Home | History | Annotate | Download | only in eap_peer
      1 /*
      2  * EAP peer state machines (RFC 4137)
      3  * Copyright (c) 2004-2014, Jouni Malinen <j (at) w1.fi>
      4  *
      5  * This software may be distributed under the terms of the BSD license.
      6  * See README for more details.
      7  *
      8  * This file implements the Peer State Machine as defined in RFC 4137. The used
      9  * states and state transitions match mostly with the RFC. However, there are
     10  * couple of additional transitions for working around small issues noticed
     11  * during testing. These exceptions are explained in comments within the
     12  * functions in this file. The method functions, m.func(), are similar to the
     13  * ones used in RFC 4137, but some small changes have used here to optimize
     14  * operations and to add functionality needed for fast re-authentication
     15  * (session resumption).
     16  */
     17 
     18 #include "includes.h"
     19 
     20 #include "common.h"
     21 #include "pcsc_funcs.h"
     22 #include "state_machine.h"
     23 #include "ext_password.h"
     24 #include "crypto/crypto.h"
     25 #include "crypto/tls.h"
     26 #include "common/wpa_ctrl.h"
     27 #include "eap_common/eap_wsc_common.h"
     28 #include "eap_i.h"
     29 #include "eap_config.h"
     30 
     31 #define STATE_MACHINE_DATA struct eap_sm
     32 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
     33 
     34 #define EAP_MAX_AUTH_ROUNDS 50
     35 #define EAP_CLIENT_TIMEOUT_DEFAULT 60
     36 
     37 
     38 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
     39 				  EapType method);
     40 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
     41 static void eap_sm_processIdentity(struct eap_sm *sm,
     42 				   const struct wpabuf *req);
     43 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
     44 static struct wpabuf * eap_sm_buildNotify(int id);
     45 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
     46 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
     47 static const char * eap_sm_method_state_txt(EapMethodState state);
     48 static const char * eap_sm_decision_txt(EapDecision decision);
     49 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
     50 
     51 
     52 
     53 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
     54 {
     55 	return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
     56 }
     57 
     58 
     59 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
     60 			   Boolean value)
     61 {
     62 	sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
     63 }
     64 
     65 
     66 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
     67 {
     68 	return sm->eapol_cb->get_int(sm->eapol_ctx, var);
     69 }
     70 
     71 
     72 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
     73 			  unsigned int value)
     74 {
     75 	sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
     76 }
     77 
     78 
     79 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
     80 {
     81 	return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
     82 }
     83 
     84 
     85 static void eap_notify_status(struct eap_sm *sm, const char *status,
     86 				      const char *parameter)
     87 {
     88 	wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
     89 		   status, parameter);
     90 	if (sm->eapol_cb->notify_status)
     91 		sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
     92 }
     93 
     94 
     95 static void eap_sm_free_key(struct eap_sm *sm)
     96 {
     97 	if (sm->eapKeyData) {
     98 		bin_clear_free(sm->eapKeyData, sm->eapKeyDataLen);
     99 		sm->eapKeyData = NULL;
    100 	}
    101 }
    102 
    103 
    104 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
    105 {
    106 	ext_password_free(sm->ext_pw_buf);
    107 	sm->ext_pw_buf = NULL;
    108 
    109 	if (sm->m == NULL || sm->eap_method_priv == NULL)
    110 		return;
    111 
    112 	wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
    113 		   "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
    114 	sm->m->deinit(sm, sm->eap_method_priv);
    115 	sm->eap_method_priv = NULL;
    116 	sm->m = NULL;
    117 }
    118 
    119 
    120 /**
    121  * eap_allowed_method - Check whether EAP method is allowed
    122  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
    123  * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
    124  * @method: EAP type
    125  * Returns: 1 = allowed EAP method, 0 = not allowed
    126  */
    127 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
    128 {
    129 	struct eap_peer_config *config = eap_get_config(sm);
    130 	int i;
    131 	struct eap_method_type *m;
    132 
    133 	if (config == NULL || config->eap_methods == NULL)
    134 		return 1;
    135 
    136 	m = config->eap_methods;
    137 	for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
    138 		     m[i].method != EAP_TYPE_NONE; i++) {
    139 		if (m[i].vendor == vendor && m[i].method == method)
    140 			return 1;
    141 	}
    142 	return 0;
    143 }
    144 
    145 
    146 /*
    147  * This state initializes state machine variables when the machine is
    148  * activated (portEnabled = TRUE). This is also used when re-starting
    149  * authentication (eapRestart == TRUE).
    150  */
    151 SM_STATE(EAP, INITIALIZE)
    152 {
    153 	SM_ENTRY(EAP, INITIALIZE);
    154 	if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
    155 	    sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
    156 	    !sm->prev_failure &&
    157 	    sm->last_config == eap_get_config(sm)) {
    158 		wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
    159 			   "fast reauthentication");
    160 		sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
    161 	} else {
    162 		sm->last_config = eap_get_config(sm);
    163 		eap_deinit_prev_method(sm, "INITIALIZE");
    164 	}
    165 	sm->selectedMethod = EAP_TYPE_NONE;
    166 	sm->methodState = METHOD_NONE;
    167 	sm->allowNotifications = TRUE;
    168 	sm->decision = DECISION_FAIL;
    169 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
    170 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
    171 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
    172 	eapol_set_bool(sm, EAPOL_eapFail, FALSE);
    173 	eap_sm_free_key(sm);
    174 	os_free(sm->eapSessionId);
    175 	sm->eapSessionId = NULL;
    176 	sm->eapKeyAvailable = FALSE;
    177 	eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
    178 	sm->lastId = -1; /* new session - make sure this does not match with
    179 			  * the first EAP-Packet */
    180 	/*
    181 	 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
    182 	 * seemed to be able to trigger cases where both were set and if EAPOL
    183 	 * state machine uses eapNoResp first, it may end up not sending a real
    184 	 * reply correctly. This occurred when the workaround in FAIL state set
    185 	 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
    186 	 * something else(?)
    187 	 */
    188 	eapol_set_bool(sm, EAPOL_eapResp, FALSE);
    189 	eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
    190 	sm->num_rounds = 0;
    191 	sm->prev_failure = 0;
    192 	sm->expected_failure = 0;
    193 }
    194 
    195 
    196 /*
    197  * This state is reached whenever service from the lower layer is interrupted
    198  * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
    199  * occurs when the port becomes enabled.
    200  */
    201 SM_STATE(EAP, DISABLED)
    202 {
    203 	SM_ENTRY(EAP, DISABLED);
    204 	sm->num_rounds = 0;
    205 	/*
    206 	 * RFC 4137 does not describe clearing of idleWhile here, but doing so
    207 	 * allows the timer tick to be stopped more quickly when EAP is not in
    208 	 * use.
    209 	 */
    210 	eapol_set_int(sm, EAPOL_idleWhile, 0);
    211 }
    212 
    213 
    214 /*
    215  * The state machine spends most of its time here, waiting for something to
    216  * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
    217  * SEND_RESPONSE states.
    218  */
    219 SM_STATE(EAP, IDLE)
    220 {
    221 	SM_ENTRY(EAP, IDLE);
    222 }
    223 
    224 
    225 /*
    226  * This state is entered when an EAP packet is received (eapReq == TRUE) to
    227  * parse the packet header.
    228  */
    229 SM_STATE(EAP, RECEIVED)
    230 {
    231 	const struct wpabuf *eapReqData;
    232 
    233 	SM_ENTRY(EAP, RECEIVED);
    234 	eapReqData = eapol_get_eapReqData(sm);
    235 	/* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
    236 	eap_sm_parseEapReq(sm, eapReqData);
    237 	sm->num_rounds++;
    238 }
    239 
    240 
    241 /*
    242  * This state is entered when a request for a new type comes in. Either the
    243  * correct method is started, or a Nak response is built.
    244  */
    245 SM_STATE(EAP, GET_METHOD)
    246 {
    247 	int reinit;
    248 	EapType method;
    249 	const struct eap_method *eap_method;
    250 
    251 	SM_ENTRY(EAP, GET_METHOD);
    252 
    253 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
    254 		method = sm->reqVendorMethod;
    255 	else
    256 		method = sm->reqMethod;
    257 
    258 	eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
    259 
    260 	if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
    261 		wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
    262 			   sm->reqVendor, method);
    263 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
    264 			"vendor=%u method=%u -> NAK",
    265 			sm->reqVendor, method);
    266 		eap_notify_status(sm, "refuse proposed method",
    267 				  eap_method ?  eap_method->name : "unknown");
    268 		goto nak;
    269 	}
    270 
    271 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
    272 		"vendor=%u method=%u", sm->reqVendor, method);
    273 
    274 	eap_notify_status(sm, "accept proposed method",
    275 			  eap_method ?  eap_method->name : "unknown");
    276 	/*
    277 	 * RFC 4137 does not define specific operation for fast
    278 	 * re-authentication (session resumption). The design here is to allow
    279 	 * the previously used method data to be maintained for
    280 	 * re-authentication if the method support session resumption.
    281 	 * Otherwise, the previously used method data is freed and a new method
    282 	 * is allocated here.
    283 	 */
    284 	if (sm->fast_reauth &&
    285 	    sm->m && sm->m->vendor == sm->reqVendor &&
    286 	    sm->m->method == method &&
    287 	    sm->m->has_reauth_data &&
    288 	    sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
    289 		wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
    290 			   " for fast re-authentication");
    291 		reinit = 1;
    292 	} else {
    293 		eap_deinit_prev_method(sm, "GET_METHOD");
    294 		reinit = 0;
    295 	}
    296 
    297 	sm->selectedMethod = sm->reqMethod;
    298 	if (sm->m == NULL)
    299 		sm->m = eap_method;
    300 	if (!sm->m) {
    301 		wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
    302 			   "vendor %d method %d",
    303 			   sm->reqVendor, method);
    304 		goto nak;
    305 	}
    306 
    307 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
    308 
    309 	wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
    310 		   "vendor %u method %u (%s)",
    311 		   sm->reqVendor, method, sm->m->name);
    312 	if (reinit)
    313 		sm->eap_method_priv = sm->m->init_for_reauth(
    314 			sm, sm->eap_method_priv);
    315 	else
    316 		sm->eap_method_priv = sm->m->init(sm);
    317 
    318 	if (sm->eap_method_priv == NULL) {
    319 		struct eap_peer_config *config = eap_get_config(sm);
    320 		wpa_msg(sm->msg_ctx, MSG_INFO,
    321 			"EAP: Failed to initialize EAP method: vendor %u "
    322 			"method %u (%s)",
    323 			sm->reqVendor, method, sm->m->name);
    324 		sm->m = NULL;
    325 		sm->methodState = METHOD_NONE;
    326 		sm->selectedMethod = EAP_TYPE_NONE;
    327 		if (sm->reqMethod == EAP_TYPE_TLS && config &&
    328 		    (config->pending_req_pin ||
    329 		     config->pending_req_passphrase)) {
    330 			/*
    331 			 * Return without generating Nak in order to allow
    332 			 * entering of PIN code or passphrase to retry the
    333 			 * current EAP packet.
