Home | History | Annotate | Download | only in jpeg-6b
      1 /*
      2  * jdphuff.c
      3  *
      4  * Copyright (C) 1995-1997, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains Huffman entropy decoding routines for progressive JPEG.
      9  *
     10  * Much of the complexity here has to do with supporting input suspension.
     11  * If the data source module demands suspension, we want to be able to back
     12  * up to the start of the current MCU.  To do this, we copy state variables
     13  * into local working storage, and update them back to the permanent
     14  * storage only upon successful completion of an MCU.
     15  */
     16 
     17 #define JPEG_INTERNALS
     18 #include "jinclude.h"
     19 #include "jpeglib.h"
     20 #include "jdhuff.h"		/* Declarations shared with jdhuff.c */
     21 
     22 
     23 #ifdef D_PROGRESSIVE_SUPPORTED
     24 
     25 /*
     26  * Expanded entropy decoder object for progressive Huffman decoding.
     27  *
     28  * The savable_state subrecord contains fields that change within an MCU,
     29  * but must not be updated permanently until we complete the MCU.
     30  */
     31 
     32 typedef struct {
     33   unsigned int EOBRUN;			/* remaining EOBs in EOBRUN */
     34   int last_dc_val[MAX_COMPS_IN_SCAN];	/* last DC coef for each component */
     35 } savable_state;
     36 
     37 /* This macro is to work around compilers with missing or broken
     38  * structure assignment.  You'll need to fix this code if you have
     39  * such a compiler and you change MAX_COMPS_IN_SCAN.
     40  */
     41 
     42 #ifndef NO_STRUCT_ASSIGN
     43 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
     44 #else
     45 #if MAX_COMPS_IN_SCAN == 4
     46 #define ASSIGN_STATE(dest,src)  \
     47 	((dest).EOBRUN = (src).EOBRUN, \
     48 	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
     49 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
     50 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
     51 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
     52 #endif
     53 #endif
     54 
     55 
     56 typedef struct {
     57   struct jpeg_entropy_decoder pub; /* public fields */
     58 
     59   /* These fields are loaded into local variables at start of each MCU.
     60    * In case of suspension, we exit WITHOUT updating them.
     61    */
     62   bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
     63   savable_state saved;		/* Other state at start of MCU */
     64 
     65   /* These fields are NOT loaded into local working state. */
     66   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
     67 
     68   /* Pointers to derived tables (these workspaces have image lifespan) */
     69   d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
     70 
     71   d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
     72 } phuff_entropy_decoder;
     73 
     74 typedef phuff_entropy_decoder * phuff_entropy_ptr;
     75 
     76 /* Forward declarations */
     77 METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo,
     78 					    JBLOCKROW *MCU_data));
     79 METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo,
     80 					    JBLOCKROW *MCU_data));
     81 METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo,
     82 					     JBLOCKROW *MCU_data));
     83 METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo,
     84 					     JBLOCKROW *MCU_data));
     85 GLOBAL(void) jpeg_configure_huffman_decoder_progressive(
     86 		j_decompress_ptr cinfo, huffman_offset_data offset);
     87 GLOBAL(void) jpeg_get_huffman_decoder_configuration_progressive(
     88 	        j_decompress_ptr cinfo, huffman_offset_data *offset);
     89 
     90 /*
     91  * Initialize for a Huffman-compressed scan.
