Home | History | Annotate | Download | only in tr1
      1 // Special functions -*- C++ -*-
      2 
      3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
      4 //
      5 // This file is part of the GNU ISO C++ Library.  This library is free
      6 // software; you can redistribute it and/or modify it under the
      7 // terms of the GNU General Public License as published by the
      8 // Free Software Foundation; either version 3, or (at your option)
      9 // any later version.
     10 //
     11 // This library is distributed in the hope that it will be useful,
     12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14 // GNU General Public License for more details.
     15 //
     16 // Under Section 7 of GPL version 3, you are granted additional
     17 // permissions described in the GCC Runtime Library Exception, version
     18 // 3.1, as published by the Free Software Foundation.
     19 
     20 // You should have received a copy of the GNU General Public License and
     21 // a copy of the GCC Runtime Library Exception along with this program;
     22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     23 // <http://www.gnu.org/licenses/>.
     24 
     25 /** @file tr1/legendre_function.tcc
     26  *  This is an internal header file, included by other library headers.
     27  *  Do not attempt to use it directly. @headername{tr1/cmath}
     28  */
     29 
     30 //
     31 // ISO C++ 14882 TR1: 5.2  Special functions
     32 //
     33 
     34 // Written by Edward Smith-Rowland based on:
     35 //   (1) Handbook of Mathematical Functions,
     36 //       ed. Milton Abramowitz and Irene A. Stegun,
     37 //       Dover Publications,
     38 //       Section 8, pp. 331-341
     39 //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
     40 //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
     41 //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
     42 //       2nd ed, pp. 252-254
     43 
     44 #ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
     45 #define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1
     46 
     47 #include "special_function_util.h"
     48 
     49 namespace std _GLIBCXX_VISIBILITY(default)
     50 {
     51 namespace tr1
     52 {
     53   // [5.2] Special functions
     54 
     55   // Implementation-space details.
     56   namespace __detail
     57   {
     58   _GLIBCXX_BEGIN_NAMESPACE_VERSION
     59 
     60     /**
     61      *   @brief  Return the Legendre polynomial by recursion on order
     62      *           @f$ l @f$.
     63      * 
     64      *   The Legendre function of @f$ l @f$ and @f$ x @f$,
     65      *   @f$ P_l(x) @f$, is defined by:
     66      *   @f[
     67      *     P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l}
     68      *   @f]
     69      * 
     70      *   @param  l  The order of the Legendre polynomial.  @f$l >= 0@f$.
     71      *   @param  x  The argument of the Legendre polynomial.  @f$|x| <= 1@f$.
     72      */
     73     template<typename _Tp>
     74     _Tp
     75     __poly_legendre_p(unsigned int __l, _Tp __x)
     76     {
     77 
     78       if ((__x < _Tp(-1)) || (__x > _Tp(+1)))
     79         std::__throw_domain_error(__N("Argument out of range"
     80                                       " in __poly_legendre_p."));
     81       else if (__isnan(__x))
     82         return std::numeric_limits<_Tp>::quiet_NaN();
     83       else if (__x == +_Tp(1))
     84         return +_Tp(1);
     85       else if (__x == -_Tp(1))
     86         return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1));
     87       else
     88         {
     89           _Tp __p_lm2 = _Tp(1);
     90           if (__l == 0)
     91             return __p_lm2;
     92 
     93           _Tp __p_lm1 = __x;
     94           if (__l == 1)
     95             return __p_lm1;
     96 
     97           _Tp __p_l = 0;
     98           for (unsigned int __ll = 2; __ll <= __l; ++__ll)
     99             {
    100               //  This arrangement is supposed to be better for roundoff
    101               //  protection, Arfken, 2nd Ed, Eq 12.17a.
    102               __p_l = _Tp(2) * __x * __p_lm1 - __p_lm2
    103                     - (__x * __p_lm1 - __p_lm2) / _Tp(__ll);
    104               __p_lm2 = __p_lm1;
    105               __p_lm1 = __p_l;
    106             }
    107 
    108           return __p_l;
    109         }
    110     }
    111 
    112 
    113     /**
    114      *   @brief  Return the associated Legendre function by recursion
    115      *           on @f$ l @f$.
    116      * 
    117      *   The associated Legendre function is derived from the Legendre function
    118      *   @f$ P_l(x) @f$ by the Rodrigues formula:
    119      *   @f[
    120      *     P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)
    121      *   @f]
    122      * 
    123      *   @param  l  The order of the associated Legendre function.
    124      *              @f$ l >= 0 @f$.
    125      *   @param  m  The order of the associated Legendre function.
    126      *              @f$ m <= l @f$.
    127      *   @param  x  The argument of the associated Legendre function.
    128      *              @f$ |x| <= 1 @f$.
    129      */
    130     template<typename _Tp>
    131     _Tp
    132     __assoc_legendre_p(unsigned int __l, unsigned int __m, _Tp __x)
    133     {
    134 
    135       if (__x < _Tp(-1) || __x > _Tp(+1))
    136         std::__throw_domain_error(__N("Argument out of range"
    137                                       " in __assoc_legendre_p."));
    138       else if (__m > __l)
    139         std::__throw_domain_error(__N("Degree out of range"
    140                                       " in __assoc_legendre_p."));
    141       else if (__isnan(__x))
    142         return std::numeric_limits<_Tp>::quiet_NaN();
    143       else if (__m == 0)
    144         return __poly_legendre_p(__l, __x);
    145       else
    146         {
    147           _Tp __p_mm = _Tp(1);
    148           if (__m > 0)
    149             {
    150               //  Two square roots seem more accurate more of the time
    151               //  than just one.