    334 			 */
    335 			wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
    336 				   "request - skip Nak");
    337 			return;
    338 		}
    339 
    340 		goto nak;
    341 	}
    342 
    343 	sm->methodState = METHOD_INIT;
    344 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
    345 		"EAP vendor %u method %u (%s) selected",
    346 		sm->reqVendor, method, sm->m->name);
    347 	return;
    348 
    349 nak:
    350 	wpabuf_free(sm->eapRespData);
    351 	sm->eapRespData = NULL;
    352 	sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
    353 }
    354 
    355 
    356 /*
    357  * The method processing happens here. The request from the authenticator is
    358  * processed, and an appropriate response packet is built.
    359  */
    360 SM_STATE(EAP, METHOD)
    361 {
    362 	struct wpabuf *eapReqData;
    363 	struct eap_method_ret ret;
    364 	int min_len = 1;
    365 
    366 	SM_ENTRY(EAP, METHOD);
    367 	if (sm->m == NULL) {
    368 		wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
    369 		return;
    370 	}
    371 
    372 	eapReqData = eapol_get_eapReqData(sm);
    373 	if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
    374 		min_len = 0; /* LEAP uses EAP-Success without payload */
    375 	if (!eap_hdr_len_valid(eapReqData, min_len))
    376 		return;
    377 
    378 	/*
    379 	 * Get ignore, methodState, decision, allowNotifications, and
    380 	 * eapRespData. RFC 4137 uses three separate method procedure (check,
    381 	 * process, and buildResp) in this state. These have been combined into
    382 	 * a single function call to m->process() in order to optimize EAP
    383 	 * method implementation interface a bit. These procedures are only
    384 	 * used from within this METHOD state, so there is no need to keep
    385 	 * these as separate C functions.
    386 	 *
    387 	 * The RFC 4137 procedures return values as follows:
    388 	 * ignore = m.check(eapReqData)
    389 	 * (methodState, decision, allowNotifications) = m.process(eapReqData)
    390 	 * eapRespData = m.buildResp(reqId)
    391 	 */
    392 	os_memset(&ret, 0, sizeof(ret));
    393 	ret.ignore = sm->ignore;
    394 	ret.methodState = sm->methodState;
    395 	ret.decision = sm->decision;
    396 	ret.allowNotifications = sm->allowNotifications;
    397 	wpabuf_free(sm->eapRespData);
    398 	sm->eapRespData = NULL;
    399 	sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
    400 					 eapReqData);
    401 	wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
    402 		   "methodState=%s decision=%s eapRespData=%p",
    403 		   ret.ignore ? "TRUE" : "FALSE",
    404 		   eap_sm_method_state_txt(ret.methodState),
    405 		   eap_sm_decision_txt(ret.decision),
    406 		   sm->eapRespData);
    407 
    408 	sm->ignore = ret.ignore;
    409 	if (sm->ignore)
    410 		return;
    411 	sm->methodState = ret.methodState;
    412 	sm->decision = ret.decision;
    413 	sm->allowNotifications = ret.allowNotifications;
    414 
    415 	if (sm->m->isKeyAvailable && sm->m->getKey &&
    416 	    sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
    417 		eap_sm_free_key(sm);
    418 		sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
    419 					       &sm->eapKeyDataLen);
    420 		os_free(sm->eapSessionId);
    421 		sm->eapSessionId = NULL;
    422 		if (sm->m->getSessionId) {
    423 			sm->eapSessionId = sm->m->getSessionId(
    424 				sm, sm->eap_method_priv,
    425 				&sm->eapSessionIdLen);
    426 			wpa_hexdump(MSG_DEBUG, "EAP: Session-Id",
    427 				    sm->eapSessionId, sm->eapSessionIdLen);
    428 		}
    429 	}
    430 }
    431 
    432 
    433 /*
    434  * This state signals the lower layer that a response packet is ready to be
    435  * sent.
    436  */
    437 SM_STATE(EAP, SEND_RESPONSE)
    438 {
    439 	SM_ENTRY(EAP, SEND_RESPONSE);
    440 	wpabuf_free(sm->lastRespData);
    441 	if (sm->eapRespData) {
    442 		if (sm->workaround)
    443 			os_memcpy(sm->last_md5, sm->req_md5, 16);
    444 		sm->lastId = sm->reqId;
    445 		sm->lastRespData = wpabuf_dup(sm->eapRespData);
    446 		eapol_set_bool(sm, EAPOL_eapResp, TRUE);
    447 	} else {
    448 		wpa_printf(MSG_DEBUG, "EAP: No eapRespData available");
    449 		sm->lastRespData = NULL;
    450 	}
    451 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    452 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
    453 }
    454 
    455 
    456 /*
    457  * This state signals the lower layer that the request was discarded, and no
    458  * response packet will be sent at this time.
    459  */
    460 SM_STATE(EAP, DISCARD)
    461 {
    462 	SM_ENTRY(EAP, DISCARD);
    463 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    464 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
    465 }
    466 
    467 
    468 /*
    469  * Handles requests for Identity method and builds a response.
    470  */
    471 SM_STATE(EAP, IDENTITY)
    472 {
    473 	const struct wpabuf *eapReqData;
    474 
    475 	SM_ENTRY(EAP, IDENTITY);
    476 	eapReqData = eapol_get_eapReqData(sm);
    477 	if (!eap_hdr_len_valid(eapReqData, 1))
    478 		return;
    479 	eap_sm_processIdentity(sm, eapReqData);
    480 	wpabuf_free(sm->eapRespData);
    481 	sm->eapRespData = NULL;
    482 	sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
    483 }
    484 
    485 
    486 /*
    487  * Handles requests for Notification method and builds a response.
    488  */
    489 SM_STATE(EAP, NOTIFICATION)
    490 {
    491 	const struct wpabuf *eapReqData;
    492 
    493 	SM_ENTRY(EAP, NOTIFICATION);
    494 	eapReqData = eapol_get_eapReqData(sm);
    495 	if (!eap_hdr_len_valid(eapReqData, 1))
    496 		return;
    497 	eap_sm_processNotify(sm, eapReqData);
    498 	wpabuf_free(sm->eapRespData);
    499 	sm->eapRespData = NULL;
    500 	sm->eapRespData = eap_sm_buildNotify(sm->reqId);
    501 }
    502 
    503 
    504 /*
    505  * This state retransmits the previous response packet.
    506  */
    507 SM_STATE(EAP, RETRANSMIT)
    508 {
    509 	SM_ENTRY(EAP, RETRANSMIT);
    510 	wpabuf_free(sm->eapRespData);
    511 	if (sm->lastRespData)
    512 		sm->eapRespData = wpabuf_dup(sm->lastRespData);
    513 	else
    514 		sm->eapRespData = NULL;
    515 }
    516 
    517 
    518 /*
    519  * This state is entered in case of a successful completion of authentication
    520  * and state machine waits here until port is disabled or EAP authentication is
    521  * restarted.
    522  */
    523 SM_STATE(EAP, SUCCESS)
    524 {
    525 	SM_ENTRY(EAP, SUCCESS);
    526 	if (sm->eapKeyData != NULL)
    527 		sm->eapKeyAvailable = TRUE;
    528 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
    529 
    530 	/*
    531 	 * RFC 4137 does not clear eapReq here, but this seems to be required
    532 	 * to avoid processing the same request twice when state machine is
    533 	 * initialized.
    534 	 */
    535 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    536 
    537 	/*
    538 	 * RFC 4137 does not set eapNoResp here, but this seems to be required
    539 	 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
    540 	 * addition, either eapResp or eapNoResp is required to be set after
    541 	 * processing the received EAP frame.
    542 	 */
    543 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
    544 
    545 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
    546 		"EAP authentication completed successfully");
    547 }
    548 
    549 
    550 /*
    551  * This state is entered in case of a failure and state machine waits here
    552  * until port is disabled or EAP authentication is restarted.
    553  */
    554 SM_STATE(EAP, FAILURE)
    555 {
    556 	SM_ENTRY(EAP, FAILURE);
    557 	eapol_set_bool(sm, EAPOL_eapFail, TRUE);
    558 
    559 	/*
    560 	 * RFC 4137 does not clear eapReq here, but this seems to be required
    561 	 * to avoid processing the same request twice when state machine is
    562 	 * initialized.
    563 	 */
    564 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    565 
    566 	/*
    567 	 * RFC 4137 does not set eapNoResp here. However, either eapResp or
    568 	 * eapNoResp is required to be set after processing the received EAP
    569 	 * frame.
    570 	 */
    571 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
    572 
    573 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
    574 		"EAP authentication failed");
    575 
    576 	sm->prev_failure = 1;
    577 }
    578 
    579 
    580 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
    581 {
    582 	/*
    583 	 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
    584 	 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
    585 	 * RFC 4137 require that reqId == lastId. In addition, it looks like
    586 	 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
    587 	 *
    588 	 * Accept this kind of Id if EAP workarounds are enabled. These are
    589 	 * unauthenticated plaintext messages, so this should have minimal
    590 	 * security implications (bit easier to fake EAP-Success/Failure).
    591 	 */
    592 	if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
    593 			       reqId == ((lastId + 2) & 0xff))) {
    594 		wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
    595 			   "identifier field in EAP Success: "
    596 			   "reqId=%d lastId=%d (these are supposed to be "
    597 			   "same)", reqId, lastId);
    598 		return 1;
    599 	}
    600 	wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
    601 		   "lastId=%d", reqId, lastId);
    602 	return 0;
    603 }
    604 
    605 
    606 /*
    607  * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
    608  */
    609 
    610 static void eap_peer_sm_step_idle(struct eap_sm *sm)
    611 {
    612 	/*
    613 	 * The first three transitions are from RFC 4137. The last two are
    614 	 * local additions to handle special cases with LEAP and PEAP server
    615 	 * not sending EAP-Success in some cases.
