Home | History | Annotate | Download | only in i965
      1 /*
      2  * Copyright  2011 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  */
     23 
     24 #include "brw_vec4.h"
     25 extern "C" {
     26 #include "main/macros.h"
     27 #include "program/prog_parameter.h"
     28 }
     29 
     30 #define MAX_INSTRUCTION (1 << 30)
     31 
     32 namespace brw {
     33 
     34 /**
     35  * Common helper for constructing swizzles.  When only a subset of
     36  * channels of a vec4 are used, we don't want to reference the other
     37  * channels, as that will tell optimization passes that those other
     38  * channels are used.
     39  */
     40 unsigned
     41 swizzle_for_size(int size)
     42 {
     43    static const unsigned size_swizzles[4] = {
     44       BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
     45       BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
     46       BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
     47       BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
     48    };
     49 
     50    assert((size >= 1) && (size <= 4));
     51    return size_swizzles[size - 1];
     52 }
     53 
     54 void
     55 src_reg::init()
     56 {
     57    memset(this, 0, sizeof(*this));
     58 
     59    this->file = BAD_FILE;
     60 }
     61 
     62 src_reg::src_reg(register_file file, int reg, const glsl_type *type)
     63 {
     64    init();
     65 
     66    this->file = file;
     67    this->reg = reg;
     68    if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
     69       this->swizzle = swizzle_for_size(type->vector_elements);
     70    else
     71       this->swizzle = SWIZZLE_XYZW;
     72 }
     73 
     74 /** Generic unset register constructor. */
     75 src_reg::src_reg()
     76 {
     77    init();
     78 }
     79 
     80 src_reg::src_reg(float f)
     81 {
     82    init();
     83 
     84    this->file = IMM;
     85    this->type = BRW_REGISTER_TYPE_F;
     86    this->imm.f = f;
     87 }
     88 
     89 src_reg::src_reg(uint32_t u)
     90 {
     91    init();
     92 
     93    this->file = IMM;
     94    this->type = BRW_REGISTER_TYPE_UD;
     95    this->imm.u = u;
     96 }
     97 
     98 src_reg::src_reg(int32_t i)
     99 {
    100    init();
    101 
    102    this->file = IMM;
    103    this->type = BRW_REGISTER_TYPE_D;
    104    this->imm.i = i;
    105 }
    106 
    107 src_reg::src_reg(dst_reg reg)
    108 {
    109    init();
    110 
    111    this->file = reg.file;
    112    this->reg = reg.reg;
    113    this->reg_offset = reg.reg_offset;
    114    this->type = reg.type;
    115    this->reladdr = reg.reladdr;
    116    this->fixed_hw_reg = reg.fixed_hw_reg;
    117 
    118    int swizzles[4];
    119    int next_chan = 0;
    120    int last = 0;
    121 
    122    for (int i = 0; i < 4; i++) {
    123       if (!(reg.writemask & (1 << i)))
    124          continue;
    125 
    126       swizzles[next_chan++] = last = i;
    127    }
    128 
    129    for (; next_chan < 4; next_chan++) {
    130       swizzles[next_chan] = last;
    131    }
    132 
    133    this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
    134                                 swizzles[2], swizzles[3]);
    135 }
    136 
    137 bool
    138 vec4_instruction::is_tex()
    139 {
    140    return (opcode == SHADER_OPCODE_TEX ||
    141 	   opcode == SHADER_OPCODE_TXD ||
    142 	   opcode == SHADER_OPCODE_TXF ||
    143 	   opcode == SHADER_OPCODE_TXL ||
    144 	   opcode == SHADER_OPCODE_TXS);
    145 }
    146 
    147 void
    148 dst_reg::init()
    149 {
    150    memset(this, 0, sizeof(*this));
    151    this->file = BAD_FILE;
    152    this->writemask = WRITEMASK_XYZW;
    153 }
    154 
    155 dst_reg::dst_reg()
    156 {
    157    init();
    158 }
    159 
    160 dst_reg::dst_reg(register_file file, int reg)
    161 {
    162    init();
    163 
    164    this->file = file;
    165    this->reg = reg;
    166 }
