Home | History | Annotate | Download | only in libjpeg
      1 #if !defined(_FX_JPEG_TURBO_)
      2 /*
      3  * jccoefct.c
      4  *
      5  * Copyright (C) 1994-1997, Thomas G. Lane.
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains the coefficient buffer controller for compression.
     10  * This controller is the top level of the JPEG compressor proper.
     11  * The coefficient buffer lies between forward-DCT and entropy encoding steps.
     12  */
     13 
     14 #define JPEG_INTERNALS
     15 #include "jinclude.h"
     16 #include "jpeglib.h"
     17 
     18 
     19 /* We use a full-image coefficient buffer when doing Huffman optimization,
     20  * and also for writing multiple-scan JPEG files.  In all cases, the DCT
     21  * step is run during the first pass, and subsequent passes need only read
     22  * the buffered coefficients.
     23  */
     24 #ifdef ENTROPY_OPT_SUPPORTED
     25 #define FULL_COEF_BUFFER_SUPPORTED
     26 #else
     27 #ifdef C_MULTISCAN_FILES_SUPPORTED
     28 #define FULL_COEF_BUFFER_SUPPORTED
     29 #endif
     30 #endif
     31 
     32 
     33 /* Private buffer controller object */
     34 
     35 typedef struct {
     36   struct jpeg_c_coef_controller pub; /* public fields */
     37 
     38   JDIMENSION iMCU_row_num;	/* iMCU row # within image */
     39   JDIMENSION mcu_ctr;		/* counts MCUs processed in current row */
     40   int MCU_vert_offset;		/* counts MCU rows within iMCU row */
     41   int MCU_rows_per_iMCU_row;	/* number of such rows needed */
     42 
     43   /* For single-pass compression, it's sufficient to buffer just one MCU
     44    * (although this may prove a bit slow in practice).  We allocate a
     45    * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
     46    * MCU constructed and sent.  (On 80x86, the workspace is FAR even though
     47    * it's not really very big; this is to keep the module interfaces unchanged
     48    * when a large coefficient buffer is necessary.)
     49    * In multi-pass modes, this array points to the current MCU's blocks
     50    * within the virtual arrays.
     51    */
     52   JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
     53 
     54   /* In multi-pass modes, we need a virtual block array for each component. */
     55   jvirt_barray_ptr whole_image[MAX_COMPONENTS];
     56 } my_coef_controller;
     57 
     58 typedef my_coef_controller * my_coef_ptr;
     59 
     60 
     61 /* Forward declarations */
     62 METHODDEF(boolean) compress_data
     63     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
     64 #ifdef FULL_COEF_BUFFER_SUPPORTED
     65 METHODDEF(boolean) compress_first_pass
     66     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
     67 METHODDEF(boolean) compress_output
     68     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
     69 #endif
     70 
     71 
     72 LOCAL(void)
     73 start_iMCU_row (j_compress_ptr cinfo)
     74 /* Reset within-iMCU-row counters for a new row */
     75 {
     76   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
     77 
     78   /* In an interleaved scan, an MCU row is the same as an iMCU row.
     79    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
     80    * But at the bottom of the image, process only what's left.
     81    */
     82   if (cinfo->comps_in_scan > 1) {
     83     coef->MCU_rows_per_iMCU_row = 1;
     84   } else {
     85     if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
     86       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
     87     else
     88       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
     89   }
     90 
     91   coef->mcu_ctr = 0;
     92   coef->MCU_vert_offset = 0;
     93 }
     94 
     95 
     96 /*
     97  * Initialize for a processing pass.
     98  */
     99 
    100 METHODDEF(void)
    101 start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
    102 {
    103   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    104 
    105   coef->iMCU_row_num = 0;
    106   start_iMCU_row(cinfo);
    107 
    108   switch (pass_mode) {
    109   case JBUF_PASS_THRU:
    110     if (coef->whole_image[0] != NULL)
    111       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    112     coef->pub.compress_data = compress_data;
    113     break;
    114 #ifdef FULL_COEF_BUFFER_SUPPORTED
    115   case JBUF_SAVE_AND_PASS:
    116     if (coef->whole_image[0] == NULL)
    117       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    118     coef->pub.compress_data = compress_first_pass;
    119     break;
    120   case JBUF_CRANK_DEST:
    121     if (coef->whole_image[0] == NULL)
    122       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    123     coef->pub.compress_data = compress_output;
    124     break;
    125 #endif
    126   default:
    127     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    128     break;
    129   }
    130 }
    131 
    132 
    133 /*
    134  * Process some data in the single-pass case.
