1 // <array> -*- C++ -*- 2 3 // Copyright (C) 2007, 2008, 2009, 2010, 2011, 2012 4 // Free Software Foundation, Inc. 5 // 6 // This file is part of the GNU ISO C++ Library. This library is free 7 // software; you can redistribute it and/or modify it under the 8 // terms of the GNU General Public License as published by the 9 // Free Software Foundation; either version 3, or (at your option) 10 // any later version. 11 12 // This library is distributed in the hope that it will be useful, 13 // but WITHOUT ANY WARRANTY; without even the implied warranty of 14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 // GNU General Public License for more details. 16 17 // Under Section 7 of GPL version 3, you are granted additional 18 // permissions described in the GCC Runtime Library Exception, version 19 // 3.1, as published by the Free Software Foundation. 20 21 // You should have received a copy of the GNU General Public License and 22 // a copy of the GCC Runtime Library Exception along with this program; 23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 24 // <http://www.gnu.org/licenses/>. 25 26 /** @file include/array 27 * This is a Standard C++ Library header. 28 */ 29 30 #ifndef _GLIBCXX_ARRAY 31 #define _GLIBCXX_ARRAY 1 32 33 #pragma GCC system_header 34 35 #ifndef __GXX_EXPERIMENTAL_CXX0X__ 36 # include <bits/c++0x_warning.h> 37 #else 38 39 #include <stdexcept> 40 #include <bits/stl_algobase.h> 41 #include <bits/range_access.h> 42 43 namespace std _GLIBCXX_VISIBILITY(default) 44 { 45 _GLIBCXX_BEGIN_NAMESPACE_VERSION 46 47 /** 48 * @brief A standard container for storing a fixed size sequence of elements. 49 * 50 * @ingroup sequences 51 * 52 * Meets the requirements of a <a href="tables.html#65">container</a>, a 53 * <a href="tables.html#66">reversible container</a>, and a 54 * <a href="tables.html#67">sequence</a>. 55 * 56 * Sets support random access iterators. 57 * 58 * @param Tp Type of element. Required to be a complete type. 59 * @param N Number of elements. 60 */ 61 template<typename _Tp, std::size_t _Nm> 62 struct array 63 { 64 typedef _Tp value_type; 65 typedef value_type* pointer; 66 typedef const value_type* const_pointer; 67 typedef value_type& reference; 68 typedef const value_type& const_reference; 69 typedef value_type* iterator; 70 typedef const value_type* const_iterator; 71 typedef std::size_t size_type; 72 typedef std::ptrdiff_t difference_type; 73 typedef std::reverse_iterator<iterator> reverse_iterator; 74 typedef std::reverse_iterator<const_iterator> const_reverse_iterator; 75 76 // Support for zero-sized arrays mandatory. 77 value_type _M_instance[_Nm ? _Nm : 1]; 78 79 // No explicit construct/copy/destroy for aggregate type. 80 81 // DR 776. 82 void 83 fill(const value_type& __u) 84 { std::fill_n(begin(), size(), __u); } 85 86 void 87 swap(array& __other) 88 noexcept(noexcept(swap(std::declval<_Tp&>(), std::declval<_Tp&>()))) 89 { std::swap_ranges(begin(), end(), __other.begin()); } 90 91 // Iterators. 92 iterator 93 begin() noexcept 94 { return iterator(data()); } 95 96 const_iterator 97 begin() const noexcept 98 { return const_iterator(data()); } 99 100 iterator 101 end() noexcept 102 { return iterator(data() + _Nm); } 103 104 const_iterator 105 end() const noexcept 106 { return const_iterator(data() + _Nm); } 107 108 reverse_iterator 109 rbegin() noexcept 110 { return reverse_iterator(end()); } 111 112 const_reverse_iterator 113 rbegin() const noexcept 114 { return const_reverse_iterator(end()); } 115 116 reverse_iterator 117 rend() noexcept 118 { return reverse_iterator(begin()); } 119 120 const_reverse_iterator 121 rend() const noexcept 122 { return const_reverse_iterator(begin()); } 123 124 const_iterator 125 cbegin() const noexcept 126 { return const_iterator(std::__addressof(_M_instance[0])); } 127 128 const_iterator 129 cend() const noexcept 130 { return const_iterator(std::__addressof(_M_instance[_Nm])); } 131 132 const_reverse_iterator 133 crbegin() const noexcept 134 { return const_reverse_iterator(end()); } 135 136 const_reverse_iterator 137 crend() const noexcept 138 { return const_reverse_iterator(begin()); } 139 140 // Capacity. 