    616 	 */
    617 	if (eapol_get_bool(sm, EAPOL_eapReq))
    618 		SM_ENTER(EAP, RECEIVED);
    619 	else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
    620 		  sm->decision != DECISION_FAIL) ||
    621 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
    622 		  sm->decision == DECISION_UNCOND_SUCC))
    623 		SM_ENTER(EAP, SUCCESS);
    624 	else if (eapol_get_bool(sm, EAPOL_altReject) ||
    625 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
    626 		  sm->decision != DECISION_UNCOND_SUCC) ||
    627 		 (eapol_get_bool(sm, EAPOL_altAccept) &&
    628 		  sm->methodState != METHOD_CONT &&
    629 		  sm->decision == DECISION_FAIL))
    630 		SM_ENTER(EAP, FAILURE);
    631 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
    632 		 sm->leap_done && sm->decision != DECISION_FAIL &&
    633 		 sm->methodState == METHOD_DONE)
    634 		SM_ENTER(EAP, SUCCESS);
    635 	else if (sm->selectedMethod == EAP_TYPE_PEAP &&
    636 		 sm->peap_done && sm->decision != DECISION_FAIL &&
    637 		 sm->methodState == METHOD_DONE)
    638 		SM_ENTER(EAP, SUCCESS);
    639 }
    640 
    641 
    642 static int eap_peer_req_is_duplicate(struct eap_sm *sm)
    643 {
    644 	int duplicate;
    645 
    646 	duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
    647 	if (sm->workaround && duplicate &&
    648 	    os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
    649 		/*
    650 		 * RFC 4137 uses (reqId == lastId) as the only verification for
    651 		 * duplicate EAP requests. However, this misses cases where the
    652 		 * AS is incorrectly using the same id again; and
    653 		 * unfortunately, such implementations exist. Use MD5 hash as
    654 		 * an extra verification for the packets being duplicate to
    655 		 * workaround these issues.
    656 		 */
    657 		wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
    658 			   "EAP packets were not identical");
    659 		wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
    660 			   "duplicate packet");
    661 		duplicate = 0;
    662 	}
    663 
    664 	return duplicate;
    665 }
    666 
    667 
    668 static void eap_peer_sm_step_received(struct eap_sm *sm)
    669 {
    670 	int duplicate = eap_peer_req_is_duplicate(sm);
    671 
    672 	/*
    673 	 * Two special cases below for LEAP are local additions to work around
    674 	 * odd LEAP behavior (EAP-Success in the middle of authentication and
    675 	 * then swapped roles). Other transitions are based on RFC 4137.
    676 	 */
    677 	if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
    678 	    (sm->reqId == sm->lastId ||
    679 	     eap_success_workaround(sm, sm->reqId, sm->lastId)))
    680 		SM_ENTER(EAP, SUCCESS);
    681 	else if (sm->methodState != METHOD_CONT &&
    682 		 ((sm->rxFailure &&
    683 		   sm->decision != DECISION_UNCOND_SUCC) ||
    684 		  (sm->rxSuccess && sm->decision == DECISION_FAIL &&
    685 		   (sm->selectedMethod != EAP_TYPE_LEAP ||
    686 		    sm->methodState != METHOD_MAY_CONT))) &&
    687 		 (sm->reqId == sm->lastId ||
    688 		  eap_success_workaround(sm, sm->reqId, sm->lastId)))
    689 		SM_ENTER(EAP, FAILURE);
    690 	else if (sm->rxReq && duplicate)
    691 		SM_ENTER(EAP, RETRANSMIT);
    692 	else if (sm->rxReq && !duplicate &&
    693 		 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
    694 		 sm->allowNotifications)
    695 		SM_ENTER(EAP, NOTIFICATION);
    696 	else if (sm->rxReq && !duplicate &&
    697 		 sm->selectedMethod == EAP_TYPE_NONE &&
    698 		 sm->reqMethod == EAP_TYPE_IDENTITY)
    699 		SM_ENTER(EAP, IDENTITY);
    700 	else if (sm->rxReq && !duplicate &&
    701 		 sm->selectedMethod == EAP_TYPE_NONE &&
    702 		 sm->reqMethod != EAP_TYPE_IDENTITY &&
    703 		 sm->reqMethod != EAP_TYPE_NOTIFICATION)
    704 		SM_ENTER(EAP, GET_METHOD);
    705 	else if (sm->rxReq && !duplicate &&
    706 		 sm->reqMethod == sm->selectedMethod &&
    707 		 sm->methodState != METHOD_DONE)
    708 		SM_ENTER(EAP, METHOD);
    709 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
    710 		 (sm->rxSuccess || sm->rxResp))
    711 		SM_ENTER(EAP, METHOD);
    712 	else
    713 		SM_ENTER(EAP, DISCARD);
    714 }
    715 
    716 
    717 static void eap_peer_sm_step_local(struct eap_sm *sm)
    718 {
    719 	switch (sm->EAP_state) {
    720 	case EAP_INITIALIZE:
    721 		SM_ENTER(EAP, IDLE);
    722 		break;
    723 	case EAP_DISABLED:
    724 		if (eapol_get_bool(sm, EAPOL_portEnabled) &&
    725 		    !sm->force_disabled)
    726 			SM_ENTER(EAP, INITIALIZE);
    727 		break;
    728 	case EAP_IDLE:
    729 		eap_peer_sm_step_idle(sm);
    730 		break;
    731 	case EAP_RECEIVED:
    732 		eap_peer_sm_step_received(sm);
    733 		break;
    734 	case EAP_GET_METHOD:
    735 		if (sm->selectedMethod == sm->reqMethod)
    736 			SM_ENTER(EAP, METHOD);
    737 		else
    738 			SM_ENTER(EAP, SEND_RESPONSE);
    739 		break;
    740 	case EAP_METHOD:
    741 		/*
    742 		 * Note: RFC 4137 uses methodState == DONE && decision == FAIL
    743 		 * as the condition. eapRespData == NULL here is used to allow
    744 		 * final EAP method response to be sent without having to change
    745 		 * all methods to either use methodState MAY_CONT or leaving
    746 		 * decision to something else than FAIL in cases where the only
    747 		 * expected response is EAP-Failure.
    748 		 */
    749 		if (sm->ignore)
    750 			SM_ENTER(EAP, DISCARD);
    751 		else if (sm->methodState == METHOD_DONE &&
    752 			 sm->decision == DECISION_FAIL && !sm->eapRespData)
    753 			SM_ENTER(EAP, FAILURE);
    754 		else
    755 			SM_ENTER(EAP, SEND_RESPONSE);
    756 		break;
    757 	case EAP_SEND_RESPONSE:
    758 		SM_ENTER(EAP, IDLE);
    759 		break;
    760 	case EAP_DISCARD:
    761 		SM_ENTER(EAP, IDLE);
    762 		break;
    763 	case EAP_IDENTITY:
    764 		SM_ENTER(EAP, SEND_RESPONSE);
    765 		break;
    766 	case EAP_NOTIFICATION:
    767 		SM_ENTER(EAP, SEND_RESPONSE);
    768 		break;
    769 	case EAP_RETRANSMIT:
    770 		SM_ENTER(EAP, SEND_RESPONSE);
    771 		break;
    772 	case EAP_SUCCESS:
    773 		break;
    774 	case EAP_FAILURE:
    775 		break;
    776 	}
    777 }
    778 
    779 
    780 SM_STEP(EAP)
    781 {
    782 	/* Global transitions */
    783 	if (eapol_get_bool(sm, EAPOL_eapRestart) &&
    784 	    eapol_get_bool(sm, EAPOL_portEnabled))
    785 		SM_ENTER_GLOBAL(EAP, INITIALIZE);
    786 	else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
    787 		SM_ENTER_GLOBAL(EAP, DISABLED);
    788 	else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
    789 		/* RFC 4137 does not place any limit on number of EAP messages
    790 		 * in an authentication session. However, some error cases have
    791 		 * ended up in a state were EAP messages were sent between the
    792 		 * peer and server in a loop (e.g., TLS ACK frame in both
    793 		 * direction). Since this is quite undesired outcome, limit the
    794 		 * total number of EAP round-trips and abort authentication if
    795 		 * this limit is exceeded.
    796 		 */
    797 		if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
    798 			wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
    799 				"authentication rounds - abort",
    800 				EAP_MAX_AUTH_ROUNDS);
    801 			sm->num_rounds++;
    802 			SM_ENTER_GLOBAL(EAP, FAILURE);
    803 		}
    804 	} else {
    805 		/* Local transitions */
    806 		eap_peer_sm_step_local(sm);
    807 	}
    808 }
    809 
    810 
    811 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
    812 				  EapType method)
    813 {
    814 	if (!eap_allowed_method(sm, vendor, method)) {
    815 		wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
    816 			   "vendor %u method %u", vendor, method);
    817 		return FALSE;
    818 	}
    819 	if (eap_peer_get_eap_method(vendor, method))
    820 		return TRUE;
    821 	wpa_printf(MSG_DEBUG, "EAP: not included in build: "
    822 		   "vendor %u method %u", vendor, method);
    823 	return FALSE;
    824 }
    825 
    826 
    827 static struct wpabuf * eap_sm_build_expanded_nak(
    828 	struct eap_sm *sm, int id, const struct eap_method *methods,
    829 	size_t count)
    830 {
    831 	struct wpabuf *resp;
    832 	int found = 0;
    833 	const struct eap_method *m;
    834 
    835 	wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
    836 
    837 	/* RFC 3748 - 5.3.2: Expanded Nak */
    838 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
    839 			     8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
    840 	if (resp == NULL)
    841 		return NULL;
    842 
    843 	wpabuf_put_be24(resp, EAP_VENDOR_IETF);
    844 	wpabuf_put_be32(resp, EAP_TYPE_NAK);
    845 
    846 	for (m = methods; m; m = m->next) {
    847 		if (sm->reqVendor == m->vendor &&
    848 		    sm->reqVendorMethod == m->method)
    849 			continue; /* do not allow the current method again */
    850 		if (eap_allowed_method(sm, m->vendor, m->method)) {
    851 			wpa_printf(MSG_DEBUG, "EAP: allowed type: "
    852 				   "vendor=%u method=%u",
    853 				   m->vendor, m->method);
    854 			wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
    855 			wpabuf_put_be24(resp, m->vendor);
    856 			wpabuf_put_be32(resp, m->method);
    857 
    858 			found++;
    859 		}
    860 	}
    861 	if (!found) {
    862 		wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
    863 		wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
    864 		wpabuf_put_be24(resp, EAP_VENDOR_IETF);
    865 		wpabuf_put_be32(resp, EAP_TYPE_NONE);
    866 	}
    867 
    868 	eap_update_len(resp);
    869 
    870 	return resp;
    871 }
    872 
    873 
    874 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
    875 {
    876 	struct wpabuf *resp;
    877 	u8 *start;
    878 	int found = 0, expanded_found = 0;
    879 	size_t count;
    880 	const struct eap_method *methods, *m;
    881 
    882 	wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
    883 		   "vendor=%u method=%u not allowed)", sm->reqMethod,
    884 		   sm->reqVendor, sm->reqVendorMethod);
    885 	methods = eap_peer_get_methods(&count);
    886 	if (methods == NULL)
    887 		return NULL;
    888 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
    889 		return eap_sm_build_expanded_nak(sm, id, methods, count);
    890 
    891 	/* RFC 3748 - 5.3.1: Legacy Nak */
    892 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
    893 			     sizeof(struct eap_hdr) + 1 + count + 1,
    894 			     EAP_CODE_RESPONSE, id);
    895 	if (resp == NULL)
    896 		return NULL;
    897 
    898 	start = wpabuf_put(resp, 0);
    899 	for (m = methods; m; m = m->next) {
    900 		if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
    901 			continue; /* do not allow the current method again */
    902 		if (eap_allowed_method(sm, m->vendor, m->method)) {
    903 			if (m->vendor != EAP_VENDOR_IETF) {
    904 				if (expanded_found)
    905 					continue;
    906 				expanded_found = 1;
    907 				wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
    908 			} else
    909 				wpabuf_put_u8(resp, m->method);
    910 			found++;
    911 		}
    912 	}
    913 	if (!found)
    914 		wpabuf_put_u8(resp, EAP_TYPE_NONE);
    915 	wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
    916 
    917 	eap_update_len(resp);
    918 
    919 	return resp;
    920 }
    921 
    922 
    923 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
    924 {
    925 	const u8 *pos;
    926 	size_t msg_len;
    927 
    928 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
    929 		"EAP authentication started");
    930 	eap_notify_status(sm, "started", "");
    931 
    932 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
    933 			       &msg_len);
    934 	if (pos == NULL)
    935 		return;
    936 
    937 	/*
    938 	 * RFC 3748 - 5.1: Identity
    939 	 * Data field may contain a displayable message in UTF-8. If this
    940 	 * includes NUL-character, only the data before that should be
    941 	 * displayed. Some EAP implementasitons may piggy-back additional
    942 	 * options after the NUL.