    167 
    168 dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
    169                  int writemask)
    170 {
    171    init();
    172 
    173    this->file = file;
    174    this->reg = reg;
    175    this->type = brw_type_for_base_type(type);
    176    this->writemask = writemask;
    177 }
    178 
    179 dst_reg::dst_reg(struct brw_reg reg)
    180 {
    181    init();
    182 
    183    this->file = HW_REG;
    184    this->fixed_hw_reg = reg;
    185 }
    186 
    187 dst_reg::dst_reg(src_reg reg)
    188 {
    189    init();
    190 
    191    this->file = reg.file;
    192    this->reg = reg.reg;
    193    this->reg_offset = reg.reg_offset;
    194    this->type = reg.type;
    195    this->writemask = WRITEMASK_XYZW;
    196    this->reladdr = reg.reladdr;
    197    this->fixed_hw_reg = reg.fixed_hw_reg;
    198 }
    199 
    200 bool
    201 vec4_instruction::is_math()
    202 {
    203    return (opcode == SHADER_OPCODE_RCP ||
    204 	   opcode == SHADER_OPCODE_RSQ ||
    205 	   opcode == SHADER_OPCODE_SQRT ||
    206 	   opcode == SHADER_OPCODE_EXP2 ||
    207 	   opcode == SHADER_OPCODE_LOG2 ||
    208 	   opcode == SHADER_OPCODE_SIN ||
    209 	   opcode == SHADER_OPCODE_COS ||
    210 	   opcode == SHADER_OPCODE_INT_QUOTIENT ||
    211 	   opcode == SHADER_OPCODE_INT_REMAINDER ||
    212 	   opcode == SHADER_OPCODE_POW);
    213 }
    214 /**
    215  * Returns how many MRFs an opcode will write over.
    216  *
    217  * Note that this is not the 0 or 1 implied writes in an actual gen
    218  * instruction -- the generate_* functions generate additional MOVs
    219  * for setup.
    220  */
    221 int
    222 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
    223 {
    224    if (inst->mlen == 0)
    225       return 0;
    226 
    227    switch (inst->opcode) {
    228    case SHADER_OPCODE_RCP:
    229    case SHADER_OPCODE_RSQ:
    230    case SHADER_OPCODE_SQRT:
    231    case SHADER_OPCODE_EXP2:
    232    case SHADER_OPCODE_LOG2:
    233    case SHADER_OPCODE_SIN:
    234    case SHADER_OPCODE_COS:
    235       return 1;
    236    case SHADER_OPCODE_POW:
    237       return 2;
    238    case VS_OPCODE_URB_WRITE:
    239       return 1;
    240    case VS_OPCODE_PULL_CONSTANT_LOAD:
    241       return 2;
    242    case VS_OPCODE_SCRATCH_READ:
    243       return 2;
    244    case VS_OPCODE_SCRATCH_WRITE:
    245       return 3;
    246    default:
    247       assert(!"not reached");
    248       return inst->mlen;
    249    }
    250 }
    251 
    252 bool
    253 src_reg::equals(src_reg *r)
    254 {
    255    return (file == r->file &&
    256 	   reg == r->reg &&
    257 	   reg_offset == r->reg_offset &&
    258 	   type == r->type &&
    259 	   negate == r->negate &&
    260 	   abs == r->abs &&
    261 	   swizzle == r->swizzle &&
    262 	   !reladdr && !r->reladdr &&
    263 	   memcmp(&fixed_hw_reg, &r->fixed_hw_reg,
    264 		  sizeof(fixed_hw_reg)) == 0 &&
    265 	   imm.u == r->imm.u);
    266 }
    267 
    268 void
    269 vec4_visitor::calculate_live_intervals()
    270 {
    271    int *def = ralloc_array(mem_ctx, int, virtual_grf_count);
    272    int *use = ralloc_array(mem_ctx, int, virtual_grf_count);
    273    int loop_depth = 0;
    274    int loop_start = 0;
    275 
    276    if (this->live_intervals_valid)
    277       return;
    278 
    279    for (int i = 0; i < virtual_grf_count; i++) {
    280       def[i] = MAX_INSTRUCTION;
    281       use[i] = -1;
    282    }
    283 
    284    int ip = 0;
    285    foreach_list(node, &this->instructions) {
    286       vec4_instruction *inst = (vec4_instruction *)node;
    287 
    288       if (inst->opcode == BRW_OPCODE_DO) {
    289 	 if (loop_depth++ == 0)
    290 	    loop_start = ip;
    291       } else if (inst->opcode == BRW_OPCODE_WHILE) {
    292 	 loop_depth--;
    293 
    294 	 if (loop_depth == 0) {
    295 	    /* Patches up the use of vars marked for being live across
    296 	     * the whole loop.