    135  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
    136  * per call, ie, v_samp_factor block rows for each component in the image.
    137  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
    138  *
    139  * NB: input_buf contains a plane for each component in image,
    140  * which we index according to the component's SOF position.
    141  */
    142 
    143 METHODDEF(boolean)
    144 compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
    145 {
    146   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    147   JDIMENSION MCU_col_num;	/* index of current MCU within row */
    148   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
    149   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    150   int blkn, bi, ci, yindex, yoffset, blockcnt;
    151   JDIMENSION ypos, xpos;
    152   jpeg_component_info *compptr;
    153 
    154   /* Loop to write as much as one whole iMCU row */
    155   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    156        yoffset++) {
    157     for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
    158 	 MCU_col_num++) {
    159       /* Determine where data comes from in input_buf and do the DCT thing.
    160        * Each call on forward_DCT processes a horizontal row of DCT blocks
    161        * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
    162        * sequentially.  Dummy blocks at the right or bottom edge are filled in
    163        * specially.  The data in them does not matter for image reconstruction,
    164        * so we fill them with values that will encode to the smallest amount of
    165        * data, viz: all zeroes in the AC entries, DC entries equal to previous
    166        * block's DC value.  (Thanks to Thomas Kinsman for this idea.)
    167        */
    168       blkn = 0;
    169       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    170 	compptr = cinfo->cur_comp_info[ci];
    171 	blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
    172 						: compptr->last_col_width;
    173 	xpos = MCU_col_num * compptr->MCU_sample_width;
    174 	ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
    175 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    176 	  if (coef->iMCU_row_num < last_iMCU_row ||
    177 	      yoffset+yindex < compptr->last_row_height) {
    178 	    (*cinfo->fdct->forward_DCT) (cinfo, compptr,
    179 					 input_buf[compptr->component_index],
    180 					 coef->MCU_buffer[blkn],
    181 					 ypos, xpos, (JDIMENSION) blockcnt);
    182 	    if (blockcnt < compptr->MCU_width) {
    183 	      /* Create some dummy blocks at the right edge of the image. */
    184 	      jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
    185 			(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
    186 	      for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
    187 		coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
    188 	      }
    189 	    }
    190 	  } else {
    191 	    /* Create a row of dummy blocks at the bottom of the image. */
    192 	    jzero_far((void FAR *) coef->MCU_buffer[blkn],
    193 		      compptr->MCU_width * SIZEOF(JBLOCK));
    194 	    for (bi = 0; bi < compptr->MCU_width; bi++) {
    195 	      coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
    196 	    }
    197 	  }
    198 	  blkn += compptr->MCU_width;
    199 	  ypos += DCTSIZE;
    200 	}
    201       }
    202       /* Try to write the MCU.  In event of a suspension failure, we will
    203        * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
    204        */
    205       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
    206 	/* Suspension forced; update state counters and exit */
    207 	coef->MCU_vert_offset = yoffset;
    208 	coef->mcu_ctr = MCU_col_num;
    209 	return FALSE;
    210       }
    211     }
    212     /* Completed an MCU row, but perhaps not an iMCU row */
    213     coef->mcu_ctr = 0;
    214   }
    215   /* Completed the iMCU row, advance counters for next one */
    216   coef->iMCU_row_num++;
    217   start_iMCU_row(cinfo);
    218   return TRUE;
    219 }
    220 
    221 
    222 #ifdef FULL_COEF_BUFFER_SUPPORTED
    223 
    224 /*
    225  * Process some data in the first pass of a multi-pass case.
    226  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
    227  * per call, ie, v_samp_factor block rows for each component in the image.
    228  * This amount of data is read from the source buffer, DCT'd and quantized,
    229  * and saved into the virtual arrays.  We also generate suitable dummy blocks
    230  * as needed at the right and lower edges.  (The dummy blocks are constructed
    231  * in the virtual arrays, which have been padded appropriately.)  This makes
    232  * it possible for subsequent passes not to worry about real vs. dummy blocks.
