Home | History | Annotate | Download | only in math
      1 
      2 /*
      3  * Mesa 3-D graphics library
      4  * Version:  3.5
      5  *
      6  * Copyright (C) 1999-2001  Brian Paul   All Rights Reserved.
      7  *
      8  * Permission is hereby granted, free of charge, to any person obtaining a
      9  * copy of this software and associated documentation files (the "Software"),
     10  * to deal in the Software without restriction, including without limitation
     11  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     12  * and/or sell copies of the Software, and to permit persons to whom the
     13  * Software is furnished to do so, subject to the following conditions:
     14  *
     15  * The above copyright notice and this permission notice shall be included
     16  * in all copies or substantial portions of the Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     21  * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
     22  * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     23  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     24  */
     25 
     26 
     27 /*
     28  * eval.c was written by
     29  * Bernd Barsuhn (bdbarsuh (at) cip.informatik.uni-erlangen.de) and
     30  * Volker Weiss (vrweiss (at) cip.informatik.uni-erlangen.de).
     31  *
     32  * My original implementation of evaluators was simplistic and didn't
     33  * compute surface normal vectors properly.  Bernd and Volker applied
     34  * used more sophisticated methods to get better results.
     35  *
     36  * Thanks guys!
     37  */
     38 
     39 
     40 #include "main/glheader.h"
     41 #include "main/config.h"
     42 #include "m_eval.h"
     43 
     44 static GLfloat inv_tab[MAX_EVAL_ORDER];
     45 
     46 
     47 
     48 /*
     49  * Horner scheme for Bezier curves
     50  *
     51  * Bezier curves can be computed via a Horner scheme.
     52  * Horner is numerically less stable than the de Casteljau
     53  * algorithm, but it is faster. For curves of degree n
     54  * the complexity of Horner is O(n) and de Casteljau is O(n^2).
     55  * Since stability is not important for displaying curve
     56  * points I decided to use the Horner scheme.
     57  *
     58  * A cubic Bezier curve with control points b0, b1, b2, b3 can be
     59  * written as
     60  *
     61  *        (([3]        [3]     )     [3]       )     [3]
     62  * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3
     63  *
     64  *                                           [n]
     65  * where s=1-t and the binomial coefficients [i]. These can
     66  * be computed iteratively using the identity:
     67  *
     68  * [n]               [n  ]             [n]
     69  * [i] = (n-i+1)/i * [i-1]     and     [0] = 1
     70  */
     71 
     72 
     73 void
     74 _math_horner_bezier_curve(const GLfloat * cp, GLfloat * out, GLfloat t,
     75 			  GLuint dim, GLuint order)
     76 {
     77    GLfloat s, powert, bincoeff;
     78    GLuint i, k;
     79 
     80    if (order >= 2) {
     81       bincoeff = (GLfloat) (order - 1);
     82       s = 1.0F - t;
     83 
     84       for (k = 0; k < dim; k++)
     85 	 out[k] = s * cp[k] + bincoeff * t * cp[dim + k];
     86 
     87       for (i = 2, cp += 2 * dim, powert = t * t; i < order;
     88 	   i++, powert *= t, cp += dim) {
     89 	 bincoeff *= (GLfloat) (order - i);
     90 	 bincoeff *= inv_tab[i];
     91 
     92 	 for (k = 0; k < dim; k++)
     93 	    out[k] = s * out[k] + bincoeff * powert * cp[k];
     94       }
     95    }
     96    else {			/* order=1 -> constant curve */
     97 
     98       for (k = 0; k < dim; k++)
     99 	 out[k] = cp[k];
    100    }
    101 }
    102 
    103 /*
    104  * Tensor product Bezier surfaces
    105  *
    106  * Again the Horner scheme is used to compute a point on a
    107  * TP Bezier surface. First a control polygon for a curve
    108  * on the surface in one parameter direction is computed,
    109  * then the point on the curve for the other parameter
    110  * direction is evaluated.
    111  *
    112  * To store the curve control polygon additional storage
    113  * for max(uorder,vorder) points is needed in the
    114  * control net cn.