    297 	     */
    298 	    for (int i = 0; i < virtual_grf_count; i++) {
    299 	       if (use[i] == loop_start) {
    300 		  use[i] = ip;
    301 	       }
    302 	    }
    303 	 }
    304       } else {
    305 	 for (unsigned int i = 0; i < 3; i++) {
    306 	    if (inst->src[i].file == GRF) {
    307 	       int reg = inst->src[i].reg;
    308 
    309 	       if (!loop_depth) {
    310 		  use[reg] = ip;
    311 	       } else {
    312 		  def[reg] = MIN2(loop_start, def[reg]);
    313 		  use[reg] = loop_start;
    314 
    315 		  /* Nobody else is going to go smash our start to
    316 		   * later in the loop now, because def[reg] now
    317 		   * points before the bb header.
    318 		   */
    319 	       }
    320 	    }
    321 	 }
    322 	 if (inst->dst.file == GRF) {
    323 	    int reg = inst->dst.reg;
    324 
    325 	    if (!loop_depth) {
    326 	       def[reg] = MIN2(def[reg], ip);
    327 	    } else {
    328 	       def[reg] = MIN2(def[reg], loop_start);
    329 	    }
    330 	 }
    331       }
    332 
    333       ip++;
    334    }
    335 
    336    ralloc_free(this->virtual_grf_def);
    337    ralloc_free(this->virtual_grf_use);
    338    this->virtual_grf_def = def;
    339    this->virtual_grf_use = use;
    340 
    341    this->live_intervals_valid = true;
    342 }
    343 
    344 bool
    345 vec4_visitor::virtual_grf_interferes(int a, int b)
    346 {
    347    int start = MAX2(this->virtual_grf_def[a], this->virtual_grf_def[b]);
    348    int end = MIN2(this->virtual_grf_use[a], this->virtual_grf_use[b]);
    349 
    350    /* We can't handle dead register writes here, without iterating
    351     * over the whole instruction stream to find every single dead
    352     * write to that register to compare to the live interval of the
    353     * other register.  Just assert that dead_code_eliminate() has been
    354     * called.
    355     */
    356    assert((this->virtual_grf_use[a] != -1 ||
    357 	   this->virtual_grf_def[a] == MAX_INSTRUCTION) &&
    358 	  (this->virtual_grf_use[b] != -1 ||
    359 	   this->virtual_grf_def[b] == MAX_INSTRUCTION));
    360 
    361    return start < end;
    362 }
    363 
    364 /**
    365  * Must be called after calculate_live_intervales() to remove unused
    366  * writes to registers -- register allocation will fail otherwise
    367  * because something deffed but not used won't be considered to
    368  * interfere with other regs.
    369  */
    370 bool
    371 vec4_visitor::dead_code_eliminate()
    372 {
    373    bool progress = false;
    374    int pc = 0;
    375 
    376    calculate_live_intervals();
    377 
    378    foreach_list_safe(node, &this->instructions) {
    379       vec4_instruction *inst = (vec4_instruction *)node;
    380 
    381       if (inst->dst.file == GRF && this->virtual_grf_use[inst->dst.reg] <= pc) {
    382 	 inst->remove();
    383 	 progress = true;
    384       }
    385 
    386       pc++;
    387    }
    388 
    389    if (progress)
    390       live_intervals_valid = false;
    391 
    392    return progress;
    393 }
    394 
    395 void
    396 vec4_visitor::split_uniform_registers()
    397 {
    398    /* Prior to this, uniforms have been in an array sized according to
    399     * the number of vector uniforms present, sparsely filled (so an
    400     * aggregate results in reg indices being skipped over).  Now we're
    401     * going to cut those aggregates up so each .reg index is one
    402     * vector.  The goal is to make elimination of unused uniform
    403     * components easier later.
