Home | History | Annotate | Download | only in libjpeg
      1 #if !defined(_FX_JPEG_TURBO_)
      2 /*
      3  * jchuff.c
      4  *
      5  * Copyright (C) 1991-1997, Thomas G. Lane.
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains Huffman entropy encoding routines.
     10  *
     11  * Much of the complexity here has to do with supporting output suspension.
     12  * If the data destination module demands suspension, we want to be able to
     13  * back up to the start of the current MCU.  To do this, we copy state
     14  * variables into local working storage, and update them back to the
     15  * permanent JPEG objects only upon successful completion of an MCU.
     16  */
     17 
     18 #define JPEG_INTERNALS
     19 #include "jinclude.h"
     20 #include "jpeglib.h"
     21 #include "jchuff.h"		/* Declarations shared with jcphuff.c */
     22 
     23 #ifdef _FX_MANAGED_CODE_
     24 #define savable_state	savable_state_c
     25 #endif
     26 
     27 /* Expanded entropy encoder object for Huffman encoding.
     28  *
     29  * The savable_state subrecord contains fields that change within an MCU,
     30  * but must not be updated permanently until we complete the MCU.
     31  */
     32 
     33 typedef struct {
     34   INT32 put_buffer;		/* current bit-accumulation buffer */
     35   int put_bits;			/* # of bits now in it */
     36   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     37 } savable_state;
     38 
     39 /* This macro is to work around compilers with missing or broken
     40  * structure assignment.  You'll need to fix this code if you have
     41  * such a compiler and you change MAX_COMPS_IN_SCAN.
     42  */
     43 
     44 #ifndef NO_STRUCT_ASSIGN
     45 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
     46 #else
     47 #if MAX_COMPS_IN_SCAN == 4
     48 #define ASSIGN_STATE(dest,src)  \
     49 	((dest).put_buffer = (src).put_buffer, \
     50 	 (dest).put_bits = (src).put_bits, \
     51 	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
     52 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
     53 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
     54 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
     55 #endif
     56 #endif
     57 
     58 
     59 typedef struct {
     60   struct jpeg_entropy_encoder pub; /* public fields */
     61 
     62   savable_state saved;		/* Bit buffer & DC state at start of MCU */
     63 
     64   /* These fields are NOT loaded into local working state. */
     65   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
     66   int next_restart_num;		/* next restart number to write (0-7) */
     67 
     68   /* Pointers to derived tables (these workspaces have image lifespan) */
     69   c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
     70   c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
     71 
     72 #ifdef ENTROPY_OPT_SUPPORTED	/* Statistics tables for optimization */
     73   long * dc_count_ptrs[NUM_HUFF_TBLS];
     74   long * ac_count_ptrs[NUM_HUFF_TBLS];
     75 #endif
     76 } huff_entropy_encoder;
     77 
     78 typedef huff_entropy_encoder * huff_entropy_ptr;
     79 
     80 /* Working state while writing an MCU.
     81  * This struct contains all the fields that are needed by subroutines.
     82  */
     83 
     84 typedef struct {
     85   JOCTET * next_output_byte;	/* => next byte to write in buffer */
     86   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
     87   savable_state cur;		/* Current bit buffer & DC state */
     88   j_compress_ptr cinfo;		/* dump_buffer needs access to this */
     89 } working_state;
     90 
     91 
     92 /* Forward declarations */
     93 METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
     94 					JBLOCKROW *MCU_data));
     95 METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
     96 #ifdef ENTROPY_OPT_SUPPORTED
     97 METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
     98 					  JBLOCKROW *MCU_data));
     99 METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
    100 #endif
    101 
    102 
    103 /*
    104  * Initialize for a Huffman-compressed scan.
    105  * If gather_statistics is TRUE, we do not output anything during the scan,
    106  * just count the Huffman symbols used and generate Huffman code tables.