    943 	 */
    944 	/* TODO: could save displayable message so that it can be shown to the
    945 	 * user in case of interaction is required */
    946 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
    947 			  pos, msg_len);
    948 }
    949 
    950 
    951 #ifdef PCSC_FUNCS
    952 
    953 /*
    954  * Rules for figuring out MNC length based on IMSI for SIM cards that do not
    955  * include MNC length field.
    956  */
    957 static int mnc_len_from_imsi(const char *imsi)
    958 {
    959 	char mcc_str[4];
    960 	unsigned int mcc;
    961 
    962 	os_memcpy(mcc_str, imsi, 3);
    963 	mcc_str[3] = '\0';
    964 	mcc = atoi(mcc_str);
    965 
    966 	if (mcc == 228)
    967 		return 2; /* Networks in Switzerland use 2-digit MNC */
    968 	if (mcc == 244)
    969 		return 2; /* Networks in Finland use 2-digit MNC */
    970 
    971 	return -1;
    972 }
    973 
    974 
    975 static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
    976 				    size_t max_len, size_t *imsi_len)
    977 {
    978 	int mnc_len;
    979 	char *pos, mnc[4];
    980 
    981 	if (*imsi_len + 36 > max_len) {
    982 		wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
    983 		return -1;
    984 	}
    985 
    986 	/* MNC (2 or 3 digits) */
    987 	mnc_len = scard_get_mnc_len(sm->scard_ctx);
    988 	if (mnc_len < 0)
    989 		mnc_len = mnc_len_from_imsi(imsi);
    990 	if (mnc_len < 0) {
    991 		wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
    992 			   "assuming 3");
    993 		mnc_len = 3;
    994 	}
    995 
    996 	if (mnc_len == 2) {
    997 		mnc[0] = '0';
    998 		mnc[1] = imsi[3];
    999 		mnc[2] = imsi[4];
   1000 	} else if (mnc_len == 3) {
   1001 		mnc[0] = imsi[3];
   1002 		mnc[1] = imsi[4];
   1003 		mnc[2] = imsi[5];
   1004 	}
   1005 	mnc[3] = '\0';
   1006 
   1007 	pos = imsi + *imsi_len;
   1008 	pos += os_snprintf(pos, imsi + max_len - pos,
   1009 			   "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
   1010 			   mnc, imsi[0], imsi[1], imsi[2]);
   1011 	*imsi_len = pos - imsi;
   1012 
   1013 	return 0;
   1014 }
   1015 
   1016 
   1017 static int eap_sm_imsi_identity(struct eap_sm *sm,
   1018 				struct eap_peer_config *conf)
   1019 {
   1020 	enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
   1021 	char imsi[100];
   1022 	size_t imsi_len;
   1023 	struct eap_method_type *m = conf->eap_methods;
   1024 	int i;
   1025 
   1026 	imsi_len = sizeof(imsi);
   1027 	if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
   1028 		wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
   1029 		return -1;
   1030 	}
   1031 
   1032 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
   1033 
   1034 	if (imsi_len < 7) {
   1035 		wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
   1036 		return -1;
   1037 	}
   1038 
   1039 	if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) {
   1040 		wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
   1041 		return -1;
   1042 	}
   1043 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
   1044 
   1045 	for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
   1046 			  m[i].method != EAP_TYPE_NONE); i++) {
   1047 		if (m[i].vendor == EAP_VENDOR_IETF &&
   1048 		    m[i].method == EAP_TYPE_AKA_PRIME) {
   1049 			method = EAP_SM_AKA_PRIME;
   1050 			break;
   1051 		}
   1052 
   1053 		if (m[i].vendor == EAP_VENDOR_IETF &&
   1054 		    m[i].method == EAP_TYPE_AKA) {
   1055 			method = EAP_SM_AKA;
   1056 			break;
   1057 		}
   1058 	}
   1059 
   1060 	os_free(conf->identity);
   1061 	conf->identity = os_malloc(1 + imsi_len);
   1062 	if (conf->identity == NULL) {
   1063 		wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
   1064 			   "IMSI-based identity");
   1065 		return -1;
   1066 	}
   1067 
   1068 	switch (method) {
   1069 	case EAP_SM_SIM:
   1070 		conf->identity[0] = '1';
   1071 		break;
   1072 	case EAP_SM_AKA:
   1073 		conf->identity[0] = '0';
   1074 		break;
   1075 	case EAP_SM_AKA_PRIME:
   1076 		conf->identity[0] = '6';
   1077 		break;
   1078 	}
   1079 	os_memcpy(conf->identity + 1, imsi, imsi_len);
   1080 	conf->identity_len = 1 + imsi_len;
   1081 
   1082 	return 0;
   1083 }
   1084 
   1085 #endif /* PCSC_FUNCS */
   1086 
   1087 
   1088 static int eap_sm_set_scard_pin(struct eap_sm *sm,
   1089 				struct eap_peer_config *conf)
   1090 {
   1091 #ifdef PCSC_FUNCS
   1092 	if (scard_set_pin(sm->scard_ctx, conf->pin)) {
   1093 		/*
   1094 		 * Make sure the same PIN is not tried again in order to avoid
   1095 		 * blocking SIM.
   1096 		 */
   1097 		os_free(conf->pin);
   1098 		conf->pin = NULL;
   1099 
   1100 		wpa_printf(MSG_WARNING, "PIN validation failed");
   1101 		eap_sm_request_pin(sm);
   1102 		return -1;
   1103 	}
   1104 	return 0;
   1105 #else /* PCSC_FUNCS */
   1106 	return -1;
   1107 #endif /* PCSC_FUNCS */
   1108 }
   1109 
   1110 static int eap_sm_get_scard_identity(struct eap_sm *sm,
   1111 				     struct eap_peer_config *conf)
   1112 {
   1113 #ifdef PCSC_FUNCS
   1114 	if (eap_sm_set_scard_pin(sm, conf))
   1115 		return -1;
   1116 
   1117 	return eap_sm_imsi_identity(sm, conf);
   1118 #else /* PCSC_FUNCS */
   1119 	return -1;
   1120 #endif /* PCSC_FUNCS */
   1121 }
   1122 
   1123 
   1124 /**
   1125  * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
   1126  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1127  * @id: EAP identifier for the packet
   1128  * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
   1129  * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
   1130  * failure
   1131  *
   1132  * This function allocates and builds an EAP-Identity/Response packet for the
   1133  * current network. The caller is responsible for freeing the returned data.
