Home | History | Annotate | Download | only in Analysis
      1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains routines that help analyze properties that chains of
     11 // computations have.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Analysis/ValueTracking.h"
     16 #include "llvm/ADT/SmallPtrSet.h"
     17 #include "llvm/Analysis/InstructionSimplify.h"
     18 #include "llvm/Analysis/MemoryBuiltins.h"
     19 #include "llvm/IR/CallSite.h"
     20 #include "llvm/IR/ConstantRange.h"
     21 #include "llvm/IR/Constants.h"
     22 #include "llvm/IR/DataLayout.h"
     23 #include "llvm/IR/GetElementPtrTypeIterator.h"
     24 #include "llvm/IR/GlobalAlias.h"
     25 #include "llvm/IR/GlobalVariable.h"
     26 #include "llvm/IR/Instructions.h"
     27 #include "llvm/IR/IntrinsicInst.h"
     28 #include "llvm/IR/LLVMContext.h"
     29 #include "llvm/IR/Metadata.h"
     30 #include "llvm/IR/Operator.h"
     31 #include "llvm/IR/PatternMatch.h"
     32 #include "llvm/Support/MathExtras.h"
     33 #include <cstring>
     34 using namespace llvm;
     35 using namespace llvm::PatternMatch;
     36 
     37 const unsigned MaxDepth = 6;
     38 
     39 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
     40 /// unknown returns 0).  For vector types, returns the element type's bitwidth.
     41 static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
     42   if (unsigned BitWidth = Ty->getScalarSizeInBits())
     43     return BitWidth;
     44 
     45   return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
     46 }
     47 
     48 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
     49                                    APInt &KnownZero, APInt &KnownOne,
     50                                    APInt &KnownZero2, APInt &KnownOne2,
     51                                    const DataLayout *TD, unsigned Depth) {
     52   if (!Add) {
     53     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
     54       // We know that the top bits of C-X are clear if X contains less bits
     55       // than C (i.e. no wrap-around can happen).  For example, 20-X is
     56       // positive if we can prove that X is >= 0 and < 16.
     57       if (!CLHS->getValue().isNegative()) {
     58         unsigned BitWidth = KnownZero.getBitWidth();
     59         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
     60         // NLZ can't be BitWidth with no sign bit
     61         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
     62         llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
     63 
     64         // If all of the MaskV bits are known to be zero, then we know the
     65         // output top bits are zero, because we now know that the output is
     66         // from [0-C].
     67         if ((KnownZero2 & MaskV) == MaskV) {
     68           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
     69           // Top bits known zero.
     70           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
     71         }
     72       }
     73     }
     74   }
     75 
     76   unsigned BitWidth = KnownZero.getBitWidth();
     77 
     78   // If one of the operands has trailing zeros, then the bits that the
     79   // other operand has in those bit positions will be preserved in the
     80   // result. For an add, this works with either operand. For a subtract,
     81   // this only works if the known zeros are in the right operand.
     82   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
     83   llvm::computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
     84   unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
     85 
     86   llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
     87   unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
     88 
     89   // Determine which operand has more trailing zeros, and use that
     90   // many bits from the other operand.
     91   if (LHSKnownZeroOut > RHSKnownZeroOut) {
     92     if (Add) {
     93       APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
     94       KnownZero |= KnownZero2 & Mask;
     95       KnownOne  |= KnownOne2 & Mask;
     96     } else {
     97       // If the known zeros are in the left operand for a subtract,
     98       // fall back to the minimum known zeros in both operands.
     99       KnownZero |= APInt::getLowBitsSet(BitWidth,
    100                                         std::min(LHSKnownZeroOut,
    101                                                  RHSKnownZeroOut));
    102     }
    103   } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
    104     APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
    105     KnownZero |= LHSKnownZero & Mask;
    106     KnownOne  |= LHSKnownOne & Mask;
    107   }
    108 
    109   // Are we still trying to solve for the sign bit?
    110   if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
    111     if (NSW) {
    112       if (Add) {
    113         // Adding two positive numbers can't wrap into negative
    114         if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
    115           KnownZero |= APInt::getSignBit(BitWidth);
    116         // and adding two negative numbers can't wrap into positive.
    117         else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
    118           KnownOne |= APInt::getSignBit(BitWidth);
    119       } else {
    120         // Subtracting a negative number from a positive one can't wrap
    121         if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
    122           KnownZero |= APInt::getSignBit(BitWidth);
    123         // neither can subtracting a positive number from a negative one.