    107  */
    108 
    109 METHODDEF(void)
    110 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
    111 {
    112   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    113   int ci, dctbl, actbl;
    114   jpeg_component_info * compptr;
    115 
    116   if (gather_statistics) {
    117 #ifdef ENTROPY_OPT_SUPPORTED
    118     entropy->pub.encode_mcu = encode_mcu_gather;
    119     entropy->pub.finish_pass = finish_pass_gather;
    120 #else
    121     ERREXIT(cinfo, JERR_NOT_COMPILED);
    122 #endif
    123   } else {
    124     entropy->pub.encode_mcu = encode_mcu_huff;
    125     entropy->pub.finish_pass = finish_pass_huff;
    126   }
    127 
    128   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    129     compptr = cinfo->cur_comp_info[ci];
    130     dctbl = compptr->dc_tbl_no;
    131     actbl = compptr->ac_tbl_no;
    132     if (gather_statistics) {
    133 #ifdef ENTROPY_OPT_SUPPORTED
    134       /* Check for invalid table indexes */
    135       /* (make_c_derived_tbl does this in the other path) */
    136       if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
    137 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
    138       if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
    139 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
    140       /* Allocate and zero the statistics tables */
    141       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
    142       if (entropy->dc_count_ptrs[dctbl] == NULL)
    143 	entropy->dc_count_ptrs[dctbl] = (long *)
    144 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    145 				      257 * SIZEOF(long));
    146       MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
    147       if (entropy->ac_count_ptrs[actbl] == NULL)
    148 	entropy->ac_count_ptrs[actbl] = (long *)
    149 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    150 				      257 * SIZEOF(long));
    151       MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
    152 #endif
    153     } else {
    154       /* Compute derived values for Huffman tables */
    155       /* We may do this more than once for a table, but it's not expensive */
    156       jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
    157 			      & entropy->dc_derived_tbls[dctbl]);
    158       jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
    159 			      & entropy->ac_derived_tbls[actbl]);
    160     }
    161     /* Initialize DC predictions to 0 */
    162     entropy->saved.last_dc_val[ci] = 0;
    163   }
    164 
    165   /* Initialize bit buffer to empty */
    166   entropy->saved.put_buffer = 0;
    167   entropy->saved.put_bits = 0;
    168 
    169   /* Initialize restart stuff */
    170   entropy->restarts_to_go = cinfo->restart_interval;
    171   entropy->next_restart_num = 0;
    172 }
    173 
    174 
    175 /*
    176  * Compute the derived values for a Huffman table.
    177  * This routine also performs some validation checks on the table.
    178  *
    179  * Note this is also used by jcphuff.c.
    180  */
    181 
    182 GLOBAL(void)
    183 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
    184 			 c_derived_tbl ** pdtbl)
    185 {
    186   JHUFF_TBL *htbl;
    187   c_derived_tbl *dtbl;
    188   int p, i, l, lastp, _si, maxsymbol;
    189   char huffsize[257];
    190   unsigned int huffcode[257];
    191   unsigned int code;
    192 
    193   /* Note that huffsize[] and huffcode[] are filled in code-length order,
    194    * paralleling the order of the symbols themselves in htbl->huffval[].
    195    */
    196 
    197   /* Find the input Huffman table */
    198   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
    199     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    200   htbl =
    201     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
    202   if (htbl == NULL)
    203     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    204 
    205   /* Allocate a workspace if we haven't already done so. */
    206   if (*pdtbl == NULL)
    207     *pdtbl = (c_derived_tbl *)
    208       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    209 				  SIZEOF(c_derived_tbl));
    210   dtbl = *pdtbl;
    211 
    212   /* Figure C.1: make table of Huffman code length for each symbol */
    213 
    214   p = 0;
    215   for (l = 1; l <= 16; l++) {
    216     i = (int) htbl->bits[l];
    217     if (i < 0 || p + i > 256)	/* protect against table overrun */
    218       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    219     while (i--)
    220       huffsize[p++] = (char) l;
    221   }
    222   huffsize[p] = 0;
    223   lastp = p;
    224 
    225   /* Figure C.2: generate the codes themselves */
    226   /* We also validate that the counts represent a legal Huffman code tree. */
    227 
    228   code = 0;
    229   _si = huffsize[0];
    230   p = 0;
    231   while (huffsize[p]) {
    232     while (((int) huffsize[p]) == _si) {
    233       huffcode[p++] = code;
    234       code++;
    235     }
    236     /* code is now 1 more than the last code used for codelength si; but
    237      * it must still fit in si bits, since no code is allowed to be all ones.