    404     */
    405    foreach_list(node, &this->instructions) {
    406       vec4_instruction *inst = (vec4_instruction *)node;
    407 
    408       for (int i = 0 ; i < 3; i++) {
    409 	 if (inst->src[i].file != UNIFORM)
    410 	    continue;
    411 
    412 	 assert(!inst->src[i].reladdr);
    413 
    414 	 inst->src[i].reg += inst->src[i].reg_offset;
    415 	 inst->src[i].reg_offset = 0;
    416       }
    417    }
    418 
    419    /* Update that everything is now vector-sized. */
    420    for (int i = 0; i < this->uniforms; i++) {
    421       this->uniform_size[i] = 1;
    422    }
    423 }
    424 
    425 void
    426 vec4_visitor::pack_uniform_registers()
    427 {
    428    bool uniform_used[this->uniforms];
    429    int new_loc[this->uniforms];
    430    int new_chan[this->uniforms];
    431 
    432    memset(uniform_used, 0, sizeof(uniform_used));
    433    memset(new_loc, 0, sizeof(new_loc));
    434    memset(new_chan, 0, sizeof(new_chan));
    435 
    436    /* Find which uniform vectors are actually used by the program.  We
    437     * expect unused vector elements when we've moved array access out
    438     * to pull constants, and from some GLSL code generators like wine.
    439     */
    440    foreach_list(node, &this->instructions) {
    441       vec4_instruction *inst = (vec4_instruction *)node;
    442 
    443       for (int i = 0 ; i < 3; i++) {
    444 	 if (inst->src[i].file != UNIFORM)
    445 	    continue;
    446 
    447 	 uniform_used[inst->src[i].reg] = true;
    448       }
    449    }
    450 
    451    int new_uniform_count = 0;
    452 
    453    /* Now, figure out a packing of the live uniform vectors into our
    454     * push constants.
    455     */
    456    for (int src = 0; src < uniforms; src++) {
    457       int size = this->uniform_vector_size[src];
    458 
    459       if (!uniform_used[src]) {
    460 	 this->uniform_vector_size[src] = 0;
    461 	 continue;
    462       }
    463 
    464       int dst;
    465       /* Find the lowest place we can slot this uniform in. */
    466       for (dst = 0; dst < src; dst++) {
    467 	 if (this->uniform_vector_size[dst] + size <= 4)
    468 	    break;
    469       }
    470 
    471       if (src == dst) {
    472 	 new_loc[src] = dst;
    473 	 new_chan[src] = 0;
    474       } else {
    475 	 new_loc[src] = dst;
    476 	 new_chan[src] = this->uniform_vector_size[dst];
    477 
    478 	 /* Move the references to the data */
    479 	 for (int j = 0; j < size; j++) {
    480 	    c->prog_data.param[dst * 4 + new_chan[src] + j] =
    481 	       c->prog_data.param[src * 4 + j];
    482 	 }
    483 
    484 	 this->uniform_vector_size[dst] += size;
    485 	 this->uniform_vector_size[src] = 0;
    486       }
    487 
    488       new_uniform_count = MAX2(new_uniform_count, dst + 1);
    489    }
    490 
    491    this->uniforms = new_uniform_count;
    492 
    493    /* Now, update the instructions for our repacked uniforms. */
    494    foreach_list(node, &this->instructions) {
    495       vec4_instruction *inst = (vec4_instruction *)node;
    496 
    497       for (int i = 0 ; i < 3; i++) {
    498 	 int src = inst->src[i].reg;
    499 
    500 	 if (inst->src[i].file != UNIFORM)
    501 	    continue;
    502 
    503 	 inst->src[i].reg = new_loc[src];
    504 
    505 	 int sx = BRW_GET_SWZ(inst->src[i].swizzle, 0) + new_chan[src];
    506 	 int sy = BRW_GET_SWZ(inst->src[i].swizzle, 1) + new_chan[src];
    507 	 int sz = BRW_GET_SWZ(inst->src[i].swizzle, 2) + new_chan[src];
    508 	 int sw = BRW_GET_SWZ(inst->src[i].swizzle, 3) + new_chan[src];
    509 	 inst->src[i].swizzle = BRW_SWIZZLE4(sx, sy, sz, sw);
    510       }
    511    }
    512 }
    513 
    514 bool
    515 src_reg::is_zero() const
    516 {
    517    if (file != IMM)
    518       return false;
    519 
    520    if (type == BRW_REGISTER_TYPE_F) {
    521       return imm.f == 0.0;
    522    } else {
    523       return imm.i == 0;
    524    }
    525 }
    526 
    527 bool
    528 src_reg::is_one() const
    529 {
    530    if (file != IMM)
    531       return false;
    532 
    533    if (type == BRW_REGISTER_TYPE_F) {
    534       return imm.f == 1.0;
    535    } else {
    536       return imm.i == 1;
    537    }
    538 }
    539 
    540 /**
    541  * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
    542  *
    543  * While GLSL IR also performs this optimization, we end up with it in
    544  * our instruction stream for a couple of reasons.  One is that we
    545  * sometimes generate silly instructions, for example in array access
    546  * where we'll generate "ADD offset, index, base" even if base is 0.
