Home | History | Annotate | Download | only in core
      1 
      2 /*
      3  * Copyright 2008 The Android Open Source Project
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #include "SkPoint.h"
     11 
     12 void SkIPoint::rotateCW(SkIPoint* dst) const {
     13     SkASSERT(dst);
     14 
     15     // use a tmp in case this == dst
     16     int32_t tmp = fX;
     17     dst->fX = -fY;
     18     dst->fY = tmp;
     19 }
     20 
     21 void SkIPoint::rotateCCW(SkIPoint* dst) const {
     22     SkASSERT(dst);
     23 
     24     // use a tmp in case this == dst
     25     int32_t tmp = fX;
     26     dst->fX = fY;
     27     dst->fY = -tmp;
     28 }
     29 
     30 ///////////////////////////////////////////////////////////////////////////////
     31 
     32 void SkPoint::setIRectFan(int l, int t, int r, int b, size_t stride) {
     33     SkASSERT(stride >= sizeof(SkPoint));
     34 
     35     ((SkPoint*)((intptr_t)this + 0 * stride))->set(SkIntToScalar(l),
     36                                                    SkIntToScalar(t));
     37     ((SkPoint*)((intptr_t)this + 1 * stride))->set(SkIntToScalar(l),
     38                                                    SkIntToScalar(b));
     39     ((SkPoint*)((intptr_t)this + 2 * stride))->set(SkIntToScalar(r),
     40                                                    SkIntToScalar(b));
     41     ((SkPoint*)((intptr_t)this + 3 * stride))->set(SkIntToScalar(r),
     42                                                    SkIntToScalar(t));
     43 }
     44 
     45 void SkPoint::setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b,
     46                          size_t stride) {
     47     SkASSERT(stride >= sizeof(SkPoint));
     48 
     49     ((SkPoint*)((intptr_t)this + 0 * stride))->set(l, t);
     50     ((SkPoint*)((intptr_t)this + 1 * stride))->set(l, b);
     51     ((SkPoint*)((intptr_t)this + 2 * stride))->set(r, b);
     52     ((SkPoint*)((intptr_t)this + 3 * stride))->set(r, t);
     53 }
     54 
     55 void SkPoint::rotateCW(SkPoint* dst) const {
     56     SkASSERT(dst);
     57 
     58     // use a tmp in case this == dst
     59     SkScalar tmp = fX;
     60     dst->fX = -fY;
     61     dst->fY = tmp;
     62 }
     63 
     64 void SkPoint::rotateCCW(SkPoint* dst) const {
     65     SkASSERT(dst);
     66 
     67     // use a tmp in case this == dst
     68     SkScalar tmp = fX;
     69     dst->fX = fY;
     70     dst->fY = -tmp;
     71 }
     72 
     73 void SkPoint::scale(SkScalar scale, SkPoint* dst) const {
     74     SkASSERT(dst);
     75     dst->set(SkScalarMul(fX, scale), SkScalarMul(fY, scale));
     76 }
     77 
     78 bool SkPoint::normalize() {
     79     return this->setLength(fX, fY, SK_Scalar1);
     80 }
     81 
     82 bool SkPoint::setNormalize(SkScalar x, SkScalar y) {
     83     return this->setLength(x, y, SK_Scalar1);
     84 }
     85 
     86 bool SkPoint::setLength(SkScalar length) {
     87     return this->setLength(fX, fY, length);
     88 }
     89 
     90 // Returns the square of the Euclidian distance to (dx,dy).
     91 static inline float getLengthSquared(float dx, float dy) {
     92     return dx * dx + dy * dy;
     93 }
     94 
     95 // Calculates the square of the Euclidian distance to (dx,dy) and stores it in
     96 // *lengthSquared.  Returns true if the distance is judged to be "nearly zero".
     97 //
     98 // This logic is encapsulated in a helper method to make it explicit that we
     99 // always perform this check in the same manner, to avoid inconsistencies
    100 // (see http://code.google.com/p/skia/issues/detail?id=560 ).
    101 static inline bool isLengthNearlyZero(float dx, float dy,
    102                                       float *lengthSquared) {
    103     *lengthSquared = getLengthSquared(dx, dy);
    104     return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
    105 }
    106 
    107 SkScalar SkPoint::Normalize(SkPoint* pt) {
    108     float x = pt->fX;
    109     float y = pt->fY;
    110     float mag2;
    111     if (isLengthNearlyZero(x, y, &mag2)) {
    112         return 0;
    113     }
    114 
    115     float mag, scale;
    116     if (SkScalarIsFinite(mag2)) {
    117         mag = sk_float_sqrt(mag2);
    118         scale = 1 / mag;
    119     } else {
    120         // our mag2 step overflowed to infinity, so use doubles instead.
    121         // much slower, but needed when x or y are very large, other wise we
    122         // divide by inf. and return (0,0) vector.
    123         double xx = x;
    124         double yy = y;
    125         double magmag = sqrt(xx * xx + yy * yy);
    126         mag = (float)magmag;
    127         // we perform the divide with the double magmag, to stay exactly the
    128         // same as setLength. It would be faster to perform the divide with
    129         // mag, but it is possible that mag has overflowed to inf. but still
    130         // have a non-zero value for scale (thanks to denormalized numbers).