    115  */
    116 
    117 void
    118 _math_horner_bezier_surf(GLfloat * cn, GLfloat * out, GLfloat u, GLfloat v,
    119 			 GLuint dim, GLuint uorder, GLuint vorder)
    120 {
    121    GLfloat *cp = cn + uorder * vorder * dim;
    122    GLuint i, uinc = vorder * dim;
    123 
    124    if (vorder > uorder) {
    125       if (uorder >= 2) {
    126 	 GLfloat s, poweru, bincoeff;
    127 	 GLuint j, k;
    128 
    129 	 /* Compute the control polygon for the surface-curve in u-direction */
    130 	 for (j = 0; j < vorder; j++) {
    131 	    GLfloat *ucp = &cn[j * dim];
    132 
    133 	    /* Each control point is the point for parameter u on a */
    134 	    /* curve defined by the control polygons in u-direction */
    135 	    bincoeff = (GLfloat) (uorder - 1);
    136 	    s = 1.0F - u;
    137 
    138 	    for (k = 0; k < dim; k++)
    139 	       cp[j * dim + k] = s * ucp[k] + bincoeff * u * ucp[uinc + k];
    140 
    141 	    for (i = 2, ucp += 2 * uinc, poweru = u * u; i < uorder;
    142 		 i++, poweru *= u, ucp += uinc) {
    143 	       bincoeff *= (GLfloat) (uorder - i);
    144 	       bincoeff *= inv_tab[i];
    145 
    146 	       for (k = 0; k < dim; k++)
    147 		  cp[j * dim + k] =
    148 		     s * cp[j * dim + k] + bincoeff * poweru * ucp[k];
    149 	    }
    150 	 }
    151 
    152 	 /* Evaluate curve point in v */
    153 	 _math_horner_bezier_curve(cp, out, v, dim, vorder);
    154       }
    155       else			/* uorder=1 -> cn defines a curve in v */
    156 	 _math_horner_bezier_curve(cn, out, v, dim, vorder);
    157    }
    158    else {			/* vorder <= uorder */
    159 
    160       if (vorder > 1) {
    161 	 GLuint i;
    162 
    163 	 /* Compute the control polygon for the surface-curve in u-direction */
    164 	 for (i = 0; i < uorder; i++, cn += uinc) {
    165 	    /* For constant i all cn[i][j] (j=0..vorder) are located */
    166 	    /* on consecutive memory locations, so we can use        */
    167 	    /* horner_bezier_curve to compute the control points     */
    168 
    169 	    _math_horner_bezier_curve(cn, &cp[i * dim], v, dim, vorder);
    170 	 }
    171 
    172 	 /* Evaluate curve point in u */
    173 	 _math_horner_bezier_curve(cp, out, u, dim, uorder);
    174       }
    175       else			/* vorder=1 -> cn defines a curve in u */
    176 	 _math_horner_bezier_curve(cn, out, u, dim, uorder);
    177    }
    178 }
    179 
    180 /*
    181  * The direct de Casteljau algorithm is used when a point on the
    182  * surface and the tangent directions spanning the tangent plane
    183  * should be computed (this is needed to compute normals to the
    184  * surface). In this case the de Casteljau algorithm approach is
    185  * nicer because a point and the partial derivatives can be computed
    186  * at the same time. To get the correct tangent length du and dv
    187  * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1.
    188  * Since only the directions are needed, this scaling step is omitted.
    189  *
    190  * De Casteljau needs additional storage for uorder*vorder
    191  * values in the control net cn.
    192  */
    193 
    194 void
    195 _math_de_casteljau_surf(GLfloat * cn, GLfloat * out, GLfloat * du,
    196 			GLfloat * dv, GLfloat u, GLfloat v, GLuint dim,
    197 			GLuint uorder, GLuint vorder)
    198 {
    199    GLfloat *dcn = cn + uorder * vorder * dim;
    200    GLfloat us = 1.0F - u, vs = 1.0F - v;
    201    GLuint h, i, j, k;
    202    GLuint minorder = uorder < vorder ? uorder : vorder;
    203    GLuint uinc = vorder * dim;
    204    GLuint dcuinc = vorder;
    205 
    206    /* Each component is evaluated separately to save buffer space  */
    207    /* This does not drasticaly decrease the performance of the     */
    208    /* algorithm. If additional storage for (uorder-1)*(vorder-1)   */
    209    /* points would be available, the components could be accessed  */
    210    /* in the innermost loop which could lead to less cache misses. */
    211 
    212 #define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)]
    213 #define DCN(I, J) dcn[(I)*dcuinc+(J)]
    214    if (minorder < 3) {
    215       if (uorder == vorder) {
    216 	 for (k = 0; k < dim; k++) {
    217 	    /* Derivative direction in u */
    218 	    du[k] = vs * (CN(1, 0, k) - CN(0, 0, k)) +
    219 	       v * (CN(1, 1, k) - CN(0, 1, k));
    220 
    221 	    /* Derivative direction in v */
    222 	    dv[k] = us * (CN(0, 1, k) - CN(0, 0, k)) +
    223 	       u * (CN(1, 1, k) - CN(1, 0, k));
    224 
    225 	    /* bilinear de Casteljau step */
    226 	    out[k] = us * (vs * CN(0, 0, k) + v * CN(0, 1, k)) +