    547  * The other is that GLSL IR's constant propagation doesn't track the
    548  * components of aggregates, so some VS patterns (initialize matrix to
    549  * 0, accumulate in vertex blending factors) end up breaking down to
    550  * instructions involving 0.
    551  */
    552 bool
    553 vec4_visitor::opt_algebraic()
    554 {
    555    bool progress = false;
    556 
    557    foreach_list(node, &this->instructions) {
    558       vec4_instruction *inst = (vec4_instruction *)node;
    559 
    560       switch (inst->opcode) {
    561       case BRW_OPCODE_ADD:
    562 	 if (inst->src[1].is_zero()) {
    563 	    inst->opcode = BRW_OPCODE_MOV;
    564 	    inst->src[1] = src_reg();
    565 	    progress = true;
    566 	 }
    567 	 break;
    568 
    569       case BRW_OPCODE_MUL:
    570 	 if (inst->src[1].is_zero()) {
    571 	    inst->opcode = BRW_OPCODE_MOV;
    572 	    switch (inst->src[0].type) {
    573 	    case BRW_REGISTER_TYPE_F:
    574 	       inst->src[0] = src_reg(0.0f);
    575 	       break;
    576 	    case BRW_REGISTER_TYPE_D:
    577 	       inst->src[0] = src_reg(0);
    578 	       break;
    579 	    case BRW_REGISTER_TYPE_UD:
    580 	       inst->src[0] = src_reg(0u);
    581 	       break;
    582 	    default:
    583 	       assert(!"not reached");
    584 	       inst->src[0] = src_reg(0.0f);
    585 	       break;
    586 	    }
    587 	    inst->src[1] = src_reg();
    588 	    progress = true;
    589 	 } else if (inst->src[1].is_one()) {
    590 	    inst->opcode = BRW_OPCODE_MOV;
    591 	    inst->src[1] = src_reg();
    592 	    progress = true;
    593 	 }
    594 	 break;
    595       default:
    596 	 break;
    597       }
    598    }
    599 
    600    if (progress)
    601       this->live_intervals_valid = false;
    602 
    603    return progress;
    604 }
    605 
    606 /**
    607  * Only a limited number of hardware registers may be used for push
    608  * constants, so this turns access to the overflowed constants into
    609  * pull constants.
    610  */
    611 void
    612 vec4_visitor::move_push_constants_to_pull_constants()
    613 {
    614    int pull_constant_loc[this->uniforms];
    615 
    616    /* Only allow 32 registers (256 uniform components) as push constants,
    617     * which is the limit on gen6.
    618     */
    619    int max_uniform_components = 32 * 8;
    620    if (this->uniforms * 4 <= max_uniform_components)
    621       return;
    622 
    623    /* Make some sort of choice as to which uniforms get sent to pull
    624     * constants.  We could potentially do something clever here like
    625     * look for the most infrequently used uniform vec4s, but leave
    626     * that for later.
    627     */
    628    for (int i = 0; i < this->uniforms * 4; i += 4) {
    629       pull_constant_loc[i / 4] = -1;
    630 
    631       if (i >= max_uniform_components) {
    632 	 const float **values = &prog_data->param[i];
    633 
    634 	 /* Try to find an existing copy of this uniform in the pull
    635 	  * constants if it was part of an array access already.
