED_SGT,
    226 	RC_ME_PRED_SGE,
    227 	RC_ME_PRED_SNEQ,
    228 	RC_ME_PRED_SET_CLR,
    229 	RC_ME_PRED_SET_INV,
    230 	RC_ME_PRED_SET_POP,
    231 	RC_ME_PRED_SET_RESTORE,
    232 
    233 	RC_VE_PRED_SEQ_PUSH,
    234 	RC_VE_PRED_SGT_PUSH,
    235 	RC_VE_PRED_SGE_PUSH,
    236 	RC_VE_PRED_SNEQ_PUSH,
    237 
    238 	MAX_RC_OPCODE
    239 } rc_opcode;
    240 
    241 
    242 struct rc_opcode_info {
    243 	rc_opcode Opcode;
    244 	const char * Name;
    245 
    246 	/** true if the instruction reads from a texture.
    247 	 *
    248 	 * \note This is false for the KIL instruction, even though KIL is
    249 	 * a texture instruction from a hardware point of view. */
    250 	unsigned int HasTexture:1;
    251 
    252 	unsigned int NumSrcRegs:2;
    253 	unsigned int HasDstReg:1;
    254 
    255 	/** true if this instruction affects control flow */
    256 	unsigned int IsFlowControl:1;
    257 
    258 	/** true if this is a vector instruction that operates on components in parallel
    259 	 * without any cross-component interaction */
    260 	unsigned int IsComponentwise:1;
    261 
    262 	/** true if this instruction sources only its operands X components
    263 	 * to compute one result which is smeared across all output channels */
    264 	unsigned int IsStandardScalar:1;
    265 };
    266 
    267 extern struct rc_opcode_info rc_opcodes[MAX_RC_OPCODE];
    268 
    269 static inline const struct rc_opcode_info * rc_get_opcode_info(rc_opcode opcode)
    270 {
    271 	assert((unsigned int)opcode < MAX_RC_OPCODE);
    272 	assert(rc_opcodes[opcode].Opcode == opcode);
    273 
    274 	return &rc_opcodes[opcode];
    275 }
    276 
    277 struct rc_instruction;
    278 
    279 void rc_compute_sources_for_writemask(
    280 		const struct rc_instruction *inst,
    281 		unsigned int writemask,
    282 		unsigned int *srcmasks);
    283 
    284 #endif /* RADEON_OPCODES_H */
    285