     92  */
     93 
     94 METHODDEF(void)
     95 start_pass_phuff_decoder (j_decompress_ptr cinfo)
     96 {
     97   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
     98   boolean is_DC_band, bad;
     99   int ci, coefi, tbl;
    100   int *coef_bit_ptr;
    101   jpeg_component_info * compptr;
    102 
    103   is_DC_band = (cinfo->Ss == 0);
    104 
    105   /* Validate scan parameters */
    106   bad = FALSE;
    107   if (is_DC_band) {
    108     if (cinfo->Se != 0)
    109       bad = TRUE;
    110   } else {
    111     /* need not check Ss/Se < 0 since they came from unsigned bytes */
    112     if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2)
    113       bad = TRUE;
    114     /* AC scans may have only one component */
    115     if (cinfo->comps_in_scan != 1)
    116       bad = TRUE;
    117   }
    118   if (cinfo->Ah != 0) {
    119     /* Successive approximation refinement scan: must have Al = Ah-1. */
    120     if (cinfo->Al != cinfo->Ah-1)
    121       bad = TRUE;
    122   }
    123   if (cinfo->Al > 13)		/* need not check for < 0 */
    124     bad = TRUE;
    125   /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
    126    * but the spec doesn't say so, and we try to be liberal about what we
    127    * accept.  Note: large Al values could result in out-of-range DC
    128    * coefficients during early scans, leading to bizarre displays due to
    129    * overflows in the IDCT math.  But we won't crash.
    130    */
    131   if (bad)
    132     ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
    133 	     cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
    134   /* Update progression status, and verify that scan order is legal.
    135    * Note that inter-scan inconsistencies are treated as warnings
    136    * not fatal errors ... not clear if this is right way to behave.
    137    */
    138   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    139     int cindex = cinfo->cur_comp_info[ci]->component_index;
    140     coef_bit_ptr = & cinfo->coef_bits[cindex][0];
    141     if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
    142       WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
    143     for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
    144       int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
    145       if (cinfo->Ah != expected)
    146 	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
    147       coef_bit_ptr[coefi] = cinfo->Al;
    148     }
    149   }
    150 
    151   /* Select MCU decoding routine */
    152   if (cinfo->Ah == 0) {
    153     if (is_DC_band)
    154       entropy->pub.decode_mcu = decode_mcu_DC_first;
    155     else
    156       entropy->pub.decode_mcu = decode_mcu_AC_first;
    157   } else {
    158     if (is_DC_band)
    159       entropy->pub.decode_mcu = decode_mcu_DC_refine;
    160     else
    161       entropy->pub.decode_mcu = decode_mcu_AC_refine;
    162   }
    163 
    164   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    165     compptr = cinfo->cur_comp_info[ci];
    166     /* Make sure requested tables are present, and compute derived tables.
    167      * We may build same derived table more than once, but it's not expensive.
    168      */
    169     if (is_DC_band) {
    170       if (cinfo->Ah == 0) {	/* DC refinement needs no table */
    171 	tbl = compptr->dc_tbl_no;
    172 	jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
    173 				& entropy->derived_tbls[tbl]);
    174       }
    175     } else {
    176       tbl = compptr->ac_tbl_no;
    177       jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
    178 			      & entropy->derived_tbls[tbl]);
    179       /* remember the single active table */
    180       entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
    181     }
    182     /* Initialize DC predictions to 0 */
    183     entropy->saved.last_dc_val[ci] = 0;
    184   }
    185 
    186   /* Initialize bitread state variables */
    187   entropy->bitstate.bits_left = 0;
    188   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
    189   entropy->pub.insufficient_data = FALSE;
    190 
    191   /* Initialize private state variables */
    192   entropy->saved.EOBRUN = 0;
    193 
    194   /* Initialize restart counter */
    195   entropy->restarts_to_go = cinfo->restart_interval;
    196 }
    197 
    198 
    199 /*
    200  * Figure F.12: extend sign bit.
    201  * On some machines, a shift and add will be faster than a table lookup.
    202  */
    203 
    204 #ifdef AVOID_TABLES
    205 
    206 #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
    207 
    208 #else
    209 
    210 #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
    211 
    212 static const int extend_test[16] =   /* entry n is 2**(n-1) */
    213   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
    214     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
    215 
    216 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
    217   { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
    218     ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
    219     ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
    220     ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
    221 
    222 #endif /* AVOID_TABLES */
    223 
    224 
    225 /*
    226  * Check for a restart marker & resynchronize decoder.
    227  * Returns FALSE if must suspend.