    238      */
    239     if (((INT32) code) >= (((INT32) 1) << _si))
    240       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    241     code <<= 1;
    242     _si++;
    243   }
    244 
    245   /* Figure C.3: generate encoding tables */
    246   /* These are code and size indexed by symbol value */
    247 
    248   /* Set all codeless symbols to have code length 0;
    249    * this lets us detect duplicate VAL entries here, and later
    250    * allows emit_bits to detect any attempt to emit such symbols.
    251    */
    252   MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
    253 
    254   /* This is also a convenient place to check for out-of-range
    255    * and duplicated VAL entries.  We allow 0..255 for AC symbols
    256    * but only 0..15 for DC.  (We could constrain them further
    257    * based on data depth and mode, but this seems enough.)
    258    */
    259   maxsymbol = isDC ? 15 : 255;
    260 
    261   for (p = 0; p < lastp; p++) {
    262     i = htbl->huffval[p];
    263     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
    264       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    265     dtbl->ehufco[i] = huffcode[p];
    266     dtbl->ehufsi[i] = huffsize[p];
    267   }
    268 }
    269 
    270 
    271 /* Outputting bytes to the file */
    272 
    273 /* Emit a byte, taking 'action' if must suspend. */
    274 #define emit_byte(state,val,action)  \
    275 	{ *(state)->next_output_byte++ = (JOCTET) (val);  \
    276 	  if (--(state)->free_in_buffer == 0)  \
    277 	    if (! dump_buffer(state))  \
    278 	      { action; } }
    279 
    280 
    281 LOCAL(boolean)
    282 dump_buffer (working_state * state)
    283 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
    284 {
    285   struct jpeg_destination_mgr * dest = state->cinfo->dest;
    286 
    287   if (! (*dest->empty_output_buffer) (state->cinfo))
    288     return FALSE;
    289   /* After a successful buffer dump, must reset buffer pointers */
    290   state->next_output_byte = dest->next_output_byte;
    291   state->free_in_buffer = dest->free_in_buffer;
    292   return TRUE;
    293 }
    294 
    295 
    296 /* Outputting bits to the file */
    297 
    298 /* Only the right 24 bits of put_buffer are used; the valid bits are
    299  * left-justified in this part.  At most 16 bits can be passed to emit_bits
    300  * in one call, and we never retain more than 7 bits in put_buffer
    301  * between calls, so 24 bits are sufficient.