    227 	       u * (vs * CN(1, 0, k) + v * CN(1, 1, k));
    228 	 }
    229       }
    230       else if (minorder == uorder) {
    231 	 for (k = 0; k < dim; k++) {
    232 	    /* bilinear de Casteljau step */
    233 	    DCN(1, 0) = CN(1, 0, k) - CN(0, 0, k);
    234 	    DCN(0, 0) = us * CN(0, 0, k) + u * CN(1, 0, k);
    235 
    236 	    for (j = 0; j < vorder - 1; j++) {
    237 	       /* for the derivative in u */
    238 	       DCN(1, j + 1) = CN(1, j + 1, k) - CN(0, j + 1, k);
    239 	       DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1);
    240 
    241 	       /* for the `point' */
    242 	       DCN(0, j + 1) = us * CN(0, j + 1, k) + u * CN(1, j + 1, k);
    243 	       DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
    244 	    }
    245 
    246 	    /* remaining linear de Casteljau steps until the second last step */
    247 	    for (h = minorder; h < vorder - 1; h++)
    248 	       for (j = 0; j < vorder - h; j++) {
    249 		  /* for the derivative in u */
    250 		  DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1);
    251 
    252 		  /* for the `point' */
    253 		  DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
    254 	       }
    255 
    256 	    /* derivative direction in v */
    257 	    dv[k] = DCN(0, 1) - DCN(0, 0);
    258 
    259 	    /* derivative direction in u */
    260 	    du[k] = vs * DCN(1, 0) + v * DCN(1, 1);
    261 
    262 	    /* last linear de Casteljau step */
    263 	    out[k] = vs * DCN(0, 0) + v * DCN(0, 1);
    264 	 }
    265       }
    266       else {			/* minorder == vorder */
    267 
    268 	 for (k = 0; k < dim; k++) {
    269 	    /* bilinear de Casteljau step */
    270 	    DCN(0, 1) = CN(0, 1, k) - CN(0, 0, k);
    271 	    DCN(0, 0) = vs * CN(0, 0, k) + v * CN(0, 1, k);
    272 	    for (i = 0; i < uorder - 1; i++) {
    273 	       /* for the derivative in v */
    274 	       DCN(i + 1, 1) = CN(i + 1, 1, k) - CN(i + 1, 0, k);
    275 	       DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1);
    276 
    277 	       /* for the `point' */
    278 	       DCN(i + 1, 0) = vs * CN(i + 1, 0, k) + v * CN(i + 1, 1, k);
    279 	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
    280 	    }
    281 
    282 	    /* remaining linear de Casteljau steps until the second last step */
    283 	    for (h = minorder; h < uorder - 1; h++)
    284 	       for (i = 0; i < uorder - h; i++) {
    285 		  /* for the derivative in v */
    286 		  DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1);
    287 
    288 		  /* for the `point' */
    289 		  DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
    290 	       }
    291 
    292 	    /* derivative direction in u */
    293 	    du[k] = DCN(1, 0) - DCN(0, 0);
    294 
    295 	    /* derivative direction in v */
    296 	    dv[k] = us * DCN(0, 1) + u * DCN(1, 1);
    297 
    298 	    /* last linear de Casteljau step */
    299 	    out[k] = us * DCN(0, 0) + u * DCN(1, 0);
    300 	 }
    301       }
    302    }
    303    else if (uorder == vorder) {
    304       for (k = 0; k < dim; k++) {
    305 	 /* first bilinear de Casteljau step */
    306 	 for (i = 0; i < uorder - 1; i++) {
    307 	    DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k);
    308 	    for (j = 0; j < vorder - 1; j++) {
    309 	       DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k);
    310 	       DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
    311 	    }
    312 	 }
    313 
    314 	 /* remaining bilinear de Casteljau steps until the second last step */
    315 	 for (h = 2; h < minorder - 1; h++)
    316 	    for (i = 0; i < uorder - h; i++) {
    317 	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
    318 	       for (j = 0; j < vorder - h; j++) {
    319 		  DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1);
    320 		  DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
    321 	       }
    322 	    }
    323 
    324 	 /* derivative direction in u */
    325 	 du[k] = vs * (DCN(1, 0) - DCN(0, 0)) + v * (DCN(1, 1) - DCN(0, 1));
    326 
    327 	 /* derivative direction in v */
    328 	 dv[k] = us * (DCN(0, 1) - DCN(0, 0)) + u * (DCN(1, 1) - DCN(1, 0));
    329 
    330 	 /* last bilinear de Casteljau step */
    331 	 out[k] = us * (vs * DCN(0, 0) + v * DCN(0, 1)) +
    332 	    u * (vs * DCN(1, 0) + v * DCN(1, 1));
    333       }
    334    }
    335    else if (minorder == uorder) {
    336       for (k = 0; k < dim; k++) {
    337 	 /* first bilinear de Casteljau step */
    338 	 for (i = 0; i < uorder - 1; i++) {
    339 	    DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k);
