Home | History | Annotate | Download | only in evp
      1 /* ====================================================================
      2  * Copyright (c) 2011-2013 The OpenSSL Project.  All rights reserved.
      3  *
      4  * Redistribution and use in source and binary forms, with or without
      5  * modification, are permitted provided that the following conditions
      6  * are met:
      7  *
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  *
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in
     13  *    the documentation and/or other materials provided with the
     14  *    distribution.
     15  *
     16  * 3. All advertising materials mentioning features or use of this
     17  *    software must display the following acknowledgment:
     18  *    "This product includes software developed by the OpenSSL Project
     19  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
     20  *
     21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     22  *    endorse or promote products derived from this software without
     23  *    prior written permission. For written permission, please contact
     24  *    licensing (at) OpenSSL.org.
     25  *
     26  * 5. Products derived from this software may not be called "OpenSSL"
     27  *    nor may "OpenSSL" appear in their names without prior written
     28  *    permission of the OpenSSL Project.
     29  *
     30  * 6. Redistributions of any form whatsoever must retain the following
     31  *    acknowledgment:
     32  *    "This product includes software developed by the OpenSSL Project
     33  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
     34  *
     35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     46  * OF THE POSSIBILITY OF SUCH DAMAGE.
     47  * ====================================================================
     48  */
     49 
     50 #include <openssl/opensslconf.h>
     51 
     52 #include <stdio.h>
     53 #include <string.h>
     54 
     55 #if !defined(OPENSSL_NO_AES) && !defined(OPENSSL_NO_SHA1)
     56 
     57 #include <openssl/evp.h>
     58 #include <openssl/objects.h>
     59 #include <openssl/aes.h>
     60 #include <openssl/sha.h>
     61 #include "evp_locl.h"
     62 
     63 #ifndef EVP_CIPH_FLAG_AEAD_CIPHER
     64 #define EVP_CIPH_FLAG_AEAD_CIPHER	0x200000
     65 #define EVP_CTRL_AEAD_TLS1_AAD		0x16
     66 #define EVP_CTRL_AEAD_SET_MAC_KEY	0x17
     67 #endif
     68 
     69 #if !defined(EVP_CIPH_FLAG_DEFAULT_ASN1)
     70 #define EVP_CIPH_FLAG_DEFAULT_ASN1 0
     71 #endif
     72 
     73 #define TLS1_1_VERSION 0x0302
     74 
     75 typedef struct
     76     {
     77     AES_KEY		ks;
     78     SHA_CTX		head,tail,md;
     79     size_t		payload_length;	/* AAD length in decrypt case */
     80     union {
     81 	unsigned int	tls_ver;
     82     	unsigned char	tls_aad[16];	/* 13 used */
     83     } aux;
     84     } EVP_AES_HMAC_SHA1;
     85 
     86 #define NO_PAYLOAD_LENGTH	((size_t)-1)
     87 
     88 #if	defined(AES_ASM) &&	( \
     89 	defined(__x86_64)	|| defined(__x86_64__)	|| \
     90 	defined(_M_AMD64)	|| defined(_M_X64)	|| \
     91 	defined(__INTEL__)	)
     92 