    228  */
    229 
    230 LOCAL(boolean)
    231 process_restart (j_decompress_ptr cinfo)
    232 {
    233   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    234   int ci;
    235 
    236   /* Throw away any unused bits remaining in bit buffer; */
    237   /* include any full bytes in next_marker's count of discarded bytes */
    238   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
    239   entropy->bitstate.bits_left = 0;
    240 
    241   /* Advance past the RSTn marker */
    242   if (! (*cinfo->marker->read_restart_marker) (cinfo))
    243     return FALSE;
    244 
    245   /* Re-initialize DC predictions to 0 */
    246   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
    247     entropy->saved.last_dc_val[ci] = 0;
    248   /* Re-init EOB run count, too */
    249   entropy->saved.EOBRUN = 0;
    250 
    251   /* Reset restart counter */
    252   entropy->restarts_to_go = cinfo->restart_interval;
    253 
    254   /* Reset out-of-data flag, unless read_restart_marker left us smack up
    255    * against a marker.  In that case we will end up treating the next data
    256    * segment as empty, and we can avoid producing bogus output pixels by
    257    * leaving the flag set.
    258    */
    259   if (cinfo->unread_marker == 0)
    260     entropy->pub.insufficient_data = FALSE;
    261 
    262   return TRUE;
    263 }
    264 
    265 
    266 /*
    267  * Huffman MCU decoding.
    268  * Each of these routines decodes and returns one MCU's worth of
    269  * Huffman-compressed coefficients.
    270  * The coefficients are reordered from zigzag order into natural array order,
    271  * but are not dequantized.
    272  *
    273  * The i'th block of the MCU is stored into the block pointed to by
    274  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
    275  *
    276  * We return FALSE if data source requested suspension.  In that case no
    277  * changes have been made to permanent state.  (Exception: some output
    278  * coefficients may already have been assigned.  This is harmless for
    279  * spectral selection, since we'll just re-assign them on the next call.
    280  * Successive approximation AC refinement has to be more careful, however.)
    281  */
    282 
    283 /*
    284  * MCU decoding for DC initial scan (either spectral selection,
    285  * or first pass of successive approximation).
    286  */
    287 
    288 METHODDEF(boolean)
    289 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    290 {
    291   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    292   int Al = cinfo->Al;
    293   register int s, r;
    294   int blkn, ci;
    295   JBLOCKROW block;
    296   BITREAD_STATE_VARS;
    297   savable_state state;
    298   d_derived_tbl * tbl;
    299   jpeg_component_info * compptr;
    300 
    301   /* Process restart marker if needed; may have to suspend */
    302   if (cinfo->restart_interval) {
    303     if (entropy->restarts_to_go == 0)
    304       if (! process_restart(cinfo))
    305 	return FALSE;
    306   }
    307 
    308   /* If we've run out of data, just leave the MCU set to zeroes.
    309    * This way, we return uniform gray for the remainder of the segment.
    310    */
    311   if (! entropy->pub.insufficient_data) {
    312 
    313     /* Load up working state */
    314     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
    315     ASSIGN_STATE(state, entropy->saved);
    316 
    317     /* Outer loop handles each block in the MCU */
    318 
    319     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    320       block = MCU_data[blkn];
    321       ci = cinfo->MCU_membership[blkn];
    322       compptr = cinfo->cur_comp_info[ci];
    323       tbl = entropy->derived_tbls[compptr->dc_tbl_no];
    324 
    325       /* Decode a single block's worth of coefficients */
    326 
    327       /* Section F.2.2.1: decode the DC coefficient difference */
    328       HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
    329       if (s) {
    330 	CHECK_BIT_BUFFER(br_state, s, return FALSE);
    331 	r = GET_BITS(s);
    332 	s = HUFF_EXTEND(r, s);
    333       }
    334 
    335       /* Convert DC difference to actual value, update last_dc_val */
    336       s += state.last_dc_val[ci];
    337       state.last_dc_val[ci] = s;
    338       /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
    339       (*block)[0] = (JCOEF) (s << Al);
    340     }
    341 
    342     /* Completed MCU, so update state */
    343     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
    344     ASSIGN_STATE(entropy->saved, state);
    345   }
    346 
    347   /* Account for restart interval (no-op if not using restarts) */
    348   entropy->restarts_to_go--;
    349 
    350   return TRUE;
    351 }
    352 
    353 
    354 /*
    355  * MCU decoding for AC initial scan (either spectral selection,
    356  * or first pass of successive approximation).
