1 // <array> -*- C++ -*- 2 3 // Copyright (C) 2007, 2008, 2009, 2010 Free Software Foundation, Inc. 4 // 5 // This file is part of the GNU ISO C++ Library. This library is free 6 // software; you can redistribute it and/or modify it under the 7 // terms of the GNU General Public License as published by the 8 // Free Software Foundation; either version 3, or (at your option) 9 // any later version. 10 11 // This library is distributed in the hope that it will be useful, 12 // but WITHOUT ANY WARRANTY; without even the implied warranty of 13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 // GNU General Public License for more details. 15 16 // Under Section 7 of GPL version 3, you are granted additional 17 // permissions described in the GCC Runtime Library Exception, version 18 // 3.1, as published by the Free Software Foundation. 19 20 // You should have received a copy of the GNU General Public License and 21 // a copy of the GCC Runtime Library Exception along with this program; 22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 23 // <http://www.gnu.org/licenses/>. 24 25 /** @file include/array 26 * This is a Standard C++ Library header. 27 */ 28 29 #ifndef _GLIBCXX_ARRAY 30 #define _GLIBCXX_ARRAY 1 31 32 #pragma GCC system_header 33 34 #ifndef __GXX_EXPERIMENTAL_CXX0X__ 35 # include <bits/c++0x_warning.h> 36 #else 37 38 #include <bits/stl_algobase.h> 39 #include <bits/range_access.h> 40 41 namespace std _GLIBCXX_VISIBILITY(default) 42 { 43 _GLIBCXX_BEGIN_NAMESPACE_VERSION 44 45 /** 46 * @brief A standard container for storing a fixed size sequence of elements. 47 * 48 * @ingroup sequences 49 * 50 * Meets the requirements of a <a href="tables.html#65">container</a>, a 51 * <a href="tables.html#66">reversible container</a>, and a 52 * <a href="tables.html#67">sequence</a>. 53 * 54 * Sets support random access iterators. 55 * 56 * @param Tp Type of element. Required to be a complete type. 57 * @param N Number of elements. 58 */ 59 template<typename _Tp, std::size_t _Nm> 60 struct array 61 { 62 typedef _Tp value_type; 63 typedef _Tp* pointer; 64 typedef const _Tp* const_pointer; 65 typedef value_type& reference; 66 typedef const value_type& const_reference; 67 typedef value_type* iterator; 68 typedef const value_type* const_iterator; 69 typedef std::size_t size_type; 70 typedef std::ptrdiff_t difference_type; 71 typedef std::reverse_iterator<iterator> reverse_iterator; 72 typedef std::reverse_iterator<const_iterator> const_reverse_iterator; 73 74 // Support for zero-sized arrays mandatory. 75 value_type _M_instance[_Nm ? _Nm : 1]; 76 77 // No explicit construct/copy/destroy for aggregate type. 78 79 // DR 776. 80 void 81 fill(const value_type& __u) 82 { std::fill_n(begin(), size(), __u); } 83 84 void 85 swap(array& __other) 86 { std::swap_ranges(begin(), end(), __other.begin()); } 87 88 // Iterators. 89 iterator 90 begin() 91 { return iterator(std::__addressof(_M_instance[0])); } 92 93 const_iterator 94 begin() const 95 { return const_iterator(std::__addressof(_M_instance[0])); } 96 97 iterator 98 end() 99 { return iterator(std::__addressof(_M_instance[_Nm])); } 100 101 const_iterator 102 end() const 103 { return const_iterator(std::__addressof(_M_instance[_Nm])); } 104 105 reverse_iterator 106 rbegin() 107 { return reverse_iterator(end()); } 108 109 const_reverse_iterator 110 rbegin() const 111 { return const_reverse_iterator(end()); } 112 113 reverse_iterator 114 rend() 115 { return reverse_iterator(begin()); } 116 117 const_reverse_iterator 118 rend() const 119 { return const_reverse_iterator(begin()); } 120 121 const_iterator 122 cbegin() const 123 { return const_iterator(std::__addressof(_M_instance[0])); } 124 125 const_iterator 126 cend() const 127 { return const_iterator(std::__addressof(_M_instance[_Nm])); } 128 129 const_reverse_iterator 130 crbegin() const 131 { return const_reverse_iterator(end()); } 132 133 const_reverse_iterator 134 crend() const 135 { return const_reverse_iterator(begin()); } 136 137 // Capacity. 