Home | History | Annotate | Download | only in pathops
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 #ifndef SkOpSegment_DEFINE
      8 #define SkOpSegment_DEFINE
      9 
     10 #include "SkOpAngle.h"
     11 #include "SkOpSpan.h"
     12 #include "SkPathOpsBounds.h"
     13 #include "SkPathOpsCurve.h"
     14 #include "SkTArray.h"
     15 #include "SkTDArray.h"
     16 
     17 #if defined(SK_DEBUG) || !FORCE_RELEASE
     18 #include "SkThread.h"
     19 #endif
     20 
     21 struct SkCoincidence;
     22 class SkPathWriter;
     23 
     24 class SkOpSegment {
     25 public:
     26     SkOpSegment() {
     27 #if defined(SK_DEBUG) || !FORCE_RELEASE
     28         fID = sk_atomic_inc(&SkPathOpsDebug::gSegmentID);
     29 #endif
     30     }
     31 
     32     bool operator<(const SkOpSegment& rh) const {
     33         return fBounds.fTop < rh.fBounds.fTop;
     34     }
     35 
     36     struct AlignedSpan  {
     37         double fOldT;
     38         double fT;
     39         SkPoint fOldPt;
     40         SkPoint fPt;
     41         const SkOpSegment* fSegment;
     42         const SkOpSegment* fOther1;
     43         const SkOpSegment* fOther2;
     44     };
     45 
     46     const SkPathOpsBounds& bounds() const {
     47         return fBounds;
     48     }
     49 
     50     // OPTIMIZE
     51     // when the edges are initially walked, they don't automatically get the prior and next
     52     // edges assigned to positions t=0 and t=1. Doing that would remove the need for this check,
     53     // and would additionally remove the need for similar checks in condition edges. It would
     54     // also allow intersection code to assume end of segment intersections (maybe?)
     55     bool complete() const {
     56         int count = fTs.count();
     57         return count > 1 && fTs[0].fT == 0 && fTs[--count].fT == 1;
     58     }
     59 
     60     int count() const {
     61         return fTs.count();
     62     }
     63 
     64     bool done() const {
     65         SkASSERT(fDoneSpans <= fTs.count());
     66         return fDoneSpans == fTs.count();
     67     }
     68 
     69     bool done(int min) const {
     70         return fTs[min].fDone;
     71     }
     72 
     73     bool done(const SkOpAngle* angle) const {
     74         return done(SkMin32(angle->start(), angle->end()));
     75     }
     76 
     77     SkDPoint dPtAtT(double mid) const {
     78         return (*CurveDPointAtT[SkPathOpsVerbToPoints(fVerb)])(fPts, mid);
     79     }
     80 
     81     SkVector dxdy(int index) const {
     82         return (*CurveSlopeAtT[SkPathOpsVerbToPoints(fVerb)])(fPts, fTs[index].fT);
     83     }
     84 
     85     SkScalar dy(int index) const {
     86         return dxdy(index).fY;
     87     }
     88 
     89     bool hasMultiples() const {
     90         return fMultiples;
     91     }
     92 
     93     bool hasSmall() const {
     94         return fSmall;
     95     }
     96 
     97     bool hasTiny() const {
     98         return fTiny;
     99     }
    100 
    101     bool intersected() const {
    102         return fTs.count() > 0;
    103     }
    104 
    105     bool isCanceled(int tIndex) const {
    106         return fTs[tIndex].fWindValue == 0 && fTs[tIndex].fOppValue == 0;
    107     }
    108 
    109     bool isConnected(int startIndex, int endIndex) const {
    110         return fTs[startIndex].fWindSum != SK_MinS32 || fTs[endIndex].fWindSum != SK_MinS32;
    111     }
    112 
    113     bool isHorizontal() const {
    114         return fBounds.fTop == fBounds.fBottom;
    115     }
    116 