    357  */
    358 
    359 METHODDEF(boolean)
    360 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    361 {
    362   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    363   int Se = cinfo->Se;
    364   int Al = cinfo->Al;
    365   register int s, k, r;
    366   unsigned int EOBRUN;
    367   JBLOCKROW block;
    368   BITREAD_STATE_VARS;
    369   d_derived_tbl * tbl;
    370 
    371   /* Process restart marker if needed; may have to suspend */
    372   if (cinfo->restart_interval) {
    373     if (entropy->restarts_to_go == 0)
    374       if (! process_restart(cinfo))
    375 	return FALSE;
    376   }
    377 
    378   /* If we've run out of data, just leave the MCU set to zeroes.
    379    * This way, we return uniform gray for the remainder of the segment.
    380    */
    381   if (! entropy->pub.insufficient_data) {
    382 
    383     /* Load up working state.
    384      * We can avoid loading/saving bitread state if in an EOB run.
    385      */
    386     EOBRUN = entropy->saved.EOBRUN;	/* only part of saved state we need */
    387 
    388     /* There is always only one block per MCU */
    389 
    390     if (EOBRUN > 0)		/* if it's a band of zeroes... */
    391       EOBRUN--;			/* ...process it now (we do nothing) */
    392     else {
    393       BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
    394       block = MCU_data[0];
    395       tbl = entropy->ac_derived_tbl;
    396 
    397       for (k = cinfo->Ss; k <= Se; k++) {
    398 	HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
    399 	r = s >> 4;
    400 	s &= 15;
    401 	if (s) {
    402 	  k += r;
    403 	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
    404 	  r = GET_BITS(s);
    405 	  s = HUFF_EXTEND(r, s);
    406 	  /* Scale and output coefficient in natural (dezigzagged) order */
    407 	  (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);
    408 	} else {
    409 	  if (r == 15) {	/* ZRL */
    410 	    k += 15;		/* skip 15 zeroes in band */
    411 	  } else {		/* EOBr, run length is 2^r + appended bits */
    412 	    EOBRUN = 1 << r;
    413 	    if (r) {		/* EOBr, r > 0 */
    414 	      CHECK_BIT_BUFFER(br_state, r, return FALSE);
    415 	      r = GET_BITS(r);
    416 	      EOBRUN += r;
    417 	    }
    418 	    EOBRUN--;		/* this band is processed at this moment */
    419 	    break;		/* force end-of-band */
    420 	  }
    421 	}
    422       }
    423 
    424       BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
    425     }
    426 
    427     /* Completed MCU, so update state */
    428     entropy->saved.EOBRUN = EOBRUN;	/* only part of saved state we need */
    429   }
    430 
    431   /* Account for restart interval (no-op if not using restarts) */
    432   entropy->restarts_to_go--;
    433 
    434   return TRUE;
    435 }
    436 
    437 
    438 /*
    439  * MCU decoding for DC successive approximation refinement scan.
    440  * Note: we assume such scans can be multi-component, although the spec
    441  * is not very clear on the point.
    442  */
    443 
    444 METHODDEF(boolean)
    445 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    446 {
    447   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    448   int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
    449   int blkn;
    450   JBLOCKROW block;
    451   BITREAD_STATE_VARS;
    452 
    453   /* Process restart marker if needed; may have to suspend */
    454   if (cinfo->restart_interval) {
    455     if (entropy->restarts_to_go == 0)
    456       if (! process_restart(cinfo))
    457 	return FALSE;
    458   }
    459 
    460   /* Not worth the cycles to check insufficient_data here,
    461    * since we will not change the data anyway if we read zeroes.