   1134  */
   1135 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
   1136 {
   1137 	struct eap_peer_config *config = eap_get_config(sm);
   1138 	struct wpabuf *resp;
   1139 	const u8 *identity;
   1140 	size_t identity_len;
   1141 
   1142 	if (config == NULL) {
   1143 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
   1144 			   "was not available");
   1145 		return NULL;
   1146 	}
   1147 
   1148 	if (sm->m && sm->m->get_identity &&
   1149 	    (identity = sm->m->get_identity(sm, sm->eap_method_priv,
   1150 					    &identity_len)) != NULL) {
   1151 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
   1152 				  "identity", identity, identity_len);
   1153 	} else if (!encrypted && config->anonymous_identity) {
   1154 		identity = config->anonymous_identity;
   1155 		identity_len = config->anonymous_identity_len;
   1156 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
   1157 				  identity, identity_len);
   1158 	} else {
   1159 		identity = config->identity;
   1160 		identity_len = config->identity_len;
   1161 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
   1162 				  identity, identity_len);
   1163 	}
   1164 
   1165 	if (identity == NULL) {
   1166 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
   1167 			   "configuration was not available");
   1168 		if (config->pcsc) {
   1169 			if (eap_sm_get_scard_identity(sm, config) < 0)
   1170 				return NULL;
   1171 			identity = config->identity;
   1172 			identity_len = config->identity_len;
   1173 			wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
   1174 					  "IMSI", identity, identity_len);
   1175 		} else {
   1176 			eap_sm_request_identity(sm);
   1177 			return NULL;
   1178 		}
   1179 	} else if (config->pcsc) {
   1180 		if (eap_sm_set_scard_pin(sm, config) < 0)
   1181 			return NULL;
   1182 	}
   1183 
   1184 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
   1185 			     EAP_CODE_RESPONSE, id);
   1186 	if (resp == NULL)
   1187 		return NULL;
   1188 
   1189 	wpabuf_put_data(resp, identity, identity_len);
   1190 
   1191 	return resp;
   1192 }
   1193 
   1194 
   1195 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
   1196 {
   1197 	const u8 *pos;
   1198 	char *msg;
   1199 	size_t i, msg_len;
   1200 
   1201 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
   1202 			       &msg_len);
   1203 	if (pos == NULL)
   1204 		return;
   1205 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
   1206 			  pos, msg_len);
   1207 
   1208 	msg = os_malloc(msg_len + 1);
   1209 	if (msg == NULL)
   1210 		return;
   1211 	for (i = 0; i < msg_len; i++)
   1212 		msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
   1213 	msg[msg_len] = '\0';
   1214 	wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
   1215 		WPA_EVENT_EAP_NOTIFICATION, msg);
   1216 	os_free(msg);
   1217 }
   1218 
   1219 
   1220 static struct wpabuf * eap_sm_buildNotify(int id)
   1221 {
   1222 	struct wpabuf *resp;
   1223 
   1224 	wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
   1225 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
   1226 			     EAP_CODE_RESPONSE, id);
   1227 	if (resp == NULL)
   1228 		return NULL;
   1229 
   1230 	return resp;
   1231 }
   1232 
   1233 
   1234 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
   1235 {
   1236 	const struct eap_hdr *hdr;
   1237 	size_t plen;
   1238 	const u8 *pos;
   1239 
   1240 	sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
   1241 	sm->reqId = 0;
   1242 	sm->reqMethod = EAP_TYPE_NONE;
   1243 	sm->reqVendor = EAP_VENDOR_IETF;
   1244 	sm->reqVendorMethod = EAP_TYPE_NONE;
   1245 
   1246 	if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
   1247 		return;
   1248 
   1249 	hdr = wpabuf_head(req);
   1250 	plen = be_to_host16(hdr->length);
   1251 	if (plen > wpabuf_len(req)) {
   1252 		wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
   1253 			   "(len=%lu plen=%lu)",
   1254 			   (unsigned long) wpabuf_len(req),
   1255 			   (unsigned long) plen);
   1256 		return;
   1257 	}
   1258 
   1259 	sm->reqId = hdr->identifier;
   1260 
   1261 	if (sm->workaround) {
   1262 		const u8 *addr[1];
   1263 		addr[0] = wpabuf_head(req);
   1264 		md5_vector(1, addr, &plen, sm->req_md5);
   1265 	}
   1266 
   1267 	switch (hdr->code) {
   1268 	case EAP_CODE_REQUEST:
   1269 		if (plen < sizeof(*hdr) + 1) {
   1270 			wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
   1271 				   "no Type field");
   1272 			return;
   1273 		}
   1274 		sm->rxReq = TRUE;
   1275 		pos = (const u8 *) (hdr + 1);
   1276 		sm->reqMethod = *pos++;
   1277 		if (sm->reqMethod == EAP_TYPE_EXPANDED) {
   1278 			if (plen < sizeof(*hdr) + 8) {
   1279 				wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
   1280 					   "expanded EAP-Packet (plen=%lu)",
   1281 					   (unsigned long) plen);
   1282 				return;
   1283 			}
   1284 			sm->reqVendor = WPA_GET_BE24(pos);
   1285 			pos += 3;
   1286 			sm->reqVendorMethod = WPA_GET_BE32(pos);
   1287 		}
   1288 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
   1289 			   "method=%u vendor=%u vendorMethod=%u",
   1290 			   sm->reqId, sm->reqMethod, sm->reqVendor,
   1291 			   sm->reqVendorMethod);
   1292 		break;
   1293 	case EAP_CODE_RESPONSE:
   1294 		if (sm->selectedMethod == EAP_TYPE_LEAP) {
   1295 			/*
   1296 			 * LEAP differs from RFC 4137 by using reversed roles
   1297 			 * for mutual authentication and because of this, we
   1298 			 * need to accept EAP-Response frames if LEAP is used.
   1299 			 */
   1300 			if (plen < sizeof(*hdr) + 1) {
   1301 				wpa_printf(MSG_DEBUG, "EAP: Too short "
   1302 					   "EAP-Response - no Type field");
   1303 				return;
   1304 			}
   1305 			sm->rxResp = TRUE;
   1306 			pos = (const u8 *) (hdr + 1);
   1307 			sm->reqMethod = *pos;
   1308 			wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
   1309 				   "LEAP method=%d id=%d",
   1310 				   sm->reqMethod, sm->reqId);
   1311 			break;
   1312 		}
   1313 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
   1314 		break;
   1315 	case EAP_CODE_SUCCESS:
   1316 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
   1317 		eap_notify_status(sm, "completion", "success");
   1318 		sm->rxSuccess = TRUE;
   1319 		break;
   1320 	case EAP_CODE_FAILURE:
   1321 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
   1322 		eap_notify_status(sm, "completion", "failure");
   1323 		sm->rxFailure = TRUE;
   1324 		break;
   1325 	default:
   1326 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
   1327 			   "code %d", hdr->code);
   1328 		break;
   1329 	}
   1330 }
   1331 
   1332 
   1333 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
   1334 				  union tls_event_data *data)
   1335 {
   1336 	struct eap_sm *sm = ctx;
   1337 	char *hash_hex = NULL;
   1338 
   1339 	switch (ev) {
   1340 	case TLS_CERT_CHAIN_SUCCESS:
   1341 		eap_notify_status(sm, "remote certificate verification",
   1342 				  "success");
   1343 		break;
   1344 	case TLS_CERT_CHAIN_FAILURE:
   1345 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
   1346 			"reason=%d depth=%d subject='%s' err='%s'",
   1347 			data->cert_fail.reason,
   1348 			data->cert_fail.depth,
   1349 			data->cert_fail.subject,
   1350 			data->cert_fail.reason_txt);
   1351 		eap_notify_status(sm, "remote certificate verification",
   1352 				  data->cert_fail.reason_txt);
   1353 		break;
   1354 	case TLS_PEER_CERTIFICATE:
   1355 		if (!sm->eapol_cb->notify_cert)
   1356 			break;
   1357 
   1358 		if (data->peer_cert.hash) {
   1359 			size_t len = data->peer_cert.hash_len * 2 + 1;
   1360 			hash_hex = os_malloc(len);
   1361 			if (hash_hex) {
   1362 				wpa_snprintf_hex(hash_hex, len,
   1363 						 data->peer_cert.hash,
   1364 						 data->peer_cert.hash_len);
   1365 			}
   1366 		}
   1367 
   1368 		sm->eapol_cb->notify_cert(sm->eapol_ctx,
   1369 					  data->peer_cert.depth,
   1370 					  data->peer_cert.subject,
   1371 					  hash_hex, data->peer_cert.cert);
   1372 		break;
   1373 	case TLS_ALERT:
   1374 		if (data->alert.is_local)
   1375 			eap_notify_status(sm, "local TLS alert",
   1376 					  data->alert.description);
   1377 		else
   1378 			eap_notify_status(sm, "remote TLS alert",
   1379 					  data->alert.description);
   1380 		break;
   1381 	}
   1382 
   1383 	os_free(hash_hex);
   1384 }
   1385 
   1386 
   1387 /**
   1388  * eap_peer_sm_init - Allocate and initialize EAP peer state machine
   1389  * @eapol_ctx: Context data to be used with eapol_cb calls
   1390  * @eapol_cb: Pointer to EAPOL callback functions
   1391  * @msg_ctx: Context data for wpa_msg() calls
   1392  * @conf: EAP configuration
   1393  * Returns: Pointer to the allocated EAP state machine or %NULL on failure
   1394  *
   1395  * This function allocates and initializes an EAP state machine. In addition,
   1396  * this initializes TLS library for the new EAP state machine. eapol_cb pointer
   1397  * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
   1398  * state machine. Consequently, the caller must make sure that this data
   1399  * structure remains alive while the EAP state machine is active.
   1400  */
   1401 struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
   1402 				 struct eapol_callbacks *eapol_cb,
   1403 				 void *msg_ctx, struct eap_config *conf)
   1404 {
   1405 	struct eap_sm *sm;
   1406 	struct tls_config tlsconf;
   1407 
   1408 	sm = os_zalloc(sizeof(*sm));
   1409 	if (sm == NULL)
   1410 		return NULL;
   1411 	sm->eapol_ctx = eapol_ctx;
   1412 	sm->eapol_cb = eapol_cb;
   1413 	sm->msg_ctx = msg_ctx;
   1414 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
   1415 	sm->wps = conf->wps;
   1416 
   1417 	os_memset(&tlsconf, 0, sizeof(tlsconf));
   1418 	tlsconf.opensc_engine_path = conf->opensc_engine_path;
   1419 	tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
   1420 	tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
   1421 #ifdef CONFIG_FIPS
   1422 	tlsconf.fips_mode = 1;
   1423 #endif /* CONFIG_FIPS */
   1424 	tlsconf.event_cb = eap_peer_sm_tls_event;
   1425 	tlsconf.cb_ctx = sm;
   1426 	tlsconf.cert_in_cb = conf->cert_in_cb;
   1427 	sm->ssl_ctx = tls_init(&tlsconf);
   1428 	if (sm->ssl_ctx == NULL) {
   1429 		wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
   1430 			   "context.");
   1431 		os_free(sm);
   1432 		return NULL;
   1433 	}
   1434 
   1435 	sm->ssl_ctx2 = tls_init(&tlsconf);
   1436 	if (sm->ssl_ctx2 == NULL) {
   1437 		wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
   1438 			   "context (2).");
   1439 		/* Run without separate TLS context within TLS tunnel */
   1440 	}
   1441 
   1442 	return sm;
   1443 }
   1444 
   1445 
   1446 /**
   1447  * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
   1448  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1449  *
   1450  * This function deinitializes EAP state machine and frees all allocated
   1451  * resources.
   1452  */
   1453 void eap_peer_sm_deinit(struct eap_sm *sm)
   1454 {
   1455 	if (sm == NULL)
   1456 		return;
   1457 	eap_deinit_prev_method(sm, "EAP deinit");
   1458 	eap_sm_abort(sm);
   1459 	if (sm->ssl_ctx2)
   1460 		tls_deinit(sm->ssl_ctx2);
   1461 	tls_deinit(sm->ssl_ctx);
   1462 	os_free(sm);
   1463 }
   1464 
   1465 
   1466 /**
   1467  * eap_peer_sm_step - Step EAP peer state machine
   1468  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1469  * Returns: 1 if EAP state was changed or 0 if not
   1470  *
   1471  * This function advances EAP state machine to a new state to match with the
   1472  * current variables. This should be called whenever variables used by the EAP
   1473  * state machine have changed.