    117     bool isVertical() const {
    118         return fBounds.fLeft == fBounds.fRight;
    119     }
    120 
    121     bool isVertical(int start, int end) const {
    122         return (*CurveIsVertical[SkPathOpsVerbToPoints(fVerb)])(fPts, start, end);
    123     }
    124 
    125     bool operand() const {
    126         return fOperand;
    127     }
    128 
    129     int oppSign(const SkOpAngle* angle) const {
    130         SkASSERT(angle->segment() == this);
    131         return oppSign(angle->start(), angle->end());
    132     }
    133 
    134     int oppSign(int startIndex, int endIndex) const {
    135         int result = startIndex < endIndex ? -fTs[startIndex].fOppValue : fTs[endIndex].fOppValue;
    136 #if DEBUG_WIND_BUMP
    137         SkDebugf("%s oppSign=%d\n", __FUNCTION__, result);
    138 #endif
    139         return result;
    140     }
    141 
    142     int oppSum(int tIndex) const {
    143         return fTs[tIndex].fOppSum;
    144     }
    145 
    146     int oppSum(const SkOpAngle* angle) const {
    147         int lesser = SkMin32(angle->start(), angle->end());
    148         return fTs[lesser].fOppSum;
    149     }
    150 
    151     int oppValue(int tIndex) const {
    152         return fTs[tIndex].fOppValue;
    153     }
    154 
    155     int oppValue(const SkOpAngle* angle) const {
    156         int lesser = SkMin32(angle->start(), angle->end());
    157         return fTs[lesser].fOppValue;
    158     }
    159 
    160 #if DEBUG_VALIDATE
    161     bool oppXor() const {
    162         return fOppXor;
    163     }
    164 #endif
    165 
    166     SkPoint ptAtT(double mid) const {
    167         return (*CurvePointAtT[SkPathOpsVerbToPoints(fVerb)])(fPts, mid);
    168     }
    169 
    170     const SkPoint* pts() const {
    171         return fPts;
    172     }
    173 
    174     void reset() {
    175         init(NULL, (SkPath::Verb) -1, false, false);
    176         fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
    177         fTs.reset();
    178     }
    179 
    180     void setOppXor(bool isOppXor) {
    181         fOppXor = isOppXor;
    182     }
    183 
    184     void setUpWinding(int index, int endIndex, int* maxWinding, int* sumWinding) {
    185         int deltaSum = spanSign(index, endIndex);
    186         *maxWinding = *sumWinding;
    187         *sumWinding -= deltaSum;
    188     }
    189 
    190     const SkOpSpan& span(int tIndex) const {
    191         return fTs[tIndex];
    192     }
    193 
    194     const SkOpAngle* spanToAngle(int tStart, int tEnd) const {
    195         SkASSERT(tStart != tEnd);
    196         const SkOpSpan& span = fTs[tStart];
    197         return tStart < tEnd ? span.fToAngle : span.fFromAngle;
    198     }
    199 
    200     // FIXME: create some sort of macro or template that avoids casting
    201     SkOpAngle* spanToAngle(int tStart, int tEnd) {
    202         const SkOpAngle* cAngle = (const_cast<const SkOpSegment*>(this))->spanToAngle(tStart, tEnd);
    203         return const_cast<SkOpAngle*>(cAngle);
    204     }
    205 
    206     int spanSign(const SkOpAngle* angle) const {
    207         SkASSERT(angle->segment() == this);
    208         return spanSign(angle->start(), angle->end());
    209     }
    210 
    211     int spanSign(int startIndex, int endIndex) const {
    212         int result = startIndex < endIndex ? -fTs[startIndex].fWindValue : fTs[endIndex].fWindValue;
    213 #if DEBUG_WIND_BUMP
    214         SkDebugf("%s spanSign=%d\n", __FUNCTION__, result);
    215 #endif
    216         return result;
    217     }
    218 