    233  *
    234  * We must also emit the data to the entropy encoder.  This is conveniently
    235  * done by calling compress_output() after we've loaded the current strip
    236  * of the virtual arrays.
    237  *
    238  * NB: input_buf contains a plane for each component in image.  All
    239  * components are DCT'd and loaded into the virtual arrays in this pass.
    240  * However, it may be that only a subset of the components are emitted to
    241  * the entropy encoder during this first pass; be careful about looking
    242  * at the scan-dependent variables (MCU dimensions, etc).
    243  */
    244 
    245 METHODDEF(boolean)
    246 compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
    247 {
    248   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    249   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    250   JDIMENSION blocks_across, MCUs_across, MCUindex;
    251   int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
    252   JCOEF lastDC;
    253   jpeg_component_info *compptr;
    254   JBLOCKARRAY buffer;
    255   JBLOCKROW thisblockrow, lastblockrow;
    256 
    257   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    258        ci++, compptr++) {
    259     /* Align the virtual buffer for this component. */
    260     buffer = (*cinfo->mem->access_virt_barray)
    261       ((j_common_ptr) cinfo, coef->whole_image[ci],
    262        coef->iMCU_row_num * compptr->v_samp_factor,
    263        (JDIMENSION) compptr->v_samp_factor, TRUE);
    264     /* Count non-dummy DCT block rows in this iMCU row. */
    265     if (coef->iMCU_row_num < last_iMCU_row)
    266       block_rows = compptr->v_samp_factor;
    267     else {
    268       /* NB: can't use last_row_height here, since may not be set! */
    269       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
    270       if (block_rows == 0) block_rows = compptr->v_samp_factor;
    271     }
    272     blocks_across = compptr->width_in_blocks;
    273     h_samp_factor = compptr->h_samp_factor;
    274     /* Count number of dummy blocks to be added at the right margin. */
    275     ndummy = (int) (blocks_across % h_samp_factor);
    276     if (ndummy > 0)
    277       ndummy = h_samp_factor - ndummy;
    278     /* Perform DCT for all non-dummy blocks in this iMCU row.  Each call
    279      * on forward_DCT processes a complete horizontal row of DCT blocks.
    280      */
    281     for (block_row = 0; block_row < block_rows; block_row++) {
    282       thisblockrow = buffer[block_row];
    283       (*cinfo->fdct->forward_DCT) (cinfo, compptr,
    284 				   input_buf[ci], thisblockrow,
    285 				   (JDIMENSION) (block_row * DCTSIZE),
    286 				   (JDIMENSION) 0, blocks_across);
    287       if (ndummy > 0) {
    288 	/* Create dummy blocks at the right edge of the image. */
    289 	thisblockrow += blocks_across; /* => first dummy block */
    290 	jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
    291 	lastDC = thisblockrow[-1][0];
    292 	for (bi = 0; bi < ndummy; bi++) {
    293 	  thisblockrow[bi][0] = lastDC;
    294 	}
    295       }
    296     }
    297     /* If at end of image, create dummy block rows as needed.
    298      * The tricky part here is that within each MCU, we want the DC values
    299      * of the dummy blocks to match the last real block's DC value.
    300      * This squeezes a few more bytes out of the resulting file...
    301      */
    302     if (coef->iMCU_row_num == last_iMCU_row) {
    303       blocks_across += ndummy;	/* include lower right corner */
    304       MCUs_across = blocks_across / h_samp_factor;
    305       for (block_row = block_rows; block_row < compptr->v_samp_factor;
    306 	   block_row++) {
    307 	thisblockrow = buffer[block_row];
    308 	lastblockrow = buffer[block_row-1];
    309 	jzero_far((void FAR *) thisblockrow,
    310 		  (size_t) (blocks_across * SIZEOF(JBLOCK)));
    311 	for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
    312 	  lastDC = lastblockrow[h_samp_factor-1][0];
    313 	  for (bi = 0; bi < h_samp_factor; bi++) {
    314 	    thisblockrow[bi][0] = lastDC;
    315 	  }
    316 	  thisblockrow += h_samp_factor; /* advance to next MCU in row */
    317 	  lastblockrow += h_samp_factor;
    318 	}
    319       }
    320     }
    321   }
    322   /* NB: compress_output will increment iMCU_row_num if successful.
    323    * A suspension return will result in redoing all the work above next time.