    462    */
    463 
    464   /* Load up working state */
    465   BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
    466 
    467   /* Outer loop handles each block in the MCU */
    468 
    469   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    470     block = MCU_data[blkn];
    471 
    472     /* Encoded data is simply the next bit of the two's-complement DC value */
    473     CHECK_BIT_BUFFER(br_state, 1, return FALSE);
    474     if (GET_BITS(1))
    475       (*block)[0] |= p1;
    476     /* Note: since we use |=, repeating the assignment later is safe */
    477   }
    478 
    479   /* Completed MCU, so update state */
    480   BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
    481 
    482   /* Account for restart interval (no-op if not using restarts) */
    483   entropy->restarts_to_go--;
    484 
    485   return TRUE;
    486 }
    487 
    488 
    489 /*
    490  * MCU decoding for AC successive approximation refinement scan.
    491  */
    492 
    493 METHODDEF(boolean)
    494 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    495 {
    496   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    497   int Se = cinfo->Se;
    498   int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
    499   int m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
    500   register int s, k, r;
    501   unsigned int EOBRUN;
    502   JBLOCKROW block;
    503   JCOEFPTR thiscoef;
    504   BITREAD_STATE_VARS;
    505   d_derived_tbl * tbl;
    506   int num_newnz;
    507   int newnz_pos[DCTSIZE2];
    508 
    509   /* Process restart marker if needed; may have to suspend */
    510   if (cinfo->restart_interval) {
    511     if (entropy->restarts_to_go == 0)
    512       if (! process_restart(cinfo))
    513 	return FALSE;
    514   }
    515 
    516   /* If we've run out of data, don't modify the MCU.
    517    */
    518   if (! entropy->pub.insufficient_data) {
    519 
    520     /* Load up working state */
    521     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
    522     EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
    523 
    524     /* There is always only one block per MCU */
    525     block = MCU_data[0];
    526     tbl = entropy->ac_derived_tbl;
    527 
    528     /* If we are forced to suspend, we must undo the assignments to any newly
    529      * nonzero coefficients in the block, because otherwise we'd get confused
    530      * next time about which coefficients were already nonzero.
    531      * But we need not undo addition of bits to already-nonzero coefficients;
    532      * instead, we can test the current bit to see if we already did it.
    533      */
    534     num_newnz = 0;
    535 
    536     /* initialize coefficient loop counter to start of band */
    537     k = cinfo->Ss;
    538 
    539     if (EOBRUN == 0) {
    540       for (; k <= Se; k++) {
    541 	HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
    542 	r = s >> 4;
    543 	s &= 15;
    544 	if (s) {
    545 	  if (s != 1)		/* size of new coef should always be 1 */
    546 	    WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
    547 	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
    548 	  if (GET_BITS(1))
    549 	    s = p1;		/* newly nonzero coef is positive */
    550 	  else
    551 	    s = m1;		/* newly nonzero coef is negative */
    552 	} else {
    553 	  if (r != 15) {
    554 	    EOBRUN = 1 << r;	/* EOBr, run length is 2^r + appended bits */
    555 	    if (r) {
    556 	      CHECK_BIT_BUFFER(br_state, r, goto undoit);
    557 	      r = GET_BITS(r);
    558 	      EOBRUN += r;
    559 	    }
    560 	    break;		/* rest of block is handled by EOB logic */
    561 	  }
    562 	  /* note s = 0 for processing ZRL */
    563 	}
    564 	/* Advance over already-nonzero coefs and r still-zero coefs,
    565 	 * appending correction bits to the nonzeroes.  A correction bit is 1
    566 	 * if the absolute value of the coefficient must be increased.