    302  */
    303 
    304 INLINE
    305 LOCAL(boolean)
    306 emit_bits (working_state * state, unsigned int code, int size)
    307 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
    308 {
    309   /* This routine is heavily used, so it's worth coding tightly. */
    310   register INT32 put_buffer = (INT32) code;
    311   register int put_bits = state->cur.put_bits;
    312 
    313   /* if size is 0, caller used an invalid Huffman table entry */
    314   if (size == 0)
    315     ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
    316 
    317   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
    318 
    319   put_bits += size;		/* new number of bits in buffer */
    320 
    321   put_buffer <<= 24 - put_bits; /* align incoming bits */
    322 
    323   put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
    324 
    325   while (put_bits >= 8) {
    326     int c = (int) ((put_buffer >> 16) & 0xFF);
    327 
    328     emit_byte(state, c, return FALSE);
    329     if (c == 0xFF) {		/* need to stuff a zero byte? */
    330       emit_byte(state, 0, return FALSE);
    331     }
    332     put_buffer <<= 8;
    333     put_bits -= 8;
    334   }
    335 
    336   state->cur.put_buffer = put_buffer; /* update state variables */
    337   state->cur.put_bits = put_bits;
    338 
    339   return TRUE;
    340 }
    341 
    342 
    343 LOCAL(boolean)
    344 flush_bits (working_state * state)
    345 {
    346   if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
    347     return FALSE;
    348   state->cur.put_buffer = 0;	/* and reset bit-buffer to empty */
    349   state->cur.put_bits = 0;
    350   return TRUE;
    351 }
    352 
    353 
    354 /* Encode a single block's worth of coefficients */
    355 
    356 LOCAL(boolean)
    357 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
    358 		  c_derived_tbl *dctbl, c_derived_tbl *actbl)
    359 {
    360   register int temp, temp2;
    361   register int nbits;
    362   register int k, r, i;
    363 
    364   /* Encode the DC coefficient difference per section F.1.2.1 */
    365 
    366   temp = temp2 = block[0] - last_dc_val;
    367 
    368   if (temp < 0) {
    369     temp = -temp;		/* temp is abs value of input */
    370     /* For a negative input, want temp2 = bitwise complement of abs(input) */
    371     /* This code assumes we are on a two's complement machine */
    372     temp2--;
    373   }
    374 
    375   /* Find the number of bits needed for the magnitude of the coefficient */
    376   nbits = 0;
    377   while (temp) {
    378     nbits++;
    379     temp >>= 1;
    380   }
    381   /* Check for out-of-range coefficient values.
    382    * Since we're encoding a difference, the range limit is twice as much.
    383    */
    384   if (nbits > MAX_COEF_BITS+1)
    385     ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
    386 
    387   /* Emit the Huffman-coded symbol for the number of bits */
    388   if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
    389     return FALSE;
    390 
    391   /* Emit that number of bits of the value, if positive, */
    392   /* or the complement of its magnitude, if negative. */
    393   if (nbits)			/* emit_bits rejects calls with size 0 */
    394     if (! emit_bits(state, (unsigned int) temp2, nbits))
    395       return FALSE;
    396 
    397   /* Encode the AC coefficients per section F.1.2.2 */
    398 
    399   r = 0;			/* r = run length of zeros */
    400 
    401   for (k = 1; k < DCTSIZE2; k++) {
    402     if ((temp = block[jpeg_natural_order[k]]) == 0) {
    403       r++;
    404     } else {
    405       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
    406       while (r > 15) {
    407 	if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
    408 	  return FALSE;
    409 	r -= 16;
    410       }
    411 
    412       temp2 = temp;
    413       if (temp < 0) {
    414 	temp = -temp;		/* temp is abs value of input */
    415 	/* This code assumes we are on a two's complement machine */
    416 	temp2--;
    417       }
    418 
    419       /* Find the number of bits needed for the magnitude of the coefficient */
    420       nbits = 1;		/* there must be at least one 1 bit */
    421       while ((temp >>= 1))
    422 	nbits++;
    423       /* Check for out-of-range coefficient values */
    424       if (nbits > MAX_COEF_BITS)
    425 	ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
    426 
    427       /* Emit Huffman symbol for run length / number of bits */
    428       i = (r << 4) + nbits;
    429       if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
    430 	return FALSE;
    431 
    432       /* Emit that number of bits of the value, if positive, */
    433       /* or the complement of its magnitude, if negative. */
    434       if (! emit_bits(state, (unsigned int) temp2, nbits))
    435 	return FALSE;
    436 
    437       r = 0;
    438     }
    439   }
    440 
    441   /* If the last coef(s) were zero, emit an end-of-block code */
    442   if (r > 0)
    443     if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
    444       return FALSE;
    445 
    446   return TRUE;
    447 }
    448 
    449 
    450 /*
    451  * Emit a restart marker & resynchronize predictions.