    219     double t(int tIndex) const {
    220         return fTs[tIndex].fT;
    221     }
    222 
    223     double tAtMid(int start, int end, double mid) const {
    224         return fTs[start].fT * (1 - mid) + fTs[end].fT * mid;
    225     }
    226 
    227     void updatePts(const SkPoint pts[]) {
    228         fPts = pts;
    229     }
    230 
    231     SkPath::Verb verb() const {
    232         return fVerb;
    233     }
    234 
    235     int windSum(int tIndex) const {
    236         return fTs[tIndex].fWindSum;
    237     }
    238 
    239     int windValue(int tIndex) const {
    240         return fTs[tIndex].fWindValue;
    241     }
    242 
    243 #if defined(SK_DEBUG) || DEBUG_WINDING
    244     SkScalar xAtT(int index) const {
    245         return xAtT(&fTs[index]);
    246     }
    247 #endif
    248 
    249 #if DEBUG_VALIDATE
    250     bool _xor() const {  // FIXME: used only by SkOpAngle::debugValidateLoop()
    251         return fXor;
    252     }
    253 #endif
    254 
    255     const SkPoint& xyAtT(const SkOpSpan* span) const {
    256         return span->fPt;
    257     }
    258 
    259     const SkPoint& xyAtT(int index) const {
    260         return xyAtT(&fTs[index]);
    261     }
    262 
    263 #if defined(SK_DEBUG) || DEBUG_WINDING
    264     SkScalar yAtT(int index) const {
    265         return yAtT(&fTs[index]);
    266     }
    267 #endif
    268 
    269     const SkOpAngle* activeAngle(int index, int* start, int* end, bool* done,
    270                                  bool* sortable) const;
    271     SkPoint activeLeftTop(int* firstT) const;
    272     bool activeOp(int index, int endIndex, int xorMiMask, int xorSuMask, SkPathOp op);
    273     bool activeWinding(int index, int endIndex);
    274     void addCubic(const SkPoint pts[4], bool operand, bool evenOdd);
    275     void addCurveTo(int start, int end, SkPathWriter* path, bool active) const;
    276     void addEndSpan(int endIndex);
    277     void addLine(const SkPoint pts[2], bool operand, bool evenOdd);
    278     void addOtherT(int index, double otherT, int otherIndex);
    279     void addQuad(const SkPoint pts[3], bool operand, bool evenOdd);
    280     void addSimpleAngle(int endIndex);
    281     int addSelfT(const SkPoint& pt, double newT);
    282     void addStartSpan(int endIndex);
    283     int addT(SkOpSegment* other, const SkPoint& pt, double newT);
    284     void addTCancel(const SkPoint& startPt, const SkPoint& endPt, SkOpSegment* other);
    285     void addTCoincident(const SkPoint& startPt, const SkPoint& endPt, double endT,
    286                         SkOpSegment* other);
    287     const SkOpSpan* addTPair(double t, SkOpSegment* other, double otherT, bool borrowWind,
    288                              const SkPoint& pt);
    289     const SkOpSpan* addTPair(double t, SkOpSegment* other, double otherT, bool borrowWind,
    290                              const SkPoint& pt, const SkPoint& oPt);
    291     void alignMultiples(SkTDArray<AlignedSpan>* aligned);
    292     bool alignSpan(int index, double thisT, const SkPoint& thisPt);
    293     void alignSpanState(int start, int end);
    294     bool betweenTs(int lesser, double testT, int greater) const;
    295     void blindCancel(const SkCoincidence& coincidence, SkOpSegment* other);
    296     void blindCoincident(const SkCoincidence& coincidence, SkOpSegment* other);
    297     bool calcAngles();
    298     double calcMissingTEnd(const SkOpSegment* ref, double loEnd, double min, double max,
    299                            double hiEnd, const SkOpSegment* other, int thisEnd);
