Home | History | Annotate | Download | only in pathops
      1 /*
      2 http://stackoverflow.com/questions/2009160/how-do-i-convert-the-2-control-points-of-a-cubic-curve-to-the-single-control-poi
      3 */
      4 
      5 /*
      6 Let's call the control points of the cubic Q0..Q3 and the control points of the quadratic P0..P2.
      7 Then for degree elevation, the equations are:
      8 
      9 Q0 = P0
     10 Q1 = 1/3 P0 + 2/3 P1
     11 Q2 = 2/3 P1 + 1/3 P2
     12 Q3 = P2
     13 In your case you have Q0..Q3 and you're solving for P0..P2. There are two ways to compute P1 from
     14  the equations above:
     15 
     16 P1 = 3/2 Q1 - 1/2 Q0
     17 P1 = 3/2 Q2 - 1/2 Q3
     18 If this is a degree-elevated cubic, then both equations will give the same answer for P1. Since
     19  it's likely not, your best bet is to average them. So,
     20 
     21 P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3
     22 
     23 SkDCubic defined by: P1/2 - anchor points, C1/C2 control points
     24 |x| is the euclidean norm of x
     25 mid-point approx of cubic: a quad that shares the same anchors with the cubic and has the
     26  control point at C = (3C2 - P2 + 3C1 - P1)/4
     27 
     28 Algorithm
     29 
     30 pick an absolute precision (prec)
     31 Compute the Tdiv as the root of (cubic) equation
     32 sqrt(3)/18  |P2 - 3C2 + 3C1 - P1|/2  Tdiv ^ 3 = prec
     33 if Tdiv < 0.5 divide the cubic at Tdiv. First segment [0..Tdiv] can be approximated with by a
     34  quadratic, with a defect less than prec, by the mid-point approximation.
     35  Repeat from step 2 with the second resulted segment (corresponding to 1-Tdiv)
     36 0.5<=Tdiv<1 - simply divide the cubic in two. The two halves can be approximated by the mid-point
     37  approximation
     38 Tdiv>=1 - the entire cubic can be approximated by the mid-point approximation
     39 
     40 confirmed by (maybe stolen from)
     41 http://www.caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html
     42 // maybe in turn derived from  http://www.cccg.ca/proceedings/2004/36.pdf
     43 // also stored at http://www.cis.usouthal.edu/~hain/general/Publications/Bezier/bezier%20cccg04%20paper.pdf
     44 
     45 */
     46 
     47 #include "SkPathOpsCubic.h"
     48 #include "SkPathOpsLine.h"
     49 #include "SkPathOpsQuad.h"
     50 #include "SkReduceOrder.h"
     51 #include "SkTArray.h"
     52 #include "SkTSort.h"
     53 
     54 #define USE_CUBIC_END_POINTS 1
     55 
     56 static double calc_t_div(const SkDCubic& cubic, double precision, double start) {
     57     const double adjust = sqrt(3.) / 36;
     58     SkDCubic sub;
     59     const SkDCubic* cPtr;
     60     if (start == 0) {
     61         cPtr = &cubic;
     62     } else {
     63         // OPTIMIZE: special-case half-split ?