138 constexpr size_type 139 size() const { return _Nm; } 140 141 constexpr size_type 142 max_size() const { return _Nm; } 143 144 constexpr bool 145 empty() const { return size() == 0; } 146 147 // Element access. 148 reference 149 operator[](size_type __n) 150 { return _M_instance[__n]; } 151 152 const_reference 153 operator[](size_type __n) const 154 { return _M_instance[__n]; } 155 156 reference 157 at(size_type __n) 158 { 159 if (__n >= _Nm) 160 std::__throw_out_of_range(__N("array::at")); 161 return _M_instance[__n]; 162 } 163 164 const_reference 165 at(size_type __n) const 166 { 167 if (__n >= _Nm) 168 std::__throw_out_of_range(__N("array::at")); 169 return _M_instance[__n]; 170 } 171 172 reference 173 front() 174 { return *begin(); } 175 176 const_reference 177 front() const 178 { return *begin(); } 179 180 reference 181 back() 182 { return _Nm ? *(end() - 1) : *end(); } 183 184 const_reference 185 back() const 186 { return _Nm ? *(end() - 1) : *end(); } 187 188 _Tp* 189 data() 190 { return std::__addressof(_M_instance[0]); } 191 192 const _Tp* 193 data() const 194 { return std::__addressof(_M_instance[0]); } 195 }; 196 197 // Array comparisons. 198 template<typename _Tp, std::size_t _Nm> 199 inline bool 200 operator==(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) 201 { return std::equal(__one.begin(), __one.end(), __two.begin()); } 202 203 template<typename _Tp, std::size_t _Nm> 204 inline bool 205 operator!=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) 206 { return !(__one == __two); } 207 208 template<typename _Tp, std::size_t _Nm> 209 inline bool 210 operator<(const array<_Tp, _Nm>& __a, const array<_Tp, _Nm>& __b) 211 { 212 return std::lexicographical_compare(__a.begin(), __a.end(), 213 __b.begin(), __b.end()); 214 } 215 216 template<typename _Tp, std::size_t _Nm> 217 inline bool 218 operator>(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) 219 { return __two < __one; } 220 221 template<typename _Tp, std::size_t _Nm> 222 inline bool 223 operator<=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) 224 { return !(__one > __two); } 225 226 template<typename _Tp, std::size_t _Nm> 227 inline bool 228 operator>=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) 229 { return !(__one < __two); } 230 231 // Specialized algorithms [6.2.2.2]. 232 template<typename _Tp, std::size_t _Nm> 233 inline void 234 swap(array<_Tp, _Nm>& __one, array<_Tp, _Nm>& __two) 235 { __one.swap(__two); } 236 237 // Tuple interface to class template array [6.2.2.5]. 238 239 /// tuple_size 240 template<typename _Tp> 241 class tuple_size; 242 243 /// tuple_element 244 template<std::size_t _Int, typename _Tp> 245 class tuple_element; 246 247 template<typename _Tp, std::size_t _Nm> 248 struct tuple_size<array<_Tp, _Nm> > 249 { static const std::size_t value = _Nm; }; 250 251 template<typename _Tp, std::size_t _Nm> 252 const std::size_t 253 tuple_size<array<_Tp, _Nm> >::value; 254 255 template<std::size_t _Int, typename _Tp, std::size_t _Nm> 256 struct tuple_element<_Int, array<_Tp, _Nm> > 257 { typedef _Tp type; }; 258 259 template<std::size_t _Int, typename _Tp, std::size_t _Nm> 260 inline _Tp& 261 get(array<_Tp, _Nm>& __arr) 262 { return __arr[_Int]; } 263 264 template<std::size_t _Int, typename _Tp, std::size_t _Nm> 265 inline const _Tp& 266 get(const array<_Tp, _Nm>& __arr) 267 { return __arr[_Int]; } 268 269 _GLIBCXX_END_NAMESPACE_VERSION 270 } // namespace 271 272 #endif // __GXX_EXPERIMENTAL_CXX0X__ 273 274 #endif // _GLIBCXX_ARRAY 275