    300     double calcMissingTStart(const SkOpSegment* ref, double loEnd, double min, double max,
    301                              double hiEnd, const SkOpSegment* other, int thisEnd);
    302     void checkDuplicates();
    303     void checkEnds();
    304     void checkMultiples();
    305     void checkSmall();
    306     bool checkSmall(int index) const;
    307     void checkTiny();
    308     int computeSum(int startIndex, int endIndex, SkOpAngle::IncludeType includeType);
    309     bool containsPt(const SkPoint& , int index, int endIndex) const;
    310     int crossedSpanY(const SkPoint& basePt, SkScalar* bestY, double* hitT, bool* hitSomething,
    311                      double mid, bool opp, bool current) const;
    312     bool findCoincidentMatch(const SkOpSpan* span, const SkOpSegment* other, int oStart, int oEnd,
    313                              int step, SkPoint* startPt, SkPoint* endPt, double* endT) const;
    314     SkOpSegment* findNextOp(SkTDArray<SkOpSpan*>* chase, int* nextStart, int* nextEnd,
    315                             bool* unsortable, SkPathOp op, int xorMiMask, int xorSuMask);
    316     SkOpSegment* findNextWinding(SkTDArray<SkOpSpan*>* chase, int* nextStart, int* nextEnd,
    317                                  bool* unsortable);
    318     SkOpSegment* findNextXor(int* nextStart, int* nextEnd, bool* unsortable);
    319     int findExactT(double t, const SkOpSegment* ) const;
    320     int findOtherT(double t, const SkOpSegment* ) const;
    321     int findT(double t, const SkPoint& , const SkOpSegment* ) const;
    322     SkOpSegment* findTop(int* tIndex, int* endIndex, bool* unsortable, bool firstPass);
    323     void fixOtherTIndex();
    324     void initWinding(int start, int end, SkOpAngle::IncludeType angleIncludeType);
    325     void initWinding(int start, int end, double tHit, int winding, SkScalar hitDx, int oppWind,
    326                      SkScalar hitOppDx);
    327     bool isMissing(double startT, const SkPoint& pt) const;
    328     bool isTiny(const SkOpAngle* angle) const;
    329     bool joinCoincidence(SkOpSegment* other, double otherT, const SkPoint& otherPt, int step,
    330                          bool cancel);
    331     SkOpSpan* markAndChaseDoneBinary(int index, int endIndex);
    332     SkOpSpan* markAndChaseDoneUnary(int index, int endIndex);
    333     SkOpSpan* markAndChaseWinding(const SkOpAngle* angle, int winding, int oppWinding);
    334     SkOpSpan* markAngle(int maxWinding, int sumWinding, int oppMaxWinding, int oppSumWinding,
    335                         const SkOpAngle* angle);
    336     void markDone(int index, int winding);
    337     void markDoneBinary(int index);
    338     void markDoneUnary(int index);
    339     bool nextCandidate(int* start, int* end) const;
    340     int nextSpan(int from, int step) const;
    341     void pinT(const SkPoint& pt, double* t);
    342     void setUpWindings(int index, int endIndex, int* sumMiWinding, int* sumSuWinding,
    343             int* maxWinding, int* sumWinding, int* oppMaxWinding, int* oppSumWinding);
    344     void sortAngles();
    345     bool subDivide(int start, int end, SkPoint edge[4]) const;
    346     bool subDivide(int start, int end, SkDCubic* result) const;
    347     void undoneSpan(int* start, int* end);
    348     int updateOppWindingReverse(const SkOpAngle* angle) const;
    349     int updateWindingReverse(const SkOpAngle* angle) const;
    350     static bool UseInnerWinding(int outerWinding, int innerWinding);
    351     static bool UseInnerWindingReverse(int outerWinding, int innerWinding);