    152               _Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x);
    153               _Tp __fact = _Tp(1);
    154               for (unsigned int __i = 1; __i <= __m; ++__i)
    155                 {
    156                   __p_mm *= -__fact * __root;
    157                   __fact += _Tp(2);
    158                 }
    159             }
    160           if (__l == __m)
    161             return __p_mm;
    162 
    163           _Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm;
    164           if (__l == __m + 1)
    165             return __p_mp1m;
    166 
    167           _Tp __p_lm2m = __p_mm;
    168           _Tp __P_lm1m = __p_mp1m;
    169           _Tp __p_lm = _Tp(0);
    170           for (unsigned int __j = __m + 2; __j <= __l; ++__j)
    171             {
    172               __p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m
    173                       - _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m);
    174               __p_lm2m = __P_lm1m;
    175               __P_lm1m = __p_lm;
    176             }
    177 
    178           return __p_lm;
    179         }
    180     }
    181 
    182 
    183     /**
    184      *   @brief  Return the spherical associated Legendre function.
    185      * 
    186      *   The spherical associated Legendre function of @f$ l @f$, @f$ m @f$,
    187      *   and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where
    188      *   @f[
    189      *      Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi}
    190      *                                  \frac{(l-m)!}{(l+m)!}]
    191      *                     P_l^m(\cos\theta) \exp^{im\phi}
    192      *   @f]
    193      *   is the spherical harmonic function and @f$ P_l^m(x) @f$ is the
    194      *   associated Legendre function.
    195      * 
    196      *   This function differs from the associated Legendre function by
    197      *   argument (@f$x = \cos(\theta)@f$) and by a normalization factor
    198      *   but this factor is rather large for large @f$ l @f$ and @f$ m @f$
    199      *   and so this function is stable for larger differences of @f$ l @f$
    200      *   and @f$ m @f$.
    201      * 
    202      *   @param  l  The order of the spherical associated Legendre function.
    203      *              @f$ l >= 0 @f$.
    204      *   @param  m  The order of the spherical associated Legendre function.
    205      *              @f$ m <= l @f$.
    206      *   @param  theta  The radian angle argument of the spherical associated
    207      *                  Legendre function.
    208      */
    209     template <typename _Tp>
    210     _Tp
    211     __sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
    212     {
    213       if (__isnan(__theta))
    214         return std::numeric_limits<_Tp>::quiet_NaN();
    215 
    216       const _Tp __x = std::cos(__theta);
    217 
    218       if (__l < __m)
    219         {
    220           std::__throw_domain_error(__N("Bad argument "
    221                                         "in __sph_legendre."));
    222         }
    223       else if (__m == 0)
    224         {
    225           _Tp __P = __poly_legendre_p(__l, __x);
    226           _Tp __fact = std::sqrt(_Tp(2 * __l + 1)
    227                      / (_Tp(4) * __numeric_constants<_Tp>::__pi()));
    228           __P *= __fact;
    229           return __P;
    230         }
    231       else if (__x == _Tp(1) || __x == -_Tp(1))
    232         {
    233           //  m > 0 here
    234           return _Tp(0);
    235         }
    236       else
    237         {
    238           // m > 0 and |x| < 1 here
    239 
    240           // Starting value for recursion.
    241           // Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) )
    242           //             (-1)^m (1-x^2)^(m/2) / pi^(1/4)
    243           const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1));
    244           const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3));
    245 #if _GLIBCXX_USE_C99_MATH_TR1
    246           const _Tp __lncirc = std::tr1::log1p(-__x * __x);
    247 #else
    248           const _Tp __lncirc = std::log(_Tp(1) - __x * __x);
    249 #endif
    250           //  Gamma(m+1/2) / Gamma(m)
    251 #if _GLIBCXX_USE_C99_MATH_TR1
    252           const _Tp __lnpoch = std::tr1::lgamma(_Tp(__m + _Tp(0.5L)))
    253                              - std::tr1::lgamma(_Tp(__m));
    254 #else
    255           const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L)))
    256                              - __log_gamma(_Tp(__m));
    257 #endif
    258           const _Tp __lnpre_val =
    259                     -_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi()
    260                     + _Tp(0.5L) * (__lnpoch + __m * __lncirc);
    261           _Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m)
    262                    / (_Tp(4) * __numeric_constants<_Tp>::__pi()));
    263           _Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val);
    264           _Tp __y_mp1m = __y_mp1m_factor * __y_mm;
    265 
    266           if (__l == __m)
    267             {
    268               return __y_mm;
    269             }
    270           else if (__l == __m + 1)
    271             {
    272               return __y_mp1m;
    273             }
    274           else
    275             {
    276               _Tp __y_lm = _Tp(0);
    277 
    278               // Compute Y_l^m, l > m+1, upward recursion on l.
    279               for ( int __ll = __m + 2; __ll <= __l; ++__ll)
    280                 {
    281                   const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m);
    282                   const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1);
    283                   const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1)
    284                                                        * _Tp(2 * __ll - 1));
    285                   const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1)
    286                                                                 / _Tp(2 * __ll - 3));
    287                   __y_lm = (__x * __y_mp1m * __fact1
    288                          - (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m);
    289                   __y_mm = __y_mp1m;
    290                   __y_mp1m = __y_lm;
    291                 }
    292 
    293               return __y_lm;
    294             }
    295         }
    296     }
    297 
    298   _GLIBCXX_END_NAMESPACE_VERSION
    299   } // namespace std::tr1::__detail
    300 }
    301 }
    302 
    303 #endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
    304