     64         sub = cubic.subDivide(start, 1);
     65         cPtr = &sub;
     66     }
     67     const SkDCubic& c = *cPtr;
     68     double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX;
     69     double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY;
     70     double dist = sqrt(dx * dx + dy * dy);
     71     double tDiv3 = precision / (adjust * dist);
     72     double t = SkDCubeRoot(tDiv3);
     73     if (start > 0) {
     74         t = start + (1 - start) * t;
     75     }
     76     return t;
     77 }
     78 
     79 SkDQuad SkDCubic::toQuad() const {
     80     SkDQuad quad;
     81     quad[0] = fPts[0];
     82     const SkDPoint fromC1 = {(3 * fPts[1].fX - fPts[0].fX) / 2, (3 * fPts[1].fY - fPts[0].fY) / 2};
     83     const SkDPoint fromC2 = {(3 * fPts[2].fX - fPts[3].fX) / 2, (3 * fPts[2].fY - fPts[3].fY) / 2};
     84     quad[1].fX = (fromC1.fX + fromC2.fX) / 2;
     85     quad[1].fY = (fromC1.fY + fromC2.fY) / 2;
     86     quad[2] = fPts[3];
     87     return quad;
     88 }
     89 
     90 static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTArray<double, true>* ts) {
     91     double tDiv = calc_t_div(cubic, precision, 0);
     92     if (tDiv >= 1) {
     93         return true;
     94     }
     95     if (tDiv >= 0.5) {
     96         ts->push_back(0.5);
     97         return true;
     98     }
     99     return false;
    100 }
    101 
    102 static void addTs(const SkDCubic& cubic, double precision, double start, double end,
    103         SkTArray<double, true>* ts) {
    104     double tDiv = calc_t_div(cubic, precision, 0);
    105     double parts = ceil(1.0 / tDiv);
    106     for (double index = 0; index < parts; ++index) {
    107         double newT = start + (index / parts) * (end - start);
    108         if (newT > 0 && newT < 1) {
    109             ts->push_back(newT);
    110         }
    111     }
    112 }
    113 
    114 // flavor that returns T values only, deferring computing the quads until they are needed
    115 // FIXME: when called from recursive intersect 2, this could take the original cubic
    116 // and do a more precise job when calling chop at and sub divide by computing the fractional ts.
    117 // it would still take the prechopped cubic for reduce order and find cubic inflections
    118 void SkDCubic::toQuadraticTs(double precision, SkTArray<double, true>* ts) const {
    119     SkReduceOrder reducer;
    120     int order = reducer.reduce(*this, SkReduceOrder::kAllow_Quadratics);
    121     if (order < 3) {
    122         return;
    123     }
    124     double inflectT[5];
    125     int inflections = findInflections(inflectT);
    126     SkASSERT(inflections <= 2);
    127     if (!endsAreExtremaInXOrY()) {
    128         inflections += findMaxCurvature(&inflectT[inflections]);
    129         SkASSERT(inflections <= 5);
    130     }
    131     SkTQSort<double>(inflectT, &inflectT[inflections - 1]);
    132     // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its
    133     // own subroutine?
    134     while (inflections && approximately_less_than_zero(inflectT[0])) {
    135         memmove(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections);
    136     }
    137     int start = 0;
    138     int next = 1;
    139     while (next < inflections) {
    140         if (!approximately_equal(inflectT[start], inflectT[next])) {
    141             ++start;
    142         ++next;
    143             continue;
    144         }
    145         memmove(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start));
    146     }
    147 
    148     while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) {
    149         --inflections;
    150     }
    151     SkDCubicPair pair;
    152     if (inflections == 1) {
    153         pair = chopAt(inflectT[0]);
    154         int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics);
    155         if (orderP1 < 2) {
    156             --inflections;
    157         } else {
    158             int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadratics);
    159             if (orderP2 < 2) {
    160                 --inflections;
    161             }
    162         }
    163     }
    164     if (inflections == 0 && add_simple_ts(*this, precision, ts)) {
    165         return;
    166     }
    167     if (inflections == 1) {
    168         pair = chopAt(inflectT[0]);
    169         addTs(pair.first(), precision, 0, inflectT[0], ts);
    170         addTs(pair.second(), precision, inflectT[0], 1, ts);
    171         return;
    172     }
    173     if (inflections > 1) {
    174         SkDCubic part = subDivide(0, inflectT[0]);
    175         addTs(part, precision, 0, inflectT[0], ts);
    176         int last = inflections - 1;
    177         for (int idx = 0; idx < last; ++idx) {
    178             part = subDivide(inflectT[idx], inflectT[idx + 1]);
    179             addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts);
    180         }
    181         part = subDivide(inflectT[last], 1);
    182         addTs(part, precision, inflectT[last], 1, ts);
    183         return;
    184     }
    185     addTs(*this, precision, 0, 1, ts);
    186 }
    187