    352     int windingAtT(double tHit, int tIndex, bool crossOpp, SkScalar* dx) const;
    353     int windSum(const SkOpAngle* angle) const;
    354 // available for testing only
    355 #if defined(SK_DEBUG) || !FORCE_RELEASE
    356     int debugID() const {
    357         return fID;
    358     }
    359 #else
    360     int debugID() const {
    361         return -1;
    362     }
    363 #endif
    364 #if DEBUG_ACTIVE_SPANS || DEBUG_ACTIVE_SPANS_FIRST_ONLY
    365     void debugShowActiveSpans() const;
    366 #endif
    367 #if DEBUG_CONCIDENT
    368     void debugShowTs(const char* prefix) const;
    369 #endif
    370 #if DEBUG_SHOW_WINDING
    371     int debugShowWindingValues(int slotCount, int ofInterest) const;
    372 #endif
    373     const SkTDArray<SkOpSpan>& debugSpans() const;
    374     void debugValidate() const;
    375     // available to testing only
    376     const SkOpAngle* debugLastAngle() const;
    377     void dumpAngles() const;
    378     void dumpContour(int firstID, int lastID) const;
    379     void dumpPts() const;
    380     void dumpSpans() const;
    381 
    382 private:
    383     struct MissingSpan  {
    384         double fT;
    385         double fEndT;
    386         SkOpSegment* fSegment;
    387         SkOpSegment* fOther;
    388         double fOtherT;
    389         SkPoint fPt;
    390     };
    391 
    392     const SkOpAngle* activeAngleInner(int index, int* start, int* end, bool* done,
    393                                       bool* sortable) const;
    394     const SkOpAngle* activeAngleOther(int index, int* start, int* end, bool* done,
    395                                       bool* sortable) const;
    396     bool activeOp(int xorMiMask, int xorSuMask, int index, int endIndex, SkPathOp op,
    397                   int* sumMiWinding, int* sumSuWinding);
    398     bool activeWinding(int index, int endIndex, int* sumWinding);
    399     void addCancelOutsides(const SkPoint& startPt, const SkPoint& endPt, SkOpSegment* other);
    400     void addCoinOutsides(const SkPoint& startPt, const SkPoint& endPt, SkOpSegment* other);
    401     SkOpAngle* addSingletonAngleDown(SkOpSegment** otherPtr, SkOpAngle** );
    402     SkOpAngle* addSingletonAngleUp(SkOpSegment** otherPtr, SkOpAngle** );
    403     SkOpAngle* addSingletonAngles(int step);
    404     void alignSpan(const SkPoint& newPt, double newT, const SkOpSegment* other, double otherT,
    405                    const SkOpSegment* other2, SkOpSpan* oSpan, SkTDArray<AlignedSpan>* );
    406     bool betweenPoints(double midT, const SkPoint& pt1, const SkPoint& pt2) const;
    407     void bumpCoincidentBlind(bool binary, int index, int last);
    408     void bumpCoincidentThis(const SkOpSpan& oTest, bool binary, int* index,
    409                            SkTArray<SkPoint, true>* outsideTs);
    410     void bumpCoincidentOBlind(int index, int last);
    411     void bumpCoincidentOther(const SkOpSpan& oTest, int* index,
    412                            SkTArray<SkPoint, true>* outsideTs);
    413     bool bumpSpan(SkOpSpan* span, int windDelta, int oppDelta);
    414     bool calcLoopSpanCount(const SkOpSpan& thisSpan, int* smallCounts);
    415     bool checkForSmall(const SkOpSpan* span, const SkPoint& pt, double newT,
    416                        int* less, int* more) const;
    417     void checkLinks(const SkOpSpan* ,
    418                     SkTArray<MissingSpan, true>* missingSpans) const;
    419     static void CheckOneLink(const SkOpSpan* test, const SkOpSpan* oSpan,
    420                              const SkOpSpan* oFirst, const SkOpSpan* oLast,