     93 #if defined(__GNUC__) && __GNUC__>=2 && !defined(PEDANTIC)
     94 # define BSWAP(x) ({ unsigned int r=(x); asm ("bswapl %0":"=r"(r):"0"(r)); r; })
     95 #endif
     96 
     97 extern unsigned int OPENSSL_ia32cap_P[2];
     98 #define AESNI_CAPABLE   (1<<(57-32))
     99 
    100 int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
    101 			      AES_KEY *key);
    102 int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
    103 			      AES_KEY *key);
    104 
    105 void aesni_cbc_encrypt(const unsigned char *in,
    106 			   unsigned char *out,
    107 			   size_t length,
    108 			   const AES_KEY *key,
    109 			   unsigned char *ivec, int enc);
    110 
    111 void aesni_cbc_sha1_enc (const void *inp, void *out, size_t blocks,
    112 		const AES_KEY *key, unsigned char iv[16],
    113 		SHA_CTX *ctx,const void *in0);
    114 
    115 #define data(ctx) ((EVP_AES_HMAC_SHA1 *)(ctx)->cipher_data)
    116 
    117 static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
    118 			const unsigned char *inkey,
    119 			const unsigned char *iv, int enc)
    120 	{
    121 	EVP_AES_HMAC_SHA1 *key = data(ctx);
    122 	int ret;
    123 
    124 	if (enc)
    125 		ret=aesni_set_encrypt_key(inkey,ctx->key_len*8,&key->ks);
    126 	else
    127 		ret=aesni_set_decrypt_key(inkey,ctx->key_len*8,&key->ks);
    128 
    129 	SHA1_Init(&key->head);	/* handy when benchmarking */
    130 	key->tail = key->head;
    131 	key->md   = key->head;
    132 
    133 	key->payload_length = NO_PAYLOAD_LENGTH;
    134 
    135 	return ret<0?0:1;
    136 	}
    137 
    138 #define	STITCHED_CALL
    139 
    140 #if !defined(STITCHED_CALL)
    141 #define	aes_off 0
    142 #endif
    143 
    144 void sha1_block_data_order (void *c,const void *p,size_t len);
    145 
    146 static void sha1_update(SHA_CTX *c,const void *data,size_t len)
    147 {	const unsigned char *ptr = data;
    148 	size_t res;
    149 
    150 	if ((res = c->num)) {
    151 		res = SHA_CBLOCK-res;
    152 		if (len<res) res=len;
    153 		SHA1_Update (c,ptr,res);
    154 		ptr += res;
    155 		len -= res;
    156 	}
    157 
    158 	res = len % SHA_CBLOCK;
    159 	len -= res;
    160 
    161 	if (len) {
    162 		sha1_block_data_order(c,ptr,len/SHA_CBLOCK);
    163 
    164 		ptr += len;
    165 		c->Nh += len>>29;
    166 		c->Nl += len<<=3;
    167 		if (c->Nl<(unsigned int)len) c->Nh++;
    168 	}
    169 
    170 	if (res)
    171 		SHA1_Update(c,ptr,res);
    172 }
    173 
    174 #ifdef SHA1_Update
    175 #undef SHA1_Update
    176 #endif
    177 #define SHA1_Update sha1_update
    178 
    179 static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
    180 		      const unsigned char *in, size_t len)
    181 	{
    182 	EVP_AES_HMAC_SHA1 *key = data(ctx);
    183 	unsigned int l;
    184 	size_t	plen = key->payload_length,
    185 		iv = 0,		/* explicit IV in TLS 1.1 and later */
    186 		sha_off = 0;
    187 #if defined(STITCHED_CALL)
    188 	size_t	aes_off = 0,
    189 		blocks;
    190 
    191 	sha_off = SHA_CBLOCK-key->md.num;
    192 #endif
    193 
    194 	key->payload_length = NO_PAYLOAD_LENGTH;
    195 
    196 	if (len%AES_BLOCK_SIZE) return 0;
    197 