    131         scale = (float)(1 / magmag);
    132     }
    133     pt->set(x * scale, y * scale);
    134     return mag;
    135 }
    136 
    137 SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
    138     float mag2 = dx * dx + dy * dy;
    139     if (SkScalarIsFinite(mag2)) {
    140         return sk_float_sqrt(mag2);
    141     } else {
    142         double xx = dx;
    143         double yy = dy;
    144         return (float)sqrt(xx * xx + yy * yy);
    145     }
    146 }
    147 
    148 /*
    149  *  We have to worry about 2 tricky conditions:
    150  *  1. underflow of mag2 (compared against nearlyzero^2)
    151  *  2. overflow of mag2 (compared w/ isfinite)
    152  *
    153  *  If we underflow, we return false. If we overflow, we compute again using
    154  *  doubles, which is much slower (3x in a desktop test) but will not overflow.
    155  */
    156 bool SkPoint::setLength(float x, float y, float length) {
    157     float mag2;
    158     if (isLengthNearlyZero(x, y, &mag2)) {
    159         return false;
    160     }
    161 
    162     float scale;
    163     if (SkScalarIsFinite(mag2)) {
    164         scale = length / sk_float_sqrt(mag2);
    165     } else {
    166         // our mag2 step overflowed to infinity, so use doubles instead.
    167         // much slower, but needed when x or y are very large, other wise we
    168         // divide by inf. and return (0,0) vector.
    169         double xx = x;
    170         double yy = y;
    171         scale = (float)(length / sqrt(xx * xx + yy * yy));
    172     }
    173     fX = x * scale;
    174     fY = y * scale;
    175     return true;
    176 }
    177 
    178 bool SkPoint::setLengthFast(float length) {
    179     return this->setLengthFast(fX, fY, length);
    180 }
    181 
    182 bool SkPoint::setLengthFast(float x, float y, float length) {
    183     float mag2;
    184     if (isLengthNearlyZero(x, y, &mag2)) {
    185         return false;
    186     }
    187 
    188     float scale;
    189     if (SkScalarIsFinite(mag2)) {
    190         scale = length * sk_float_rsqrt(mag2);  // <--- this is the difference
    191     } else {
    192         // our mag2 step overflowed to infinity, so use doubles instead.
    193         // much slower, but needed when x or y are very large, other wise we
    194         // divide by inf. and return (0,0) vector.
    195         double xx = x;
    196         double yy = y;
    197         scale = (float)(length / sqrt(xx * xx + yy * yy));
    198     }
    199     fX = x * scale;
    200     fY = y * scale;
    201     return true;
    202 }
    203 
    204 
    205 ///////////////////////////////////////////////////////////////////////////////
    206 
    207 SkScalar SkPoint::distanceToLineBetweenSqd(const SkPoint& a,
    208                                            const SkPoint& b,
    209                                            Side* side) const {
    210 
    211     SkVector u = b - a;
    212     SkVector v = *this - a;
    213 
    214     SkScalar uLengthSqd = u.lengthSqd();
    215     SkScalar det = u.cross(v);
    216     if (NULL != side) {
    217         SkASSERT(-1 == SkPoint::kLeft_Side &&
    218                   0 == SkPoint::kOn_Side &&
    219                   1 == kRight_Side);
    220         *side = (Side) SkScalarSignAsInt(det);
    221     }
    222     return SkScalarMulDiv(det, det, uLengthSqd);
    223 }
    224 
    225 SkScalar SkPoint::distanceToLineSegmentBetweenSqd(const SkPoint& a,
    226                                                   const SkPoint& b) const {
    227     // See comments to distanceToLineBetweenSqd. If the projection of c onto
    228     // u is between a and b then this returns the same result as that
    229     // function. Otherwise, it returns the distance to the closer of a and
    230     // b. Let the projection of v onto u be v'.  There are three cases:
    231     //    1. v' points opposite to u. c is not between a and b and is closer
    232     //       to a than b.
    233     //    2. v' points along u and has magnitude less than y. c is between
    234     //       a and b and the distance to the segment is the same as distance
    235     //       to the line ab.
    236     //    3. v' points along u and has greater magnitude than u. c is not
    237     //       not between a and b and is closer to b than a.
    238     // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're
    239     // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise
    240     // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to
    241     // avoid a sqrt to compute |u|.
    242 
    243     SkVector u = b - a;
    244     SkVector v = *this - a;
    245 
    246     SkScalar uLengthSqd = u.lengthSqd();
    247     SkScalar uDotV = SkPoint::DotProduct(u, v);
    248 
    249     if (uDotV <= 0) {
    250         return v.lengthSqd();
    251     } else if (uDotV > uLengthSqd) {
    252         return b.distanceToSqd(*this);
    253     } else {
    254         SkScalar det = u.cross(v);
    255         return SkScalarMulDiv(det, det, uLengthSqd);
    256     }
    257 }
    258