   1474  */
   1475 int eap_peer_sm_step(struct eap_sm *sm)
   1476 {
   1477 	int res = 0;
   1478 	do {
   1479 		sm->changed = FALSE;
   1480 		SM_STEP_RUN(EAP);
   1481 		if (sm->changed)
   1482 			res = 1;
   1483 	} while (sm->changed);
   1484 	return res;
   1485 }
   1486 
   1487 
   1488 /**
   1489  * eap_sm_abort - Abort EAP authentication
   1490  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1491  *
   1492  * Release system resources that have been allocated for the authentication
   1493  * session without fully deinitializing the EAP state machine.
   1494  */
   1495 void eap_sm_abort(struct eap_sm *sm)
   1496 {
   1497 	wpabuf_free(sm->lastRespData);
   1498 	sm->lastRespData = NULL;
   1499 	wpabuf_free(sm->eapRespData);
   1500 	sm->eapRespData = NULL;
   1501 	eap_sm_free_key(sm);
   1502 	os_free(sm->eapSessionId);
   1503 	sm->eapSessionId = NULL;
   1504 
   1505 	/* This is not clearly specified in the EAP statemachines draft, but
   1506 	 * it seems necessary to make sure that some of the EAPOL variables get
   1507 	 * cleared for the next authentication. */
   1508 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
   1509 }
   1510 
   1511 
   1512 #ifdef CONFIG_CTRL_IFACE
   1513 static const char * eap_sm_state_txt(int state)
   1514 {
   1515 	switch (state) {
   1516 	case EAP_INITIALIZE:
   1517 		return "INITIALIZE";
   1518 	case EAP_DISABLED:
   1519 		return "DISABLED";
   1520 	case EAP_IDLE:
   1521 		return "IDLE";
   1522 	case EAP_RECEIVED:
   1523 		return "RECEIVED";
   1524 	case EAP_GET_METHOD:
   1525 		return "GET_METHOD";
   1526 	case EAP_METHOD:
   1527 		return "METHOD";
   1528 	case EAP_SEND_RESPONSE:
   1529 		return "SEND_RESPONSE";
   1530 	case EAP_DISCARD:
   1531 		return "DISCARD";
   1532 	case EAP_IDENTITY:
   1533 		return "IDENTITY";
   1534 	case EAP_NOTIFICATION:
   1535 		return "NOTIFICATION";
   1536 	case EAP_RETRANSMIT:
   1537 		return "RETRANSMIT";
   1538 	case EAP_SUCCESS:
   1539 		return "SUCCESS";
   1540 	case EAP_FAILURE:
   1541 		return "FAILURE";
   1542 	default:
   1543 		return "UNKNOWN";
   1544 	}
   1545 }
   1546 #endif /* CONFIG_CTRL_IFACE */
   1547 
   1548 
   1549 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
   1550 static const char * eap_sm_method_state_txt(EapMethodState state)
   1551 {
   1552 	switch (state) {
   1553 	case METHOD_NONE:
   1554 		return "NONE";
   1555 	case METHOD_INIT:
   1556 		return "INIT";
   1557 	case METHOD_CONT:
   1558 		return "CONT";
   1559 	case METHOD_MAY_CONT:
   1560 		return "MAY_CONT";
   1561 	case METHOD_DONE:
   1562 		return "DONE";
   1563 	default:
   1564 		return "UNKNOWN";
   1565 	}
   1566 }
   1567 
   1568 
   1569 static const char * eap_sm_decision_txt(EapDecision decision)
   1570 {
   1571 	switch (decision) {
   1572 	case DECISION_FAIL:
   1573 		return "FAIL";
   1574 	case DECISION_COND_SUCC:
   1575 		return "COND_SUCC";
   1576 	case DECISION_UNCOND_SUCC:
   1577 		return "UNCOND_SUCC";
   1578 	default:
   1579 		return "UNKNOWN";
   1580 	}
   1581 }
   1582 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
   1583 
   1584 
   1585 #ifdef CONFIG_CTRL_IFACE
   1586 
   1587 /**
   1588  * eap_sm_get_status - Get EAP state machine status
   1589  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1590  * @buf: Buffer for status information
   1591  * @buflen: Maximum buffer length
   1592  * @verbose: Whether to include verbose status information
   1593  * Returns: Number of bytes written to buf.
   1594  *
   1595  * Query EAP state machine for status information. This function fills in a
   1596  * text area with current status information from the EAPOL state machine. If
   1597  * the buffer (buf) is not large enough, status information will be truncated
   1598  * to fit the buffer.
   1599  */
   1600 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
   1601 {
   1602 	int len, ret;
   1603 
   1604 	if (sm == NULL)
   1605 		return 0;
   1606 
   1607 	len = os_snprintf(buf, buflen,
   1608 			  "EAP state=%s\n",
   1609 			  eap_sm_state_txt(sm->EAP_state));
   1610 	if (len < 0 || (size_t) len >= buflen)
   1611 		return 0;
   1612 
   1613 	if (sm->selectedMethod != EAP_TYPE_NONE) {
   1614 		const char *name;
   1615 		if (sm->m) {
   1616 			name = sm->m->name;
   1617 		} else {
   1618 			const struct eap_method *m =
   1619 				eap_peer_get_eap_method(EAP_VENDOR_IETF,
   1620 							sm->selectedMethod);
   1621 			if (m)
   1622 				name = m->name;
   1623 			else
   1624 				name = "?";
   1625 		}
   1626 		ret = os_snprintf(buf + len, buflen - len,
   1627 				  "selectedMethod=%d (EAP-%s)\n",
   1628 				  sm->selectedMethod, name);
   1629 		if (ret < 0 || (size_t) ret >= buflen - len)
   1630 			return len;
   1631 		len += ret;
   1632 
   1633 		if (sm->m && sm->m->get_status) {
   1634 			len += sm->m->get_status(sm, sm->eap_method_priv,
   1635 						 buf + len, buflen - len,
   1636 						 verbose);
   1637 		}
   1638 	}
   1639 
   1640 	if (verbose) {
   1641 		ret = os_snprintf(buf + len, buflen - len,
   1642 				  "reqMethod=%d\n"
   1643 				  "methodState=%s\n"
   1644 				  "decision=%s\n"
   1645 				  "ClientTimeout=%d\n",
   1646 				  sm->reqMethod,
   1647 				  eap_sm_method_state_txt(sm->methodState),
   1648 				  eap_sm_decision_txt(sm->decision),
   1649 				  sm->ClientTimeout);
   1650 		if (ret < 0 || (size_t) ret >= buflen - len)
   1651 			return len;
   1652 		len += ret;
   1653 	}
   1654 
   1655 	return len;
   1656 }
   1657 #endif /* CONFIG_CTRL_IFACE */
   1658 
   1659 
   1660 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
   1661 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
   1662 			   const char *msg, size_t msglen)
   1663 {
   1664 	struct eap_peer_config *config;
   1665 	const char *txt = NULL;
   1666 	char *tmp;
   1667 
   1668 	if (sm == NULL)
   1669 		return;
   1670 	config = eap_get_config(sm);
   1671 	if (config == NULL)
   1672 		return;
   1673 
   1674 	switch (field) {
   1675 	case WPA_CTRL_REQ_EAP_IDENTITY:
   1676 		config->pending_req_identity++;
   1677 		break;
   1678 	case WPA_CTRL_REQ_EAP_PASSWORD:
   1679 		config->pending_req_password++;
   1680 		break;
   1681 	case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
   1682 		config->pending_req_new_password++;
   1683 		break;
   1684 	case WPA_CTRL_REQ_EAP_PIN:
   1685 		config->pending_req_pin++;
   1686 		break;
   1687 	case WPA_CTRL_REQ_EAP_OTP:
   1688 		if (msg) {
   1689 			tmp = os_malloc(msglen + 3);
   1690 			if (tmp == NULL)
   1691 				return;
   1692 			tmp[0] = '[';
   1693 			os_memcpy(tmp + 1, msg, msglen);
   1694 			tmp[msglen + 1] = ']';
   1695 			tmp[msglen + 2] = '\0';
   1696 			txt = tmp;
   1697 			os_free(config->pending_req_otp);
   1698 			config->pending_req_otp = tmp;
   1699 			config->pending_req_otp_len = msglen + 3;
   1700 		} else {
   1701 			if (config->pending_req_otp == NULL)
   1702 				return;
   1703 			txt = config->pending_req_otp;
   1704 		}
   1705 		break;
   1706 	case WPA_CTRL_REQ_EAP_PASSPHRASE:
   1707 		config->pending_req_passphrase++;
   1708 		break;
   1709 	case WPA_CTRL_REQ_SIM:
   1710 		txt = msg;
   1711 		break;
   1712 	default:
   1713 		return;
   1714 	}
   1715 
   1716 	if (sm->eapol_cb->eap_param_needed)
   1717 		sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
   1718 }
   1719 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
   1720 #define eap_sm_request(sm, type, msg, msglen) do { } while (0)
   1721 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
   1722 
   1723 const char * eap_sm_get_method_name(struct eap_sm *sm)
   1724 {
   1725 	if (sm->m == NULL)
   1726 		return "UNKNOWN";
   1727 	return sm->m->name;
   1728 }
   1729 
   1730 
   1731 /**
   1732  * eap_sm_request_identity - Request identity from user (ctrl_iface)
   1733  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1734  *
   1735  * EAP methods can call this function to request identity information for the
   1736  * current network. This is normally called when the identity is not included
   1737  * in the network configuration. The request will be sent to monitor programs
   1738  * through the control interface.
   1739  */
   1740 void eap_sm_request_identity(struct eap_sm *sm)
   1741 {
   1742 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
   1743 }
   1744 
   1745 
   1746 /**
   1747  * eap_sm_request_password - Request password from user (ctrl_iface)
   1748  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1749  *
   1750  * EAP methods can call this function to request password information for the
   1751  * current network. This is normally called when the password is not included
   1752  * in the network configuration. The request will be sent to monitor programs
   1753  * through the control interface.
   1754  */
   1755 void eap_sm_request_password(struct eap_sm *sm)
   1756 {
   1757 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
   1758 }
   1759 
   1760 
   1761 /**
   1762  * eap_sm_request_new_password - Request new password from user (ctrl_iface)
   1763  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1764  *
   1765  * EAP methods can call this function to request new password information for
   1766  * the current network. This is normally called when the EAP method indicates
   1767  * that the current password has expired and password change is required. The
   1768  * request will be sent to monitor programs through the control interface.
   1769  */
   1770 void eap_sm_request_new_password(struct eap_sm *sm)
   1771 {
   1772 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
   1773 }
   1774 
   1775 
   1776 /**
   1777  * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
   1778  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1779  *
   1780  * EAP methods can call this function to request SIM or smart card PIN
   1781  * information for the current network. This is normally called when the PIN is
   1782  * not included in the network configuration. The request will be sent to
   1783  * monitor programs through the control interface.