141 constexpr size_type 142 size() const noexcept { return _Nm; } 143 144 constexpr size_type 145 max_size() const noexcept { return _Nm; } 146 147 constexpr bool 148 empty() const noexcept { return size() == 0; } 149 150 // Element access. 151 reference 152 operator[](size_type __n) 153 { return _M_instance[__n]; } 154 155 constexpr const_reference 156 operator[](size_type __n) const noexcept 157 { return _M_instance[__n]; } 158 159 reference 160 at(size_type __n) 161 { 162 if (__n >= _Nm) 163 std::__throw_out_of_range(__N("array::at")); 164 return _M_instance[__n]; 165 } 166 167 constexpr const_reference 168 at(size_type __n) const 169 { 170 // Result of conditional expression must be an lvalue so use 171 // boolean ? lvalue : (throw-expr, lvalue) 172 return __n < _Nm ? _M_instance[__n] 173 : (std::__throw_out_of_range(__N("array::at")), _M_instance[0]); 174 } 175 176 reference 177 front() 178 { return *begin(); } 179 180 const_reference 181 front() const 182 { return *begin(); } 183 184 reference 185 back() 186 { return _Nm ? *(end() - 1) : *end(); } 187 188 const_reference 189 back() const 190 { return _Nm ? *(end() - 1) : *end(); } 191 192 pointer 193 data() noexcept 194 { return std::__addressof(_M_instance[0]); } 195 196 const_pointer 197 data() const noexcept 198 { return std::__addressof(_M_instance[0]); } 199 }; 200 201 // Array comparisons. 202 template<typename _Tp, std::size_t _Nm> 203 inline bool 204 operator==(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) 205 { return std::equal(__one.begin(), __one.end(), __two.begin()); } 206 207 template<typename _Tp, std::size_t _Nm> 208 inline bool 209 operator!=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) 210 { return !(__one == __two); } 211 212 template<typename _Tp, std::size_t _Nm> 213 inline bool 214 operator<(const array<_Tp, _Nm>& __a, const array<_Tp, _Nm>& __b) 215 { 216 return std::lexicographical_compare(__a.begin(), __a.end(), 217 __b.begin(), __b.end()); 218 } 219 220 template<typename _Tp, std::size_t _Nm> 221 inline bool 222 operator>(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) 223 { return __two < __one; } 224 225 template<typename _Tp, std::size_t _Nm> 226 inline bool 227 operator<=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) 228 { return !(__one > __two); } 229 230 template<typename _Tp, std::size_t _Nm> 231 inline bool 232 operator>=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) 233 { return !(__one < __two); } 234 235 // Specialized algorithms. 236 template<typename _Tp, std::size_t _Nm> 237 inline void 238 swap(array<_Tp, _Nm>& __one, array<_Tp, _Nm>& __two) 239 noexcept(noexcept(__one.swap(__two))) 240 { __one.swap(__two); } 241 242 // Tuple interface to class template array. 243 244 /// tuple_size 245 template<typename _Tp> 246 class tuple_size; 247 248 template<typename _Tp, std::size_t _Nm> 249 struct tuple_size<array<_Tp, _Nm>> 250 : public integral_constant<std::size_t, _Nm> { }; 251 252 /// tuple_element 253 template<std::size_t _Int, typename _Tp> 254 class tuple_element; 255 256 template<std::size_t _Int, typename _Tp, std::size_t _Nm> 257 struct tuple_element<_Int, array<_Tp, _Nm> > 258 { typedef _Tp type; }; 259 260 template<std::size_t _Int, typename _Tp, std::size_t _Nm> 261 constexpr _Tp& 262 get(array<_Tp, _Nm>& __arr) noexcept 263 { return __arr._M_instance[_Int]; } 264 265 template<std::size_t _Int, typename _Tp, std::size_t _Nm> 266 constexpr _Tp&& 267 get(array<_Tp, _Nm>&& __arr) noexcept 268 { return std::move(get<_Int>(__arr)); } 269 270 template<std::size_t _Int, typename _Tp, std::size_t _Nm> 271 constexpr const _Tp& 272 get(const array<_Tp, _Nm>& __arr) noexcept 273 { return __arr._M_instance[_Int]; } 274 275 _GLIBCXX_END_NAMESPACE_VERSION 276 } // namespace 277 278 #endif // __GXX_EXPERIMENTAL_CXX0X__ 279 280 #endif // _GLIBCXX_ARRAY 281