    340 	    for (j = 0; j < vorder - 1; j++) {
    341 	       DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k);
    342 	       DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
    343 	    }
    344 	 }
    345 
    346 	 /* remaining bilinear de Casteljau steps until the second last step */
    347 	 for (h = 2; h < minorder - 1; h++)
    348 	    for (i = 0; i < uorder - h; i++) {
    349 	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
    350 	       for (j = 0; j < vorder - h; j++) {
    351 		  DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1);
    352 		  DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
    353 	       }
    354 	    }
    355 
    356 	 /* last bilinear de Casteljau step */
    357 	 DCN(2, 0) = DCN(1, 0) - DCN(0, 0);
    358 	 DCN(0, 0) = us * DCN(0, 0) + u * DCN(1, 0);
    359 	 for (j = 0; j < vorder - 1; j++) {
    360 	    /* for the derivative in u */
    361 	    DCN(2, j + 1) = DCN(1, j + 1) - DCN(0, j + 1);
    362 	    DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1);
    363 
    364 	    /* for the `point' */
    365 	    DCN(0, j + 1) = us * DCN(0, j + 1) + u * DCN(1, j + 1);
    366 	    DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
    367 	 }
    368 
    369 	 /* remaining linear de Casteljau steps until the second last step */
    370 	 for (h = minorder; h < vorder - 1; h++)
    371 	    for (j = 0; j < vorder - h; j++) {
    372 	       /* for the derivative in u */
    373 	       DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1);
    374 
    375 	       /* for the `point' */
    376 	       DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
    377 	    }
    378 
    379 	 /* derivative direction in v */
    380 	 dv[k] = DCN(0, 1) - DCN(0, 0);
    381 
    382 	 /* derivative direction in u */
    383 	 du[k] = vs * DCN(2, 0) + v * DCN(2, 1);
    384 
    385 	 /* last linear de Casteljau step */
    386 	 out[k] = vs * DCN(0, 0) + v * DCN(0, 1);
    387       }
    388    }
    389    else {			/* minorder == vorder */
    390 
    391       for (k = 0; k < dim; k++) {
    392 	 /* first bilinear de Casteljau step */
    393 	 for (i = 0; i < uorder - 1; i++) {
    394 	    DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k);
    395 	    for (j = 0; j < vorder - 1; j++) {
    396 	       DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k);
    397 	       DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
    398 	    }
    399 	 }
    400 
    401 	 /* remaining bilinear de Casteljau steps until the second last step */
    402 	 for (h = 2; h < minorder - 1; h++)
    403 	    for (i = 0; i < uorder - h; i++) {
    404 	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
    405 	       for (j = 0; j < vorder - h; j++) {
    406 		  DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1);
    407 		  DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
    408 	       }
    409 	    }
    410 
    411 	 /* last bilinear de Casteljau step */
    412 	 DCN(0, 2) = DCN(0, 1) - DCN(0, 0);
    413 	 DCN(0, 0) = vs * DCN(0, 0) + v * DCN(0, 1);
    414 	 for (i = 0; i < uorder - 1; i++) {
    415 	    /* for the derivative in v */
    416 	    DCN(i + 1, 2) = DCN(i + 1, 1) - DCN(i + 1, 0);
    417 	    DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2);
    418 
    419 	    /* for the `point' */
    420 	    DCN(i + 1, 0) = vs * DCN(i + 1, 0) + v * DCN(i + 1, 1);
    421 	    DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
    422 	 }
    423 
    424 	 /* remaining linear de Casteljau steps until the second last step */
    425 	 for (h = minorder; h < uorder - 1; h++)
    426 	    for (i = 0; i < uorder - h; i++) {
    427 	       /* for the derivative in v */
    428 	       DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2);
    429 
    430 	       /* for the `point' */
    431 	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
    432 	    }
    433 
    434 	 /* derivative direction in u */
    435 	 du[k] = DCN(1, 0) - DCN(0, 0);
    436 
    437 	 /* derivative direction in v */
    438 	 dv[k] = us * DCN(0, 2) + u * DCN(1, 2);
    439 
    440 	 /* last linear de Casteljau step */
    441 	 out[k] = us * DCN(0, 0) + u * DCN(1, 0);
    442       }
    443    }
    444 #undef DCN
    445 #undef CN
    446 }
    447 
    448 
    449 /*
    450  * Do one-time initialization for evaluators.
    451  */
    452 void
    453 _math_init_eval(void)
    454 {
    455    GLuint i;
    456 
    457    /* KW: precompute 1/x for useful x.
    458     */
    459    for (i = 1; i < MAX_EVAL_ORDER; i++)
    460       inv_tab[i] = 1.0F / i;
    461 }
    462