    636 	  */
    637 	 for (unsigned int j = 0; j < prog_data->nr_pull_params; j += 4) {
    638 	    int matches;
    639 
    640 	    for (matches = 0; matches < 4; matches++) {
    641 	       if (prog_data->pull_param[j + matches] != values[matches])
    642 		  break;
    643 	    }
    644 
    645 	    if (matches == 4) {
    646 	       pull_constant_loc[i / 4] = j / 4;
    647 	       break;
    648 	    }
    649 	 }
    650 
    651 	 if (pull_constant_loc[i / 4] == -1) {
    652 	    assert(prog_data->nr_pull_params % 4 == 0);
    653 	    pull_constant_loc[i / 4] = prog_data->nr_pull_params / 4;
    654 
    655 	    for (int j = 0; j < 4; j++) {
    656 	       prog_data->pull_param[prog_data->nr_pull_params++] = values[j];
    657 	    }
    658 	 }
    659       }
    660    }
    661 
    662    /* Now actually rewrite usage of the things we've moved to pull
    663     * constants.
    664     */
    665    foreach_list_safe(node, &this->instructions) {
    666       vec4_instruction *inst = (vec4_instruction *)node;
    667 
    668       for (int i = 0 ; i < 3; i++) {
    669 	 if (inst->src[i].file != UNIFORM ||
    670 	     pull_constant_loc[inst->src[i].reg] == -1)
    671 	    continue;
    672 
    673 	 int uniform = inst->src[i].reg;
    674 
    675 	 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
    676 
    677 	 emit_pull_constant_load(inst, temp, inst->src[i],
    678 				 pull_constant_loc[uniform]);
    679 
    680 	 inst->src[i].file = temp.file;
    681 	 inst->src[i].reg = temp.reg;
    682 	 inst->src[i].reg_offset = temp.reg_offset;
    683 	 inst->src[i].reladdr = NULL;
    684       }
    685    }
    686 
    687    /* Repack push constants to remove the now-unused ones. */
    688    pack_uniform_registers();
    689 }
    690 
    691 /*
    692  * Tries to reduce extra MOV instructions by taking GRFs that get just
    693  * written and then MOVed into an MRF and making the original write of
    694  * the GRF write directly to the MRF instead.
    695  */
    696 bool
    697 vec4_visitor::opt_compute_to_mrf()
    698 {
    699    bool progress = false;
    700    int next_ip = 0;
    701 
    702    calculate_live_intervals();
    703 
    704    foreach_list_safe(node, &this->instructions) {
    705       vec4_instruction *inst = (vec4_instruction *)node;
    706 
    707       int ip = next_ip;
    708       next_ip++;
    709 
    710       if (inst->opcode != BRW_OPCODE_MOV ||
    711 	  inst->predicate ||
    712 	  inst->dst.file != MRF || inst->src[0].file != GRF ||
    713 	  inst->dst.type != inst->src[0].type ||
    714 	  inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
    715 	 continue;
    716 
    717       int mrf = inst->dst.reg;
    718 
    719       /* Can't compute-to-MRF this GRF if someone else was going to
    720        * read it later.
    721        */
    722       if (this->virtual_grf_use[inst->src[0].reg] > ip)
    723 	 continue;
    724 
    725       /* We need to check interference with the MRF between this
    726        * instruction and the earliest instruction involved in writing
    727        * the GRF we're eliminating.  To do that, keep track of which
    728        * of our source channels we've seen initialized.
    729        */
    730       bool chans_needed[4] = {false, false, false, false};
    731       int chans_remaining = 0;
    732       for (int i = 0; i < 4; i++) {
    733 	 int chan = BRW_GET_SWZ(inst->src[0].swizzle, i);
    734 
    735 	 if (!(inst->dst.writemask & (1 << i)))
    736 	    continue;
    737 
    738 	 /* We don't handle compute-to-MRF across a swizzle.  We would
    739 	  * need to be able to rewrite instructions above to output
    740 	  * results to different channels.
    741 	  */
    742 	 if (chan != i)
    743 	    chans_remaining = 5;
    744 
    745 	 if (!chans_needed[chan]) {
    746 	    chans_needed[chan] = true;
    747 	    chans_remaining++;
    748 	 }
    749       }
    750       if (chans_remaining > 4)
    751 	 continue;
    752 
    753       /* Now walk up the instruction stream trying to see if we can
    754        * rewrite everything writing to the GRF into the MRF instead.