    198 	if (ctx->encrypt) {
    199 		if (plen==NO_PAYLOAD_LENGTH)
    200 			plen = len;
    201 		else if (len!=((plen+SHA_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AES_BLOCK_SIZE))
    202 			return 0;
    203 		else if (key->aux.tls_ver >= TLS1_1_VERSION)
    204 			iv = AES_BLOCK_SIZE;
    205 
    206 #if defined(STITCHED_CALL)
    207 		if (plen>(sha_off+iv) && (blocks=(plen-(sha_off+iv))/SHA_CBLOCK)) {
    208 			SHA1_Update(&key->md,in+iv,sha_off);
    209 
    210 			aesni_cbc_sha1_enc(in,out,blocks,&key->ks,
    211 				ctx->iv,&key->md,in+iv+sha_off);
    212 			blocks *= SHA_CBLOCK;
    213 			aes_off += blocks;
    214 			sha_off += blocks;
    215 			key->md.Nh += blocks>>29;
    216 			key->md.Nl += blocks<<=3;
    217 			if (key->md.Nl<(unsigned int)blocks) key->md.Nh++;
    218 		} else {
    219 			sha_off = 0;
    220 		}
    221 #endif
    222 		sha_off += iv;
    223 		SHA1_Update(&key->md,in+sha_off,plen-sha_off);
    224 
    225 		if (plen!=len)	{	/* "TLS" mode of operation */
    226 			if (in!=out)
    227 				memcpy(out+aes_off,in+aes_off,plen-aes_off);
    228 
    229 			/* calculate HMAC and append it to payload */
    230 			SHA1_Final(out+plen,&key->md);
    231 			key->md = key->tail;
    232 			SHA1_Update(&key->md,out+plen,SHA_DIGEST_LENGTH);
    233 			SHA1_Final(out+plen,&key->md);
    234 
    235 			/* pad the payload|hmac */
    236 			plen += SHA_DIGEST_LENGTH;
    237 			for (l=len-plen-1;plen<len;plen++) out[plen]=l;
    238 			/* encrypt HMAC|padding at once */
    239 			aesni_cbc_encrypt(out+aes_off,out+aes_off,len-aes_off,
    240 					&key->ks,ctx->iv,1);
    241 		} else {
    242 			aesni_cbc_encrypt(in+aes_off,out+aes_off,len-aes_off,
    243 					&key->ks,ctx->iv,1);
    244 		}
    245 	} else {
    246 		union { unsigned int  u[SHA_DIGEST_LENGTH/sizeof(unsigned int)];
    247 			unsigned char c[32+SHA_DIGEST_LENGTH]; } mac, *pmac;
    248 
    249 		/* arrange cache line alignment */
    250 		pmac = (void *)(((size_t)mac.c+31)&((size_t)0-32));
    251 
    252 		/* decrypt HMAC|padding at once */
    253 		aesni_cbc_encrypt(in,out,len,
    254 				&key->ks,ctx->iv,0);
    255 
    256 		if (plen) {	/* "TLS" mode of operation */
    257 			size_t inp_len, mask, j, i;
    258 			unsigned int res, maxpad, pad, bitlen;
    259 			int ret = 1;
    260 			union {	unsigned int  u[SHA_LBLOCK];
    261 				unsigned char c[SHA_CBLOCK]; }
    262 				*data = (void *)key->md.data;
    263 
    264 			if ((key->aux.tls_aad[plen-4]<<8|key->aux.tls_aad[plen-3])
    265 			    >= TLS1_1_VERSION)
    266 				iv = AES_BLOCK_SIZE;
    267 
    268 			if (len<(iv+SHA_DIGEST_LENGTH+1))
    269 				return 0;
    270 
    271 			/* omit explicit iv */
    272 			out += iv;
    273 			len -= iv;
    274 
    275 			/* figure out payload length */
    276 			pad = out[len-1];
    277 			maxpad = len-(SHA_DIGEST_LENGTH+1);
    278 			maxpad |= (255-maxpad)>>(sizeof(maxpad)*8-8);
    279 			maxpad &= 255;
    280 
    281 			inp_len = len - (SHA_DIGEST_LENGTH+pad+1);
    282 			mask = (0-((inp_len-len)>>(sizeof(inp_len)*8-1)));
    283 			inp_len &= mask;
    284 			ret &= (int)mask;
    285 
    286 			key->aux.tls_aad[plen-2] = inp_len>>8;