    324    */
    325 
    326   /* Emit data to the entropy encoder, sharing code with subsequent passes */
    327   return compress_output(cinfo, input_buf);
    328 }
    329 
    330 
    331 /*
    332  * Process some data in subsequent passes of a multi-pass case.
    333  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
    334  * per call, ie, v_samp_factor block rows for each component in the scan.
    335  * The data is obtained from the virtual arrays and fed to the entropy coder.
    336  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
    337  *
    338  * NB: input_buf is ignored; it is likely to be a NULL pointer.
    339  */
    340 
    341 METHODDEF(boolean)
    342 compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
    343 {
    344   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    345   JDIMENSION MCU_col_num;	/* index of current MCU within row */
    346   int blkn, ci, xindex, yindex, yoffset;
    347   JDIMENSION start_col;
    348   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
    349   JBLOCKROW buffer_ptr;
    350   jpeg_component_info *compptr;
    351 
    352   /* Align the virtual buffers for the components used in this scan.
    353    * NB: during first pass, this is safe only because the buffers will
    354    * already be aligned properly, so jmemmgr.c won't need to do any I/O.
    355    */
    356   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    357     compptr = cinfo->cur_comp_info[ci];
    358     buffer[ci] = (*cinfo->mem->access_virt_barray)
    359       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
    360        coef->iMCU_row_num * compptr->v_samp_factor,
    361        (JDIMENSION) compptr->v_samp_factor, FALSE);
    362   }
    363 
    364   /* Loop to process one whole iMCU row */
    365   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    366        yoffset++) {
    367     for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
    368 	 MCU_col_num++) {
    369       /* Construct list of pointers to DCT blocks belonging to this MCU */
    370       blkn = 0;			/* index of current DCT block within MCU */
    371       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    372 	compptr = cinfo->cur_comp_info[ci];
    373 	start_col = MCU_col_num * compptr->MCU_width;
    374 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    375 	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
    376 	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
    377 	    coef->MCU_buffer[blkn++] = buffer_ptr++;
    378 	  }
    379 	}
    380       }
    381       /* Try to write the MCU. */
    382       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
    383 	/* Suspension forced; update state counters and exit */
    384 	coef->MCU_vert_offset = yoffset;
    385 	coef->mcu_ctr = MCU_col_num;
    386 	return FALSE;
    387       }
    388     }
    389     /* Completed an MCU row, but perhaps not an iMCU row */
    390     coef->mcu_ctr = 0;
    391   }
    392   /* Completed the iMCU row, advance counters for next one */
    393   coef->iMCU_row_num++;
    394   start_iMCU_row(cinfo);
    395   return TRUE;
    396 }
    397 
    398 #endif /* FULL_COEF_BUFFER_SUPPORTED */
    399 
    400 
    401 /*
    402  * Initialize coefficient buffer controller.
    403  */
    404 
    405 GLOBAL(void)
    406 jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
    407 {
    408   my_coef_ptr coef;
    409 
    410   coef = (my_coef_ptr)
    411     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    412 				SIZEOF(my_coef_controller));
    413   cinfo->coef = (struct jpeg_c_coef_controller *) coef;
    414   coef->pub.start_pass = start_pass_coef;
    415 
    416   /* Create the coefficient buffer. */
    417   if (need_full_buffer) {
    418 #ifdef FULL_COEF_BUFFER_SUPPORTED
    419     /* Allocate a full-image virtual array for each component, */
    420     /* padded to a multiple of samp_factor DCT blocks in each direction. */
    421     int ci;
    422     jpeg_component_info *compptr;
    423 
    424     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    425 	 ci++, compptr++) {
    426       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
    427 	((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
    428 	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
    429 				(long) compptr->h_samp_factor),
    430 	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
    431 				(long) compptr->v_samp_factor),
    432 	 (JDIMENSION) compptr->v_samp_factor);
    433     }
    434 #else
    435     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    436 #endif
    437   } else {
    438     /* We only need a single-MCU buffer. */
    439     JBLOCKROW buffer;
    440     int i;
    441 
    442     buffer = (JBLOCKROW)
    443       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    444 				  C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
    445     for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
    446       coef->MCU_buffer[i] = buffer + i;
    447     }
    448     coef->whole_image[0] = NULL; /* flag for no virtual arrays */
    449   }
    450 }
    451 
    452 #endif //_FX_JPEG_TURBO_
    453