    755        */
    756       vec4_instruction *scan_inst;
    757       for (scan_inst = (vec4_instruction *)inst->prev;
    758 	   scan_inst->prev != NULL;
    759 	   scan_inst = (vec4_instruction *)scan_inst->prev) {
    760 	 if (scan_inst->dst.file == GRF &&
    761 	     scan_inst->dst.reg == inst->src[0].reg &&
    762 	     scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
    763 	    /* Found something writing to the reg we want to turn into
    764 	     * a compute-to-MRF.
    765 	     */
    766 
    767 	    /* SEND instructions can't have MRF as a destination. */
    768 	    if (scan_inst->mlen)
    769 	       break;
    770 
    771 	    if (intel->gen >= 6) {
    772 	       /* gen6 math instructions must have the destination be
    773 		* GRF, so no compute-to-MRF for them.
    774 		*/
    775 	       if (scan_inst->is_math()) {
    776 		  break;
    777 	       }
    778 	    }
    779 
    780 	    /* Mark which channels we found unconditional writes for. */
    781 	    if (!scan_inst->predicate) {
    782 	       for (int i = 0; i < 4; i++) {
    783 		  if (scan_inst->dst.writemask & (1 << i) &&
    784 		      chans_needed[i]) {
    785 		     chans_needed[i] = false;
    786 		     chans_remaining--;
    787 		  }
    788 	       }
    789 	    }
    790 
    791 	    if (chans_remaining == 0)
    792 	       break;
    793 	 }
    794 
    795 	 /* We don't handle flow control here.  Most computation of
    796 	  * values that end up in MRFs are shortly before the MRF
    797 	  * write anyway.
    798 	  */
    799 	 if (scan_inst->opcode == BRW_OPCODE_DO ||
    800 	     scan_inst->opcode == BRW_OPCODE_WHILE ||
    801 	     scan_inst->opcode == BRW_OPCODE_ELSE ||
    802 	     scan_inst->opcode == BRW_OPCODE_ENDIF) {
    803 	    break;
    804 	 }
    805 
    806 	 /* You can't read from an MRF, so if someone else reads our
    807 	  * MRF's source GRF that we wanted to rewrite, that stops us.
    808 	  */
    809 	 bool interfered = false;
    810 	 for (int i = 0; i < 3; i++) {
    811 	    if (scan_inst->src[i].file == GRF &&
    812 		scan_inst->src[i].reg == inst->src[0].reg &&
    813 		scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
    814 	       interfered = true;
    815 	    }
    816 	 }
    817 	 if (interfered)
    818 	    break;
    819 
    820 	 /* If somebody else writes our MRF here, we can't
    821 	  * compute-to-MRF before that.
    822 	  */
    823 	 if (scan_inst->dst.file == MRF && mrf == scan_inst->dst.reg)
    824 	    break;
    825 
    826 	 if (scan_inst->mlen > 0) {
    827 	    /* Found a SEND instruction, which means that there are
    828 	     * live values in MRFs from base_mrf to base_mrf +
    829 	     * scan_inst->mlen - 1.  Don't go pushing our MRF write up
    830 	     * above it.
    831 	     */
    832 	    if (mrf >= scan_inst->base_mrf &&
    833 		mrf < scan_inst->base_mrf + scan_inst->mlen) {
    834 	       break;
    835 	    }
    836 	 }
    837       }
    838 
    839       if (chans_remaining == 0) {
    840 	 /* If we've made it here, we have an inst we want to
    841 	  * compute-to-MRF, and a scan_inst pointing to the earliest
    842 	  * instruction involved in computing the value.  Now go
    843 	  * rewrite the instruction stream between the two.
    844 	  */
    845 
    846 	 while (scan_inst != inst) {
    847 	    if (scan_inst->dst.file == GRF &&
    848 		scan_inst->dst.reg == inst->src[0].reg &&
    849 		scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
    850 	       scan_inst->dst.file = MRF;
    851 	       scan_inst->dst.reg = mrf;
    852 	       scan_inst->dst.reg_offset = 0;
    853 	       scan_inst->dst.writemask &= inst->dst.writemask;
    854 	       scan_inst->saturate |= inst->saturate;
    855 	    }
    856 	    scan_inst = (vec4_instruction *)scan_inst->next;
    857 	 }
    858 	 inst->remove();
    859 	 progress = true;
    860       }
    861    }
    862 
    863    if (progress)
    864       live_intervals_valid = false;
    865 
    866    return progress;
    867 }
    868 
    869 } /* namespace brw */
    870