    287 			key->aux.tls_aad[plen-1] = inp_len;
    288 
    289 			/* calculate HMAC */
    290 			key->md = key->head;
    291 			SHA1_Update(&key->md,key->aux.tls_aad,plen);
    292 
    293 #if 1
    294 			len -= SHA_DIGEST_LENGTH;		/* amend mac */
    295 			if (len>=(256+SHA_CBLOCK)) {
    296 				j = (len-(256+SHA_CBLOCK))&(0-SHA_CBLOCK);
    297 				j += SHA_CBLOCK-key->md.num;
    298 				SHA1_Update(&key->md,out,j);
    299 				out += j;
    300 				len -= j;
    301 				inp_len -= j;
    302 			}
    303 
    304 			/* but pretend as if we hashed padded payload */
    305 			bitlen = key->md.Nl+(inp_len<<3);	/* at most 18 bits */
    306 #ifdef BSWAP
    307 			bitlen = BSWAP(bitlen);
    308 #else
    309 			mac.c[0] = 0;
    310 			mac.c[1] = (unsigned char)(bitlen>>16);
    311 			mac.c[2] = (unsigned char)(bitlen>>8);
    312 			mac.c[3] = (unsigned char)bitlen;
    313 			bitlen = mac.u[0];
    314 #endif
    315 
    316 			pmac->u[0]=0;
    317 			pmac->u[1]=0;
    318 			pmac->u[2]=0;
    319 			pmac->u[3]=0;
    320 			pmac->u[4]=0;
    321 
    322 			for (res=key->md.num, j=0;j<len;j++) {
    323 				size_t c = out[j];
    324 				mask = (j-inp_len)>>(sizeof(j)*8-8);
    325 				c &= mask;
    326 				c |= 0x80&~mask&~((inp_len-j)>>(sizeof(j)*8-8));
    327 				data->c[res++]=(unsigned char)c;
    328 
    329 				if (res!=SHA_CBLOCK) continue;
    330 
    331 				/* j is not incremented yet */
    332 				mask = 0-((inp_len+7-j)>>(sizeof(j)*8-1));
    333 				data->u[SHA_LBLOCK-1] |= bitlen&mask;
    334 				sha1_block_data_order(&key->md,data,1);
    335 				mask &= 0-((j-inp_len-72)>>(sizeof(j)*8-1));
    336 				pmac->u[0] |= key->md.h0 & mask;
    337 				pmac->u[1] |= key->md.h1 & mask;
    338 				pmac->u[2] |= key->md.h2 & mask;
    339 				pmac->u[3] |= key->md.h3 & mask;
    340 				pmac->u[4] |= key->md.h4 & mask;
    341 				res=0;
    342 			}
    343 
    344 			for(i=res;i<SHA_CBLOCK;i++,j++) data->c[i]=0;
    345 
    346 			if (res>SHA_CBLOCK-8) {
    347 				mask = 0-((inp_len+8-j)>>(sizeof(j)*8-1));
    348 				data->u[SHA_LBLOCK-1] |= bitlen&mask;
    349 				sha1_block_data_order(&key->md,data,1);
    350 				mask &= 0-((j-inp_len-73)>>(sizeof(j)*8-1));
    351 				pmac->u[0] |= key->md.h0 & mask;
    352 				pmac->u[1] |= key->md.h1 & mask;
    353 				pmac->u[2] |= key->md.h2 & mask;
    354 				pmac->u[3] |= key->md.h3 & mask;
    355 				pmac->u[4] |= key->md.h4 & mask;
    356 
    357 				memset(data,0,SHA_CBLOCK);
    358 				j+=64;
    359 			}
    360 			data->u[SHA_LBLOCK-1] = bitlen;
    361 			sha1_block_data_order(&key->md,data,1);
    362 			mask = 0-((j-inp_len-73)>>(sizeof(j)*8-1));
    363 			pmac->u[0] |= key->md.h0 & mask;
    364 			pmac->u[1] |= key->md.h1 & mask;
    365 			pmac->u[2] |= key->md.h2 & mask;
    366 			pmac->u[3] |= key->md.h3 & mask;
    367 			pmac->u[4] |= key->md.h4 & mask;
    368 
    369 #ifdef BSWAP
    370 			pmac->u[0] = BSWAP(pmac->u[0]);
    371 			pmac->u[1] = BSWAP(pmac->u[1]);
    372 			pmac->u[2] = BSWAP(pmac->u[2]);
    373 			pmac->u[3] = BSWAP(pmac->u[3]);
    374 			pmac->u[4] = BSWAP(pmac->u[4]);
    375 #else
    376 			for (i=0;i<5;i++) {