    452  */
    453 
    454 LOCAL(boolean)
    455 emit_restart (working_state * state, int restart_num)
    456 {
    457   int ci;
    458 
    459   if (! flush_bits(state))
    460     return FALSE;
    461 
    462   emit_byte(state, 0xFF, return FALSE);
    463   emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
    464 
    465   /* Re-initialize DC predictions to 0 */
    466   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
    467     state->cur.last_dc_val[ci] = 0;
    468 
    469   /* The restart counter is not updated until we successfully write the MCU. */
    470 
    471   return TRUE;
    472 }
    473 
    474 
    475 /*
    476  * Encode and output one MCU's worth of Huffman-compressed coefficients.
    477  */
    478 
    479 METHODDEF(boolean)
    480 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    481 {
    482   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    483   working_state state;
    484   int blkn, ci;
    485   jpeg_component_info * compptr;
    486 
    487   /* Load up working state */
    488   state.next_output_byte = cinfo->dest->next_output_byte;
    489   state.free_in_buffer = cinfo->dest->free_in_buffer;
    490   ASSIGN_STATE(state.cur, entropy->saved);
    491   state.cinfo = cinfo;
    492 
    493   /* Emit restart marker if needed */
    494   if (cinfo->restart_interval) {
    495     if (entropy->restarts_to_go == 0)
    496       if (! emit_restart(&state, entropy->next_restart_num))
    497 	return FALSE;
    498   }
    499 
    500   /* Encode the MCU data blocks */
    501   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    502     ci = cinfo->MCU_membership[blkn];
    503     compptr = cinfo->cur_comp_info[ci];
    504     if (! encode_one_block(&state,
    505 			   MCU_data[blkn][0], state.cur.last_dc_val[ci],
    506 			   entropy->dc_derived_tbls[compptr->dc_tbl_no],
    507 			   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
    508       return FALSE;
    509     /* Update last_dc_val */
    510     state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
    511   }
    512 
    513   /* Completed MCU, so update state */
    514   cinfo->dest->next_output_byte = state.next_output_byte;
    515   cinfo->dest->free_in_buffer = state.free_in_buffer;
    516   ASSIGN_STATE(entropy->saved, state.cur);
    517 
    518   /* Update restart-interval state too */
    519   if (cinfo->restart_interval) {
    520     if (entropy->restarts_to_go == 0) {
    521       entropy->restarts_to_go = cinfo->restart_interval;
    522       entropy->next_restart_num++;
    523       entropy->next_restart_num &= 7;
    524     }
    525     entropy->restarts_to_go--;
    526   }
    527 
    528   return TRUE;
    529 }
    530 
    531 
    532 /*
    533  * Finish up at the end of a Huffman-compressed scan.
    534  */
    535 
    536 METHODDEF(void)
    537 finish_pass_huff (j_compress_ptr cinfo)
    538 {
    539   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    540   working_state state;
    541 
    542   /* Load up working state ... flush_bits needs it */
    543   state.next_output_byte = cinfo->dest->next_output_byte;
    544   state.free_in_buffer = cinfo->dest->free_in_buffer;
    545   ASSIGN_STATE(state.cur, entropy->saved);
    546   state.cinfo = cinfo;
    547 
    548   /* Flush out the last data */
    549   if (! flush_bits(&state))
    550     ERREXIT(cinfo, JERR_CANT_SUSPEND);
    551 
    552   /* Update state */
    553   cinfo->dest->next_output_byte = state.next_output_byte;
    554   cinfo->dest->free_in_buffer = state.free_in_buffer;
    555   ASSIGN_STATE(entropy->saved, state.cur);
    556 }
    557 
    558 
    559 /*
    560  * Huffman coding optimization.
    561  *
    562  * We first scan the supplied data and count the number of uses of each symbol
    563  * that is to be Huffman-coded. (This process MUST agree with the code above.)
    564  * Then we build a Huffman coding tree for the observed counts.
    565  * Symbols which are not needed at all for the particular image are not
    566  * assigned any code, which saves space in the DHT marker as well as in
    567  * the compressed data.