   1784  */
   1785 void eap_sm_request_pin(struct eap_sm *sm)
   1786 {
   1787 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
   1788 }
   1789 
   1790 
   1791 /**
   1792  * eap_sm_request_otp - Request one time password from user (ctrl_iface)
   1793  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1794  * @msg: Message to be displayed to the user when asking for OTP
   1795  * @msg_len: Length of the user displayable message
   1796  *
   1797  * EAP methods can call this function to request open time password (OTP) for
   1798  * the current network. The request will be sent to monitor programs through
   1799  * the control interface.
   1800  */
   1801 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
   1802 {
   1803 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
   1804 }
   1805 
   1806 
   1807 /**
   1808  * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
   1809  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1810  *
   1811  * EAP methods can call this function to request passphrase for a private key
   1812  * for the current network. This is normally called when the passphrase is not
   1813  * included in the network configuration. The request will be sent to monitor
   1814  * programs through the control interface.
   1815  */
   1816 void eap_sm_request_passphrase(struct eap_sm *sm)
   1817 {
   1818 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
   1819 }
   1820 
   1821 
   1822 /**
   1823  * eap_sm_request_sim - Request external SIM processing
   1824  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1825  * @req: EAP method specific request
   1826  */
   1827 void eap_sm_request_sim(struct eap_sm *sm, const char *req)
   1828 {
   1829 	eap_sm_request(sm, WPA_CTRL_REQ_SIM, req, os_strlen(req));
   1830 }
   1831 
   1832 
   1833 /**
   1834  * eap_sm_notify_ctrl_attached - Notification of attached monitor
   1835  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1836  *
   1837  * Notify EAP state machines that a monitor was attached to the control
   1838  * interface to trigger re-sending of pending requests for user input.
   1839  */
   1840 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
   1841 {
   1842 	struct eap_peer_config *config = eap_get_config(sm);
   1843 
   1844 	if (config == NULL)
   1845 		return;
   1846 
   1847 	/* Re-send any pending requests for user data since a new control
   1848 	 * interface was added. This handles cases where the EAP authentication
   1849 	 * starts immediately after system startup when the user interface is
   1850 	 * not yet running. */
   1851 	if (config->pending_req_identity)
   1852 		eap_sm_request_identity(sm);
   1853 	if (config->pending_req_password)
   1854 		eap_sm_request_password(sm);
   1855 	if (config->pending_req_new_password)
   1856 		eap_sm_request_new_password(sm);
   1857 	if (config->pending_req_otp)
   1858 		eap_sm_request_otp(sm, NULL, 0);
   1859 	if (config->pending_req_pin)
   1860 		eap_sm_request_pin(sm);
   1861 	if (config->pending_req_passphrase)
   1862 		eap_sm_request_passphrase(sm);
   1863 }
   1864 
   1865 
   1866 static int eap_allowed_phase2_type(int vendor, int type)
   1867 {
   1868 	if (vendor != EAP_VENDOR_IETF)
   1869 		return 0;
   1870 	return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
   1871 		type != EAP_TYPE_FAST;
   1872 }
   1873 
   1874 
   1875 /**
   1876  * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
   1877  * @name: EAP method name, e.g., MD5
   1878  * @vendor: Buffer for returning EAP Vendor-Id
   1879  * Returns: EAP method type or %EAP_TYPE_NONE if not found
   1880  *
   1881  * This function maps EAP type names into EAP type numbers that are allowed for
   1882  * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
   1883  * EAP-PEAP, EAP-TTLS, and EAP-FAST.
   1884  */
   1885 u32 eap_get_phase2_type(const char *name, int *vendor)
   1886 {
   1887 	int v;
   1888 	u8 type = eap_peer_get_type(name, &v);
   1889 	if (eap_allowed_phase2_type(v, type)) {
   1890 		*vendor = v;
   1891 		return type;
   1892 	}
   1893 	*vendor = EAP_VENDOR_IETF;
   1894 	return EAP_TYPE_NONE;
   1895 }
   1896 
   1897 
   1898 /**
   1899  * eap_get_phase2_types - Get list of allowed EAP phase 2 types
   1900  * @config: Pointer to a network configuration
   1901  * @count: Pointer to a variable to be filled with number of returned EAP types
   1902  * Returns: Pointer to allocated type list or %NULL on failure
   1903  *
   1904  * This function generates an array of allowed EAP phase 2 (tunneled) types for
   1905  * the given network configuration.
   1906  */
   1907 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
   1908 					      size_t *count)
   1909 {
   1910 	struct eap_method_type *buf;
   1911 	u32 method;
   1912 	int vendor;
   1913 	size_t mcount;
   1914 	const struct eap_method *methods, *m;
   1915 
   1916 	methods = eap_peer_get_methods(&mcount);
   1917 	if (methods == NULL)
   1918 		return NULL;
   1919 	*count = 0;
   1920 	buf = os_malloc(mcount * sizeof(struct eap_method_type));
   1921 	if (buf == NULL)
   1922 		return NULL;
   1923 
   1924 	for (m = methods; m; m = m->next) {
   1925 		vendor = m->vendor;
   1926 		method = m->method;
   1927 		if (eap_allowed_phase2_type(vendor, method)) {
   1928 			if (vendor == EAP_VENDOR_IETF &&
   1929 			    method == EAP_TYPE_TLS && config &&
   1930 			    config->private_key2 == NULL)
   1931 				continue;
   1932 			buf[*count].vendor = vendor;
   1933 			buf[*count].method = method;
   1934 			(*count)++;
   1935 		}
   1936 	}
   1937 
   1938 	return buf;
   1939 }
   1940 
   1941 
   1942 /**
   1943  * eap_set_fast_reauth - Update fast_reauth setting
   1944  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1945  * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
   1946  */
   1947 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
   1948 {
   1949 	sm->fast_reauth = enabled;
   1950 }
   1951 
   1952 
   1953 /**
   1954  * eap_set_workaround - Update EAP workarounds setting
   1955  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1956  * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
   1957  */
   1958 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
   1959 {
   1960 	sm->workaround = workaround;
   1961 }
   1962 
   1963 
   1964 /**
   1965  * eap_get_config - Get current network configuration
   1966  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1967  * Returns: Pointer to the current network configuration or %NULL if not found
   1968  *
   1969  * EAP peer methods should avoid using this function if they can use other
   1970  * access functions, like eap_get_config_identity() and
   1971  * eap_get_config_password(), that do not require direct access to
   1972  * struct eap_peer_config.
   1973  */
   1974 struct eap_peer_config * eap_get_config(struct eap_sm *sm)
   1975 {
   1976 	return sm->eapol_cb->get_config(sm->eapol_ctx);
   1977 }
   1978 
   1979 
   1980 /**
   1981  * eap_get_config_identity - Get identity from the network configuration
   1982  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1983  * @len: Buffer for the length of the identity
   1984  * Returns: Pointer to the identity or %NULL if not found
   1985  */
   1986 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
   1987 {
   1988 	struct eap_peer_config *config = eap_get_config(sm);
   1989 	if (config == NULL)
   1990 		return NULL;
   1991 	*len = config->identity_len;
   1992 	return config->identity;
   1993 }
   1994 
   1995 
   1996 static int eap_get_ext_password(struct eap_sm *sm,
   1997 				struct eap_peer_config *config)
   1998 {
   1999 	char *name;
   2000 
   2001 	if (config->password == NULL)
   2002 		return -1;
   2003 
   2004 	name = os_zalloc(config->password_len + 1);
   2005 	if (name == NULL)
   2006 		return -1;
   2007 	os_memcpy(name, config->password, config->password_len);
   2008 
   2009 	ext_password_free(sm->ext_pw_buf);
   2010 	sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
   2011 	os_free(name);
   2012 
   2013 	return sm->ext_pw_buf == NULL ? -1 : 0;
   2014 }
   2015 
   2016 
   2017 /**
   2018  * eap_get_config_password - Get password from the network configuration
   2019  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2020  * @len: Buffer for the length of the password
   2021  * Returns: Pointer to the password or %NULL if not found
   2022  */
   2023 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
   2024 {
   2025 	struct eap_peer_config *config = eap_get_config(sm);
   2026 	if (config == NULL)
   2027 		return NULL;
   2028 
   2029 	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
   2030 		if (eap_get_ext_password(sm, config) < 0)
   2031 			return NULL;
   2032 		*len = wpabuf_len(sm->ext_pw_buf);
   2033 		return wpabuf_head(sm->ext_pw_buf);
   2034 	}
   2035 
   2036 	*len = config->password_len;
   2037 	return config->password;
   2038 }
   2039 
   2040 
   2041 /**
   2042  * eap_get_config_password2 - Get password from the network configuration
   2043  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2044  * @len: Buffer for the length of the password
   2045  * @hash: Buffer for returning whether the password is stored as a
   2046  * NtPasswordHash instead of plaintext password; can be %NULL if this
   2047  * information is not needed
   2048  * Returns: Pointer to the password or %NULL if not found
   2049  */
   2050 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
   2051 {
   2052 	struct eap_peer_config *config = eap_get_config(sm);
   2053 	if (config == NULL)
   2054 		return NULL;
   2055 
   2056 	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
   2057 		if (eap_get_ext_password(sm, config) < 0)
   2058 			return NULL;
   2059 		if (hash)
   2060 			*hash = 0;
   2061 		*len = wpabuf_len(sm->ext_pw_buf);
   2062 		return wpabuf_head(sm->ext_pw_buf);
   2063 	}
   2064 
   2065 	*len = config->password_len;
   2066 	if (hash)
   2067 		*hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
   2068 	return config->password;
   2069 }
   2070 
   2071 
   2072 /**
   2073  * eap_get_config_new_password - Get new password from network configuration
   2074  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2075  * @len: Buffer for the length of the new password
   2076  * Returns: Pointer to the new password or %NULL if not found
   2077  */
   2078 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
   2079 {
   2080 	struct eap_peer_config *config = eap_get_config(sm);
   2081 	if (config == NULL)
   2082 		return NULL;
   2083 	*len = config->new_password_len;
   2084 	return config->new_password;
   2085 }
   2086 
   2087 
   2088 /**
   2089  * eap_get_config_otp - Get one-time password from the network configuration
   2090  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2091  * @len: Buffer for the length of the one-time password
   2092  * Returns: Pointer to the one-time password or %NULL if not found
   2093  */
   2094 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
   2095 {
   2096 	struct eap_peer_config *config = eap_get_config(sm);
   2097 	if (config == NULL)
   2098 		return NULL;
   2099 	*len = config->otp_len;
   2100 	return config->otp;
   2101 }
   2102 
   2103 
   2104 /**
   2105  * eap_clear_config_otp - Clear used one-time password
   2106  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2107  *
   2108  * This function clears a used one-time password (OTP) from the current network
   2109  * configuration. This should be called when the OTP has been used and is not
   2110  * needed anymore.