    377 				res = pmac->u[i];
    378 				pmac->c[4*i+0]=(unsigned char)(res>>24);
    379 				pmac->c[4*i+1]=(unsigned char)(res>>16);
    380 				pmac->c[4*i+2]=(unsigned char)(res>>8);
    381 				pmac->c[4*i+3]=(unsigned char)res;
    382 			}
    383 #endif
    384 			len += SHA_DIGEST_LENGTH;
    385 #else
    386 			SHA1_Update(&key->md,out,inp_len);
    387 			res = key->md.num;
    388 			SHA1_Final(pmac->c,&key->md);
    389 
    390 			{
    391 			unsigned int inp_blocks, pad_blocks;
    392 
    393 			/* but pretend as if we hashed padded payload */
    394 			inp_blocks = 1+((SHA_CBLOCK-9-res)>>(sizeof(res)*8-1));
    395 			res += (unsigned int)(len-inp_len);
    396 			pad_blocks = res / SHA_CBLOCK;
    397 			res %= SHA_CBLOCK;
    398 			pad_blocks += 1+((SHA_CBLOCK-9-res)>>(sizeof(res)*8-1));
    399 			for (;inp_blocks<pad_blocks;inp_blocks++)
    400 				sha1_block_data_order(&key->md,data,1);
    401 			}
    402 #endif
    403 			key->md = key->tail;
    404 			SHA1_Update(&key->md,pmac->c,SHA_DIGEST_LENGTH);
    405 			SHA1_Final(pmac->c,&key->md);
    406 
    407 			/* verify HMAC */
    408 			out += inp_len;
    409 			len -= inp_len;
    410 #if 1
    411 			{
    412 			unsigned char *p = out+len-1-maxpad-SHA_DIGEST_LENGTH;
    413 			size_t off = out-p;
    414 			unsigned int c, cmask;
    415 
    416 			maxpad += SHA_DIGEST_LENGTH;
    417 			for (res=0,i=0,j=0;j<maxpad;j++) {
    418 				c = p[j];
    419 				cmask = ((int)(j-off-SHA_DIGEST_LENGTH))>>(sizeof(int)*8-1);
    420 				res |= (c^pad)&~cmask;	/* ... and padding */
    421 				cmask &= ((int)(off-1-j))>>(sizeof(int)*8-1);
    422 				res |= (c^pmac->c[i])&cmask;
    423 				i += 1&cmask;
    424 			}
    425 			maxpad -= SHA_DIGEST_LENGTH;
    426 
    427 			res = 0-((0-res)>>(sizeof(res)*8-1));
    428 			ret &= (int)~res;
    429 			}
    430 #else
    431 			for (res=0,i=0;i<SHA_DIGEST_LENGTH;i++)
    432 				res |= out[i]^pmac->c[i];
    433 			res = 0-((0-res)>>(sizeof(res)*8-1));
    434 			ret &= (int)~res;
    435 
    436 			/* verify padding */
    437 			pad = (pad&~res) | (maxpad&res);
    438 			out = out+len-1-pad;
    439 			for (res=0,i=0;i<pad;i++)
    440 				res |= out[i]^pad;
    441 
    442 			res = (0-res)>>(sizeof(res)*8-1);
    443 			ret &= (int)~res;
    444 #endif
    445 			return ret;
    446 		} else {
    447 			SHA1_Update(&key->md,out,len);
    448 		}
    449 	}
    450 
    451 	return 1;
    452 	}
    453 
    454 static int aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr)
    455 	{
    456 	EVP_AES_HMAC_SHA1 *key = data(ctx);
    457 
    458 	switch (type)
    459 		{
    460 	case EVP_CTRL_AEAD_SET_MAC_KEY:
    461 		{
    462 		unsigned int  i;
    463 		unsigned char hmac_key[64];
    464 
    465 		memset (hmac_key,0,sizeof(hmac_key));
    466 
    467 		if (arg > (int)sizeof(hmac_key)) {
    468 			SHA1_Init(&key->head);
    469 			SHA1_Update(&key->head,ptr,arg);
    470 			SHA1_Final(hmac_key,&key->head);
    471 		} else {
    472 			memcpy(hmac_key,ptr,arg);
    473 		}
    474 
    475 		for (i=0;i<sizeof(hmac_key);i++)
    476 			hmac_key[i] ^= 0x36;		/* ipad */
    477 		SHA1_Init(&key->head);