    568  */
    569 
    570 #ifdef ENTROPY_OPT_SUPPORTED
    571 
    572 
    573 /* Process a single block's worth of coefficients */
    574 
    575 LOCAL(void)
    576 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
    577 		 long dc_counts[], long ac_counts[])
    578 {
    579   register int temp;
    580   register int nbits;
    581   register int k, r;
    582 
    583   /* Encode the DC coefficient difference per section F.1.2.1 */
    584 
    585   temp = block[0] - last_dc_val;
    586   if (temp < 0)
    587     temp = -temp;
    588 
    589   /* Find the number of bits needed for the magnitude of the coefficient */
    590   nbits = 0;
    591   while (temp) {
    592     nbits++;
    593     temp >>= 1;
    594   }
    595   /* Check for out-of-range coefficient values.
    596    * Since we're encoding a difference, the range limit is twice as much.
    597    */
    598   if (nbits > MAX_COEF_BITS+1)
    599     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    600 
    601   /* Count the Huffman symbol for the number of bits */
    602   dc_counts[nbits]++;
    603 
    604   /* Encode the AC coefficients per section F.1.2.2 */
    605 
    606   r = 0;			/* r = run length of zeros */
    607 
    608   for (k = 1; k < DCTSIZE2; k++) {
    609     if ((temp = block[jpeg_natural_order[k]]) == 0) {
    610       r++;
    611     } else {
    612       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
    613       while (r > 15) {
    614 	ac_counts[0xF0]++;
    615 	r -= 16;
    616       }
    617 
    618       /* Find the number of bits needed for the magnitude of the coefficient */
    619       if (temp < 0)
    620 	temp = -temp;
    621 
    622       /* Find the number of bits needed for the magnitude of the coefficient */
    623       nbits = 1;		/* there must be at least one 1 bit */
    624       while ((temp >>= 1))
    625 	nbits++;
    626       /* Check for out-of-range coefficient values */
    627       if (nbits > MAX_COEF_BITS)
    628 	ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    629 
    630       /* Count Huffman symbol for run length / number of bits */
    631       ac_counts[(r << 4) + nbits]++;
    632 
    633       r = 0;
    634     }
    635   }
    636 
    637   /* If the last coef(s) were zero, emit an end-of-block code */
    638   if (r > 0)
    639     ac_counts[0]++;
    640 }
    641 
    642 
    643 /*
    644  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
    645  * No data is actually output, so no suspension return is possible.
    646  */
    647 
    648 METHODDEF(boolean)
    649 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    650 {
    651   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    652   int blkn, ci;
    653   jpeg_component_info * compptr;
    654 
    655   /* Take care of restart intervals if needed */
    656   if (cinfo->restart_interval) {
    657     if (entropy->restarts_to_go == 0) {
    658       /* Re-initialize DC predictions to 0 */
    659       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
    660 	entropy->saved.last_dc_val[ci] = 0;
    661       /* Update restart state */
    662       entropy->restarts_to_go = cinfo->restart_interval;
    663     }
    664     entropy->restarts_to_go--;
    665   }
    666 
    667   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    668     ci = cinfo->MCU_membership[blkn];
    669     compptr = cinfo->cur_comp_info[ci];
    670     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
    671 		    entropy->dc_count_ptrs[compptr->dc_tbl_no],
    672 		    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
    673     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
    674   }
    675 
    676   return TRUE;
    677 }
    678 
    679 
    680 /*
    681  * Generate the best Huffman code table for the given counts, fill htbl.
    682  * Note this is also used by jcphuff.c.
    683  *
    684  * The JPEG standard requires that no symbol be assigned a codeword of all
    685  * one bits (so that padding bits added at the end of a compressed segment
    686  * can't look like a valid code).  Because of the canonical ordering of
    687  * codewords, this just means that there must be an unused slot in the
    688  * longest codeword length category.  Section K.2 of the JPEG spec suggests
    689  * reserving such a slot by pretending that symbol 256 is a valid symbol
    690  * with count 1.  In theory that's not optimal; giving it count zero but
    691  * including it in the symbol set anyway should give a better Huffman code.