    421                              const SkOpSpan** missingPtr,
    422                              SkTArray<MissingSpan, true>* missingSpans);
    423     int checkSetAngle(int tIndex) const;
    424     void checkSmallCoincidence(const SkOpSpan& span, SkTArray<MissingSpan, true>* );
    425     bool coincidentSmall(const SkPoint& pt, double t, const SkOpSegment* other) const;
    426     bool clockwise(int tStart, int tEnd, bool* swap) const;
    427     static void ComputeOneSum(const SkOpAngle* baseAngle, SkOpAngle* nextAngle,
    428                               SkOpAngle::IncludeType );
    429     static void ComputeOneSumReverse(const SkOpAngle* baseAngle, SkOpAngle* nextAngle,
    430                                      SkOpAngle::IncludeType );
    431     bool containsT(double t, const SkOpSegment* other, double otherT) const;
    432     bool decrementSpan(SkOpSpan* span);
    433     int findEndSpan(int endIndex) const;
    434     int findStartSpan(int startIndex) const;
    435     int firstActive(int tIndex) const;
    436     const SkOpSpan& firstSpan(const SkOpSpan& thisSpan) const;
    437     void init(const SkPoint pts[], SkPath::Verb verb, bool operand, bool evenOdd);
    438     bool inCoincidentSpan(double t, const SkOpSegment* other) const;
    439     bool inLoop(const SkOpAngle* baseAngle, int spanCount, int* indexPtr) const;
    440 #if OLD_CHASE
    441     bool isSimple(int end) const;
    442 #else
    443     SkOpSegment* isSimple(int* end, int* step);
    444 #endif
    445     bool isTiny(int index) const;
    446     const SkOpSpan& lastSpan(const SkOpSpan& thisSpan) const;
    447     void matchWindingValue(int tIndex, double t, bool borrowWind);
    448     SkOpSpan* markAndChaseDone(int index, int endIndex, int winding);
    449     SkOpSpan* markAndChaseDoneBinary(const SkOpAngle* angle, int winding, int oppWinding);
    450     SkOpSpan* markAndChaseWinding(const SkOpAngle* angle, int winding);
    451     SkOpSpan* markAndChaseWinding(int index, int endIndex, int winding);
    452     SkOpSpan* markAndChaseWinding(int index, int endIndex, int winding, int oppWinding);
    453     SkOpSpan* markAngle(int maxWinding, int sumWinding, const SkOpAngle* angle);
    454     void markDoneBinary(int index, int winding, int oppWinding);
    455     SkOpSpan* markAndChaseDoneUnary(const SkOpAngle* angle, int winding);
    456     void markOneDone(const char* funName, int tIndex, int winding);
    457     void markOneDoneBinary(const char* funName, int tIndex);
    458     void markOneDoneBinary(const char* funName, int tIndex, int winding, int oppWinding);
    459     void markOneDoneUnary(const char* funName, int tIndex);
    460     SkOpSpan* markOneWinding(const char* funName, int tIndex, int winding);
    461     SkOpSpan* markOneWinding(const char* funName, int tIndex, int winding, int oppWinding);
    462     void markWinding(int index, int winding);
    463     void markWinding(int index, int winding, int oppWinding);
    464     bool monotonicInY(int tStart, int tEnd) const;
    465 
    466     bool multipleEnds() const { return fTs[count() - 2].fT == 1; }
    467     bool multipleStarts() const { return fTs[1].fT == 0; }
    468 
    469     SkOpSegment* nextChase(int* index, int* step, int* min, SkOpSpan** last);
    470     int nextExactSpan(int from, int step) const;
    471     bool serpentine(int tStart, int tEnd) const;
    472     void setCoincidentRange(const SkPoint& startPt, const SkPoint& endPt,  SkOpSegment* other);
    473     void setFromAngle(int endIndex, SkOpAngle* );
    474     void setToAngle(int endIndex, SkOpAngle* );
    475     void setUpWindings(int index, int endIndex, int* sumMiWinding,