    567 	 */
    568 	do {
    569 	  thiscoef = *block + jpeg_natural_order[k];
    570 	  if (*thiscoef != 0) {
    571 	    CHECK_BIT_BUFFER(br_state, 1, goto undoit);
    572 	    if (GET_BITS(1)) {
    573 	      if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
    574 		if (*thiscoef >= 0)
    575 		  *thiscoef += p1;
    576 		else
    577 		  *thiscoef += m1;
    578 	      }
    579 	    }
    580 	  } else {
    581 	    if (--r < 0)
    582 	      break;		/* reached target zero coefficient */
    583 	  }
    584 	  k++;
    585 	} while (k <= Se);
    586 	if (s) {
    587 	  int pos = jpeg_natural_order[k];
    588 	  /* Output newly nonzero coefficient */
    589 	  (*block)[pos] = (JCOEF) s;
    590 	  /* Remember its position in case we have to suspend */
    591 	  newnz_pos[num_newnz++] = pos;
    592 	}
    593       }
    594     }
    595 
    596     if (EOBRUN > 0) {
    597       /* Scan any remaining coefficient positions after the end-of-band
    598        * (the last newly nonzero coefficient, if any).  Append a correction
    599        * bit to each already-nonzero coefficient.  A correction bit is 1
    600        * if the absolute value of the coefficient must be increased.
    601        */
    602       for (; k <= Se; k++) {
    603 	thiscoef = *block + jpeg_natural_order[k];
    604 	if (*thiscoef != 0) {
    605 	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
    606 	  if (GET_BITS(1)) {
    607 	    if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
    608 	      if (*thiscoef >= 0)
    609 		*thiscoef += p1;
    610 	      else
    611 		*thiscoef += m1;
    612 	    }
    613 	  }
    614 	}
    615       }
    616       /* Count one block completed in EOB run */
    617       EOBRUN--;
    618     }
    619 
    620     /* Completed MCU, so update state */
    621     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
    622     entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
    623   }
    624 
    625   /* Account for restart interval (no-op if not using restarts) */
    626   entropy->restarts_to_go--;
    627 
    628   return TRUE;
    629 
    630 undoit:
    631   /* Re-zero any output coefficients that we made newly nonzero */
    632   while (num_newnz > 0)
    633     (*block)[newnz_pos[--num_newnz]] = 0;
    634 
    635   return FALSE;
    636 }
    637 
    638 /*
    639  * Save the current Huffman deocde position and the DC coefficients
    640  * for each component into bitstream_offset and dc_info[], respectively.
    641  */
    642 METHODDEF(void)
    643 get_huffman_decoder_configuration(j_decompress_ptr cinfo,
    644         huffman_offset_data *offset)
    645 {
    646   int i;
    647   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    648   jpeg_get_huffman_decoder_configuration_progressive(cinfo, offset);
    649   offset->EOBRUN = entropy->saved.EOBRUN;
    650   for (i = 0; i < cinfo->comps_in_scan; i++)
    651     offset->prev_dc[i] = entropy->saved.last_dc_val[i];
    652 }
    653 
    654 
    655 /*
    656  * Save the current Huffman decoder position and the bit buffer
    657  * into bitstream_offset and get_buffer, respectively.
    658  */
    659 GLOBAL(void)
    660 jpeg_get_huffman_decoder_configuration_progressive(j_decompress_ptr cinfo,
    661         huffman_offset_data *offset)
    662 {
    663   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    664 
    665   if (cinfo->restart_interval) {
    666     // We are at the end of a data segment
    667     if (entropy->restarts_to_go == 0)
    668       if (! process_restart(cinfo))
    669 	return;
    670   }
    671 
    672   // Save restarts_to_go and next_restart_num.
    673   offset->restarts_to_go = (unsigned short) entropy->restarts_to_go;
    674   offset->next_restart_num = cinfo->marker->next_restart_num;
    675 
    676   offset->bitstream_offset =
    677       (jget_input_stream_position(cinfo) << LOG_TWO_BIT_BUF_SIZE)
    678       + entropy->bitstate.bits_left;
    679 
    680   offset->get_buffer = entropy->bitstate.get_buffer;
    681 }
    682 
    683 
    684 /*
    685  * Configure the Huffman decoder to decode the image
    686  * starting from (iMCU_row_offset, iMCU_col_offset).