    692  * But the theoretically better code actually seems to come out worse in
    693  * practice, because it produces more all-ones bytes (which incur stuffed
    694  * zero bytes in the final file).  In any case the difference is tiny.
    695  *
    696  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
    697  * If some symbols have a very small but nonzero probability, the Huffman tree
    698  * must be adjusted to meet the code length restriction.  We currently use
    699  * the adjustment method suggested in JPEG section K.2.  This method is *not*
    700  * optimal; it may not choose the best possible limited-length code.  But
    701  * typically only very-low-frequency symbols will be given less-than-optimal
    702  * lengths, so the code is almost optimal.  Experimental comparisons against
    703  * an optimal limited-length-code algorithm indicate that the difference is
    704  * microscopic --- usually less than a hundredth of a percent of total size.
    705  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
    706  */
    707 
    708 GLOBAL(void)
    709 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
    710 {
    711 #define MAX_CLEN 32		/* assumed maximum initial code length */
    712   UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
    713   int codesize[257];		/* codesize[k] = code length of symbol k */
    714   int others[257];		/* next symbol in current branch of tree */
    715   int c1, c2;
    716   int p, i, j;
    717   long v;
    718 
    719   /* This algorithm is explained in section K.2 of the JPEG standard */
    720 
    721   MEMZERO(bits, SIZEOF(bits));
    722   MEMZERO(codesize, SIZEOF(codesize));
    723   for (i = 0; i < 257; i++)
    724     others[i] = -1;		/* init links to empty */
    725 
    726   freq[256] = 1;		/* make sure 256 has a nonzero count */
    727   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
    728    * that no real symbol is given code-value of all ones, because 256
    729    * will be placed last in the largest codeword category.
    730    */
    731 
    732   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
    733 
    734   for (;;) {
    735     /* Find the smallest nonzero frequency, set c1 = its symbol */
    736     /* In case of ties, take the larger symbol number */
    737     c1 = -1;
    738     v = 1000000000L;
    739     for (i = 0; i <= 256; i++) {
    740       if (freq[i] && freq[i] <= v) {
    741 	v = freq[i];
    742 	c1 = i;
    743       }
    744     }
    745 
    746     /* Find the next smallest nonzero frequency, set c2 = its symbol */
    747     /* In case of ties, take the larger symbol number */
    748     c2 = -1;
    749     v = 1000000000L;
    750     for (i = 0; i <= 256; i++) {
    751       if (freq[i] && freq[i] <= v && i != c1) {
    752 	v = freq[i];
    753 	c2 = i;
    754       }
    755     }
    756 
    757     /* Done if we've merged everything into one frequency */
    758     if (c2 < 0)
    759       break;
    760 
    761     /* Else merge the two counts/trees */
    762     freq[c1] += freq[c2];
    763     freq[c2] = 0;
    764 
    765     /* Increment the codesize of everything in c1's tree branch */
    766     codesize[c1]++;
    767     while (others[c1] >= 0) {
    768       c1 = others[c1];
    769       codesize[c1]++;
    770     }
    771 
    772     others[c1] = c2;		/* chain c2 onto c1's tree branch */
    773 
    774     /* Increment the codesize of everything in c2's tree branch */
    775     codesize[c2]++;
    776     while (others[c2] >= 0) {
    777       c2 = others[c2];
    778       codesize[c2]++;
    779     }
    780   }
    781 
    782   /* Now count the number of symbols of each code length */
    783   for (i = 0; i <= 256; i++) {
    784     if (codesize[i]) {
    785       /* The JPEG standard seems to think that this can't happen, */
    786       /* but I'm paranoid... */
    787       if (codesize[i] > MAX_CLEN)
    788 	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
    789 
    790       bits[codesize[i]]++;
    791     }
    792   }
    793 
    794   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
    795    * Huffman procedure assigned any such lengths, we must adjust the coding.