    478 		SHA1_Update(&key->head,hmac_key,sizeof(hmac_key));
    479 
    480 		for (i=0;i<sizeof(hmac_key);i++)
    481 			hmac_key[i] ^= 0x36^0x5c;	/* opad */
    482 		SHA1_Init(&key->tail);
    483 		SHA1_Update(&key->tail,hmac_key,sizeof(hmac_key));
    484 
    485 		OPENSSL_cleanse(hmac_key,sizeof(hmac_key));
    486 
    487 		return 1;
    488 		}
    489 	case EVP_CTRL_AEAD_TLS1_AAD:
    490 		{
    491 		unsigned char *p=ptr;
    492 		unsigned int   len=p[arg-2]<<8|p[arg-1];
    493 
    494 		if (ctx->encrypt)
    495 			{
    496 			key->payload_length = len;
    497 			if ((key->aux.tls_ver=p[arg-4]<<8|p[arg-3]) >= TLS1_1_VERSION) {
    498 				len -= AES_BLOCK_SIZE;
    499 				p[arg-2] = len>>8;
    500 				p[arg-1] = len;
    501 			}
    502 			key->md = key->head;
    503 			SHA1_Update(&key->md,p,arg);
    504 
    505 			return (int)(((len+SHA_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AES_BLOCK_SIZE)
    506 				- len);
    507 			}
    508 		else
    509 			{
    510 			if (arg>13) arg = 13;
    511 			memcpy(key->aux.tls_aad,ptr,arg);
    512 			key->payload_length = arg;
    513 
    514 			return SHA_DIGEST_LENGTH;
    515 			}
    516 		}
    517 	default:
    518 		return -1;
    519 		}
    520 	}
    521 
    522 static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher =
    523 	{
    524 #ifdef NID_aes_128_cbc_hmac_sha1
    525 	NID_aes_128_cbc_hmac_sha1,
    526 #else
    527 	NID_undef,
    528 #endif
    529 	16,16,16,
    530 	EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1|EVP_CIPH_FLAG_AEAD_CIPHER,
    531 	aesni_cbc_hmac_sha1_init_key,
    532 	aesni_cbc_hmac_sha1_cipher,
    533 	NULL,
    534 	sizeof(EVP_AES_HMAC_SHA1),
    535 	EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv,
    536 	EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv,
    537 	aesni_cbc_hmac_sha1_ctrl,
    538 	NULL
    539 	};
    540 
    541 static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher =
    542 	{
    543 #ifdef NID_aes_256_cbc_hmac_sha1
    544 	NID_aes_256_cbc_hmac_sha1,
    545 #else
    546 	NID_undef,
    547 #endif
    548 	16,32,16,
    549 	EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1|EVP_CIPH_FLAG_AEAD_CIPHER,
    550 	aesni_cbc_hmac_sha1_init_key,
    551 	aesni_cbc_hmac_sha1_cipher,
    552 	NULL,
    553 	sizeof(EVP_AES_HMAC_SHA1),
    554 	EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv,
    555 	EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv,
    556 	aesni_cbc_hmac_sha1_ctrl,
    557 	NULL
    558 	};
    559 
    560 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
    561 	{
    562 	return(OPENSSL_ia32cap_P[1]&AESNI_CAPABLE?
    563 		&aesni_128_cbc_hmac_sha1_cipher:NULL);
    564 	}
    565 
    566 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
    567 	{
    568 	return(OPENSSL_ia32cap_P[1]&AESNI_CAPABLE?
    569 		&aesni_256_cbc_hmac_sha1_cipher:NULL);
    570 	}
    571 #else
    572 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
    573 	{
    574 	return NULL;
    575 	}
    576 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
    577 	{
    578 	return NULL;
    579 	}
    580 #endif
    581 #endif
    582