    687  */
    688 METHODDEF(void)
    689 configure_huffman_decoder(j_decompress_ptr cinfo, huffman_offset_data offset)
    690 {
    691   int i;
    692   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    693   jpeg_configure_huffman_decoder_progressive(cinfo, offset);
    694   entropy->saved.EOBRUN = offset.EOBRUN;
    695   for (i = 0; i < cinfo->comps_in_scan; i++)
    696     entropy->saved.last_dc_val[i] = offset.prev_dc[i];
    697 }
    698 
    699 /*
    700  * Configure the Huffman decoder reader position and bit buffer.
    701  */
    702 GLOBAL(void)
    703 jpeg_configure_huffman_decoder_progressive(j_decompress_ptr cinfo,
    704         huffman_offset_data offset)
    705 {
    706 	phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    707 
    708   // Restore restarts_to_go and next_restart_num
    709   cinfo->unread_marker = 0;
    710   entropy->restarts_to_go = offset.restarts_to_go;
    711   cinfo->marker->next_restart_num = offset.next_restart_num;
    712 
    713   unsigned int bitstream_offset = offset.bitstream_offset;
    714   int blkn, i;
    715 
    716   unsigned int byte_offset = bitstream_offset >> LOG_TWO_BIT_BUF_SIZE;
    717   unsigned int bit_in_bit_buffer =
    718       bitstream_offset & ((1 << LOG_TWO_BIT_BUF_SIZE) - 1);
    719 
    720   jset_input_stream_position_bit(cinfo, byte_offset,
    721           bit_in_bit_buffer, offset.get_buffer);
    722 }
    723 
    724 GLOBAL(void)
    725 jpeg_configure_huffman_index_scan(j_decompress_ptr cinfo,
    726         huffman_index *index, int scan_no, int offset)
    727 {
    728   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    729   if (scan_no >= index->scan_count) {
    730     index->scan = realloc(index->scan,
    731                     (scan_no + 1) * sizeof(huffman_scan_header));
    732     index->mem_used += (scan_no - index->scan_count + 1)
    733       * (sizeof(huffman_scan_header) + cinfo->total_iMCU_rows
    734       * sizeof(huffman_offset_data*));
    735     index->scan_count = scan_no + 1;
    736   }
    737   index->scan[scan_no].offset = (huffman_offset_data**)malloc(
    738           cinfo->total_iMCU_rows * sizeof(huffman_offset_data*));
    739   index->scan[scan_no].bitstream_offset = offset;
    740 }
    741 
    742 /*
    743  * Module initialization routine for progressive Huffman entropy decoding.
    744  */
    745 GLOBAL(void)
    746 jinit_phuff_decoder (j_decompress_ptr cinfo)
    747 {
    748   phuff_entropy_ptr entropy;
    749   int *coef_bit_ptr;
    750   int ci, i;
    751 
    752   entropy = (phuff_entropy_ptr)
    753     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    754 				SIZEOF(phuff_entropy_decoder));
    755   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
    756   entropy->pub.start_pass = start_pass_phuff_decoder;
    757   entropy->pub.configure_huffman_decoder = configure_huffman_decoder;
    758   entropy->pub.get_huffman_decoder_configuration =
    759         get_huffman_decoder_configuration;
    760 
    761   /* Mark derived tables unallocated */
    762   for (i = 0; i < NUM_HUFF_TBLS; i++) {
    763     entropy->derived_tbls[i] = NULL;
    764   }
    765 
    766   /* Create progression status table */
    767   cinfo->coef_bits = (int (*)[DCTSIZE2])
    768     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    769 				cinfo->num_components*DCTSIZE2*SIZEOF(int));
    770   coef_bit_ptr = & cinfo->coef_bits[0][0];
    771   for (ci = 0; ci < cinfo->num_components; ci++)
    772     for (i = 0; i < DCTSIZE2; i++)
    773       *coef_bit_ptr++ = -1;
    774 }
    775 
    776 #endif /* D_PROGRESSIVE_SUPPORTED */
    777