    796    * Here is what the JPEG spec says about how this next bit works:
    797    * Since symbols are paired for the longest Huffman code, the symbols are
    798    * removed from this length category two at a time.  The prefix for the pair
    799    * (which is one bit shorter) is allocated to one of the pair; then,
    800    * skipping the BITS entry for that prefix length, a code word from the next
    801    * shortest nonzero BITS entry is converted into a prefix for two code words
    802    * one bit longer.
    803    */
    804 
    805   for (i = MAX_CLEN; i > 16; i--) {
    806     while (bits[i] > 0) {
    807       j = i - 2;		/* find length of new prefix to be used */
    808       while (bits[j] == 0)
    809 	j--;
    810 
    811       bits[i] -= 2;		/* remove two symbols */
    812       bits[i-1]++;		/* one goes in this length */
    813       bits[j+1] += 2;		/* two new symbols in this length */
    814       bits[j]--;		/* symbol of this length is now a prefix */
    815     }
    816   }
    817 
    818   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
    819   while (bits[i] == 0)		/* find largest codelength still in use */
    820     i--;
    821   bits[i]--;
    822 
    823   /* Return final symbol counts (only for lengths 0..16) */
    824   MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
    825 
    826   /* Return a list of the symbols sorted by code length */
    827   /* It's not real clear to me why we don't need to consider the codelength
    828    * changes made above, but the JPEG spec seems to think this works.
    829    */
    830   p = 0;
    831   for (i = 1; i <= MAX_CLEN; i++) {
    832     for (j = 0; j <= 255; j++) {
    833       if (codesize[j] == i) {
    834 	htbl->huffval[p] = (UINT8) j;
    835 	p++;
    836       }
    837     }
    838   }
    839 
    840   /* Set sent_table FALSE so updated table will be written to JPEG file. */
    841   htbl->sent_table = FALSE;
    842 }
    843 
    844 
    845 /*
    846  * Finish up a statistics-gathering pass and create the new Huffman tables.
    847  */
    848 
    849 METHODDEF(void)
    850 finish_pass_gather (j_compress_ptr cinfo)
    851 {
    852   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    853   int ci, dctbl, actbl;
    854   jpeg_component_info * compptr;
    855   JHUFF_TBL **htblptr;
    856   boolean did_dc[NUM_HUFF_TBLS];
    857   boolean did_ac[NUM_HUFF_TBLS];
    858 
    859   /* It's important not to apply jpeg_gen_optimal_table more than once
    860    * per table, because it clobbers the input frequency counts!
    861    */
    862   MEMZERO(did_dc, SIZEOF(did_dc));
    863   MEMZERO(did_ac, SIZEOF(did_ac));
    864 
    865   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    866     compptr = cinfo->cur_comp_info[ci];
    867     dctbl = compptr->dc_tbl_no;
    868     actbl = compptr->ac_tbl_no;
    869     if (! did_dc[dctbl]) {
    870       htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
    871       if (*htblptr == NULL)
    872 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
    873       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
    874       did_dc[dctbl] = TRUE;
    875     }
    876     if (! did_ac[actbl]) {
    877       htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
    878       if (*htblptr == NULL)
    879 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
    880       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
    881       did_ac[actbl] = TRUE;
    882     }
    883   }
    884 }
    885 
    886 
    887 #endif /* ENTROPY_OPT_SUPPORTED */
    888 
    889 
    890 /*
    891  * Module initialization routine for Huffman entropy encoding.
    892  */
    893 
    894 GLOBAL(void)
    895 jinit_huff_encoder (j_compress_ptr cinfo)
    896 {
    897   huff_entropy_ptr entropy;
    898   int i;
    899 
    900   entropy = (huff_entropy_ptr)
    901     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    902 				SIZEOF(huff_entropy_encoder));
    903   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
    904   entropy->pub.start_pass = start_pass_huff;
    905 
    906   /* Mark tables unallocated */
    907   for (i = 0; i < NUM_HUFF_TBLS; i++) {
    908     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
    909 #ifdef ENTROPY_OPT_SUPPORTED
    910     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
    911 #endif
    912   }
    913 }
    914 
    915 #endif //_FX_JPEG_TURBO_
    916