    476             int* maxWinding, int* sumWinding);
    477     void subDivideBounds(int start, int end, SkPathOpsBounds* bounds) const;
    478     static void TrackOutsidePair(SkTArray<SkPoint, true>* outsideTs, const SkPoint& endPt,
    479             const SkPoint& startPt);
    480     static void TrackOutside(SkTArray<SkPoint, true>* outsideTs, const SkPoint& startPt);
    481     int updateOppWinding(int index, int endIndex) const;
    482     int updateOppWinding(const SkOpAngle* angle) const;
    483     int updateWinding(int index, int endIndex) const;
    484     int updateWinding(const SkOpAngle* angle) const;
    485     int updateWindingReverse(int index, int endIndex) const;
    486     SkOpSpan* verifyOneWinding(const char* funName, int tIndex);
    487     SkOpSpan* verifyOneWindingU(const char* funName, int tIndex);
    488 
    489     SkScalar xAtT(const SkOpSpan* span) const {
    490         return xyAtT(span).fX;
    491     }
    492 
    493     SkScalar yAtT(const SkOpSpan* span) const {
    494         return xyAtT(span).fY;
    495     }
    496 
    497     void zeroSpan(SkOpSpan* span);
    498 
    499 #if DEBUG_SWAP_TOP
    500     bool controlsContainedByEnds(int tStart, int tEnd) const;
    501 #endif
    502     void debugAddAngle(int start, int end);
    503 #if DEBUG_CONCIDENT
    504     void debugAddTPair(double t, const SkOpSegment& other, double otherT) const;
    505 #endif
    506 #if DEBUG_ANGLE
    507     void debugCheckPointsEqualish(int tStart, int tEnd) const;
    508 #endif
    509 #if DEBUG_SWAP_TOP
    510     int debugInflections(int index, int endIndex) const;
    511 #endif
    512 #if DEBUG_MARK_DONE || DEBUG_UNSORTABLE
    513     void debugShowNewWinding(const char* fun, const SkOpSpan& span, int winding);
    514     void debugShowNewWinding(const char* fun, const SkOpSpan& span, int winding, int oppWinding);
    515 #endif
    516 #if DEBUG_WINDING
    517     static char as_digit(int value) {
    518         return value < 0 ? '?' : value <= 9 ? '0' + value : '+';
    519     }
    520 #endif
    521     // available to testing only
    522     void debugConstruct();
    523     void debugConstructCubic(SkPoint shortQuad[4]);
    524     void debugConstructLine(SkPoint shortQuad[2]);
    525     void debugConstructQuad(SkPoint shortQuad[3]);
    526     void debugReset();
    527     void dumpDPts() const;
    528     void dumpSpan(int index) const;
    529 
    530     const SkPoint* fPts;
    531     SkPathOpsBounds fBounds;
    532     // FIXME: can't convert to SkTArray because it uses insert
    533     SkTDArray<SkOpSpan> fTs;  // 2+ (always includes t=0 t=1) -- at least (number of spans) + 1
    534     SkOpAngleSet fAngles;  // empty or 2+ -- (number of non-zero spans) * 2
    535     // OPTIMIZATION: could pack donespans, verb, operand, xor into 1 int-sized value
    536     int fDoneSpans;  // quick check that segment is finished
    537     // OPTIMIZATION: force the following to be byte-sized
    538     SkPath::Verb fVerb;
    539     bool fLoop;   // set if cubic intersects itself
    540     bool fMultiples;  // set if curve intersects multiple other curves at one interior point
    541     bool fOperand;
    542     bool fXor;  // set if original contour had even-odd fill
    543     bool fOppXor;  // set if opposite operand had even-odd fill
    544     bool fSmall;  // set if some span is small
    545     bool fTiny;  // set if some span is tiny
    546 #if defined(SK_DEBUG) || !FORCE_RELEASE
    547     int fID;
    548 #endif
    549 
    550     friend class PathOpsSegmentTester;
    551 };
    552 
    553 #endif
    554