   2111  */
   2112 void eap_clear_config_otp(struct eap_sm *sm)
   2113 {
   2114 	struct eap_peer_config *config = eap_get_config(sm);
   2115 	if (config == NULL)
   2116 		return;
   2117 	os_memset(config->otp, 0, config->otp_len);
   2118 	os_free(config->otp);
   2119 	config->otp = NULL;
   2120 	config->otp_len = 0;
   2121 }
   2122 
   2123 
   2124 /**
   2125  * eap_get_config_phase1 - Get phase1 data from the network configuration
   2126  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2127  * Returns: Pointer to the phase1 data or %NULL if not found
   2128  */
   2129 const char * eap_get_config_phase1(struct eap_sm *sm)
   2130 {
   2131 	struct eap_peer_config *config = eap_get_config(sm);
   2132 	if (config == NULL)
   2133 		return NULL;
   2134 	return config->phase1;
   2135 }
   2136 
   2137 
   2138 /**
   2139  * eap_get_config_phase2 - Get phase2 data from the network configuration
   2140  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2141  * Returns: Pointer to the phase1 data or %NULL if not found
   2142  */
   2143 const char * eap_get_config_phase2(struct eap_sm *sm)
   2144 {
   2145 	struct eap_peer_config *config = eap_get_config(sm);
   2146 	if (config == NULL)
   2147 		return NULL;
   2148 	return config->phase2;
   2149 }
   2150 
   2151 
   2152 int eap_get_config_fragment_size(struct eap_sm *sm)
   2153 {
   2154 	struct eap_peer_config *config = eap_get_config(sm);
   2155 	if (config == NULL)
   2156 		return -1;
   2157 	return config->fragment_size;
   2158 }
   2159 
   2160 
   2161 /**
   2162  * eap_key_available - Get key availability (eapKeyAvailable variable)
   2163  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2164  * Returns: 1 if EAP keying material is available, 0 if not
   2165  */
   2166 int eap_key_available(struct eap_sm *sm)
   2167 {
   2168 	return sm ? sm->eapKeyAvailable : 0;
   2169 }
   2170 
   2171 
   2172 /**
   2173  * eap_notify_success - Notify EAP state machine about external success trigger
   2174  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2175  *
   2176  * This function is called when external event, e.g., successful completion of
   2177  * WPA-PSK key handshake, is indicating that EAP state machine should move to
   2178  * success state. This is mainly used with security modes that do not use EAP
   2179  * state machine (e.g., WPA-PSK).
   2180  */
   2181 void eap_notify_success(struct eap_sm *sm)
   2182 {
   2183 	if (sm) {
   2184 		sm->decision = DECISION_COND_SUCC;
   2185 		sm->EAP_state = EAP_SUCCESS;
   2186 	}
   2187 }
   2188 
   2189 
   2190 /**
   2191  * eap_notify_lower_layer_success - Notification of lower layer success
   2192  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2193  *
   2194  * Notify EAP state machines that a lower layer has detected a successful
   2195  * authentication. This is used to recover from dropped EAP-Success messages.
   2196  */
   2197 void eap_notify_lower_layer_success(struct eap_sm *sm)
   2198 {
   2199 	if (sm == NULL)
   2200 		return;
   2201 
   2202 	if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
   2203 	    sm->decision == DECISION_FAIL ||
   2204 	    (sm->methodState != METHOD_MAY_CONT &&
   2205 	     sm->methodState != METHOD_DONE))
   2206 		return;
   2207 
   2208 	if (sm->eapKeyData != NULL)
   2209 		sm->eapKeyAvailable = TRUE;
   2210 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
   2211 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
   2212 		"EAP authentication completed successfully (based on lower "
   2213 		"layer success)");
   2214 }
   2215 
   2216 
   2217 /**
   2218  * eap_get_eapSessionId - Get Session-Id from EAP state machine
   2219  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2220  * @len: Pointer to variable that will be set to number of bytes in the session
   2221  * Returns: Pointer to the EAP Session-Id or %NULL on failure
   2222  *
   2223  * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available
   2224  * only after a successful authentication. EAP state machine continues to manage
   2225  * the Session-Id and the caller must not change or free the returned data.
   2226  */
   2227 const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len)
   2228 {
   2229 	if (sm == NULL || sm->eapSessionId == NULL) {
   2230 		*len = 0;
   2231 		return NULL;
   2232 	}
   2233 
   2234 	*len = sm->eapSessionIdLen;
   2235 	return sm->eapSessionId;
   2236 }
   2237 
   2238 
   2239 /**
   2240  * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
   2241  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2242  * @len: Pointer to variable that will be set to number of bytes in the key
   2243  * Returns: Pointer to the EAP keying data or %NULL on failure
   2244  *
   2245  * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
   2246  * key is available only after a successful authentication. EAP state machine
   2247  * continues to manage the key data and the caller must not change or free the
   2248  * returned data.
   2249  */
   2250 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
   2251 {
   2252 	if (sm == NULL || sm->eapKeyData == NULL) {
   2253 		*len = 0;
   2254 		return NULL;
   2255 	}
   2256 
   2257 	*len = sm->eapKeyDataLen;
   2258 	return sm->eapKeyData;
   2259 }
   2260 
   2261 
   2262 /**
   2263  * eap_get_eapKeyData - Get EAP response data
   2264  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2265  * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
   2266  *
   2267  * Fetch EAP response (eapRespData) from the EAP state machine. This data is
   2268  * available when EAP state machine has processed an incoming EAP request. The
   2269  * EAP state machine does not maintain a reference to the response after this
   2270  * function is called and the caller is responsible for freeing the data.
   2271  */
   2272 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
   2273 {
   2274 	struct wpabuf *resp;
   2275 
   2276 	if (sm == NULL || sm->eapRespData == NULL)
   2277 		return NULL;
   2278 
   2279 	resp = sm->eapRespData;
   2280 	sm->eapRespData = NULL;
   2281 
   2282 	return resp;
   2283 }
   2284 
   2285 
   2286 /**
   2287  * eap_sm_register_scard_ctx - Notification of smart card context
   2288  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2289  * @ctx: Context data for smart card operations
   2290  *
   2291  * Notify EAP state machines of context data for smart card operations. This
   2292  * context data will be used as a parameter for scard_*() functions.
   2293  */
   2294 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
   2295 {
   2296 	if (sm)
   2297 		sm->scard_ctx = ctx;
   2298 }
   2299 
   2300 
   2301 /**
   2302  * eap_set_config_blob - Set or add a named configuration blob
   2303  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2304  * @blob: New value for the blob
   2305  *
   2306  * Adds a new configuration blob or replaces the current value of an existing
   2307  * blob.
   2308  */
   2309 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
   2310 {
   2311 #ifndef CONFIG_NO_CONFIG_BLOBS
   2312 	sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
   2313 #endif /* CONFIG_NO_CONFIG_BLOBS */
   2314 }
   2315 
   2316 
   2317 /**
   2318  * eap_get_config_blob - Get a named configuration blob
   2319  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2320  * @name: Name of the blob
   2321  * Returns: Pointer to blob data or %NULL if not found
   2322  */
   2323 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
   2324 						   const char *name)
   2325 {
   2326 #ifndef CONFIG_NO_CONFIG_BLOBS
   2327 	return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
   2328 #else /* CONFIG_NO_CONFIG_BLOBS */
   2329 	return NULL;
   2330 #endif /* CONFIG_NO_CONFIG_BLOBS */
   2331 }
   2332 
   2333 
   2334 /**
   2335  * eap_set_force_disabled - Set force_disabled flag
   2336  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2337  * @disabled: 1 = EAP disabled, 0 = EAP enabled
   2338  *
   2339  * This function is used to force EAP state machine to be disabled when it is
   2340  * not in use (e.g., with WPA-PSK or plaintext connections).
   2341  */
   2342 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
   2343 {
   2344 	sm->force_disabled = disabled;
   2345 }
   2346 
   2347 
   2348 /**
   2349  * eap_set_external_sim - Set external_sim flag
   2350  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2351  * @external_sim: Whether external SIM/USIM processing is used
   2352  */
   2353 void eap_set_external_sim(struct eap_sm *sm, int external_sim)
   2354 {
   2355 	sm->external_sim = external_sim;
   2356 }
   2357 
   2358 
   2359  /**
   2360  * eap_notify_pending - Notify that EAP method is ready to re-process a request
   2361  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2362  *
   2363  * An EAP method can perform a pending operation (e.g., to get a response from
   2364  * an external process). Once the response is available, this function can be
   2365  * used to request EAPOL state machine to retry delivering the previously
   2366  * received (and still unanswered) EAP request to EAP state machine.
   2367  */
   2368 void eap_notify_pending(struct eap_sm *sm)
   2369 {
   2370 	sm->eapol_cb->notify_pending(sm->eapol_ctx);
   2371 }
   2372 
   2373 
   2374 /**
   2375  * eap_invalidate_cached_session - Mark cached session data invalid
   2376  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2377  */
   2378 void eap_invalidate_cached_session(struct eap_sm *sm)
   2379 {
   2380 	if (sm)
   2381 		eap_deinit_prev_method(sm, "invalidate");
   2382 }
   2383 
   2384 
   2385 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
   2386 {
   2387 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
   2388 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
   2389 		return 0; /* Not a WPS Enrollee */
   2390 
   2391 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
   2392 		return 0; /* Not using PBC */
   2393 
   2394 	return 1;
   2395 }
   2396 
   2397 
   2398 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
   2399 {
   2400 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
   2401 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
   2402 		return 0; /* Not a WPS Enrollee */
   2403 
   2404 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
   2405 		return 0; /* Not using PIN */
   2406 
   2407 	return 1;
   2408 }
   2409 
   2410 
   2411 void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
   2412 {
   2413 	ext_password_free(sm->ext_pw_buf);
   2414 	sm->ext_pw_buf = NULL;
   2415 	sm->ext_pw = ext;
   2416 }
   2417 
   2418 
   2419 /**
   2420  * eap_set_anon_id - Set or add anonymous identity
   2421  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2422  * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
   2423  * @len: Length of anonymous identity in octets
   2424  */
   2425 void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
   2426 {
   2427 	if (sm->eapol_cb->set_anon_id)
   2428 		sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
   2429 }
   2430 
   2431 
   2432 int eap_peer_was_failure_expected(struct eap_sm *sm)
   2433 {
   2434 	return sm->expected_failure;
   2435 }
   2436