    124         else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
    125           KnownOne |= APInt::getSignBit(BitWidth);
    126       }
    127     }
    128   }
    129 }
    130 
    131 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
    132                                 APInt &KnownZero, APInt &KnownOne,
    133                                 APInt &KnownZero2, APInt &KnownOne2,
    134                                 const DataLayout *TD, unsigned Depth) {
    135   unsigned BitWidth = KnownZero.getBitWidth();
    136   computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1);
    137   computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
    138 
    139   bool isKnownNegative = false;
    140   bool isKnownNonNegative = false;
    141   // If the multiplication is known not to overflow, compute the sign bit.
    142   if (NSW) {
    143     if (Op0 == Op1) {
    144       // The product of a number with itself is non-negative.
    145       isKnownNonNegative = true;
    146     } else {
    147       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
    148       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
    149       bool isKnownNegativeOp1 = KnownOne.isNegative();
    150       bool isKnownNegativeOp0 = KnownOne2.isNegative();
    151       // The product of two numbers with the same sign is non-negative.
    152       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
    153         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
    154       // The product of a negative number and a non-negative number is either
    155       // negative or zero.
    156       if (!isKnownNonNegative)
    157         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
    158                            isKnownNonZero(Op0, TD, Depth)) ||
    159                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
    160                            isKnownNonZero(Op1, TD, Depth));
    161     }
    162   }
    163 
    164   // If low bits are zero in either operand, output low known-0 bits.
    165   // Also compute a conserative estimate for high known-0 bits.
    166   // More trickiness is possible, but this is sufficient for the
    167   // interesting case of alignment computation.
    168   KnownOne.clearAllBits();
    169   unsigned TrailZ = KnownZero.countTrailingOnes() +
    170                     KnownZero2.countTrailingOnes();
    171   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
    172                              KnownZero2.countLeadingOnes(),
    173                              BitWidth) - BitWidth;
    174 
    175   TrailZ = std::min(TrailZ, BitWidth);
    176   LeadZ = std::min(LeadZ, BitWidth);
    177   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
    178               APInt::getHighBitsSet(BitWidth, LeadZ);
    179 
    180   // Only make use of no-wrap flags if we failed to compute the sign bit
    181   // directly.  This matters if the multiplication always overflows, in
    182   // which case we prefer to follow the result of the direct computation,
    183   // though as the program is invoking undefined behaviour we can choose
    184   // whatever we like here.
    185   if (isKnownNonNegative && !KnownOne.isNegative())
    186     KnownZero.setBit(BitWidth - 1);
    187   else if (isKnownNegative && !KnownZero.isNegative())
    188     KnownOne.setBit(BitWidth - 1);
    189 }
    190 
    191 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
    192                                              APInt &KnownZero) {
    193   unsigned BitWidth = KnownZero.getBitWidth();
    194   unsigned NumRanges = Ranges.getNumOperands() / 2;
    195   assert(NumRanges >= 1);
    196 
    197   // Use the high end of the ranges to find leading zeros.
    198   unsigned MinLeadingZeros = BitWidth;
    199   for (unsigned i = 0; i < NumRanges; ++i) {
    200     ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
    201     ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
    202     ConstantRange Range(Lower->getValue(), Upper->getValue());
    203     if (Range.isWrappedSet())
    204       MinLeadingZeros = 0; // -1 has no zeros
    205     unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
    206     MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
    207   }
    208 
    209   KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
    210 }
    211 
    212 /// Determine which bits of V are known to be either zero or one and return
    213 /// them in the KnownZero/KnownOne bit sets.
    214 ///
    215 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
    216 /// we cannot optimize based on the assumption that it is zero without changing
    217 /// it to be an explicit zero.  If we don't change it to zero, other code could
    218 /// optimized based on the contradictory assumption that it is non-zero.
    219 /// Because instcombine aggressively folds operations with undef args anyway,
    220 /// this won't lose us code quality.
    221 ///
    222 /// This function is defined on values with integer type, values with pointer
    223 /// type (but only if TD is non-null), and vectors of integers.  In the case
    224 /// where V is a vector, known zero, and known one values are the
    225 /// same width as the vector element, and the bit is set only if it is true
    226 /// for all of the elements in the vector.
    227 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
    228                             const DataLayout *TD, unsigned Depth) {
    229   assert(V && "No Value?");
    230   assert(Depth <= MaxDepth && "Limit Search Depth");
    231   unsigned BitWidth = KnownZero.getBitWidth();
    232 
    233   assert((V->getType()->isIntOrIntVectorTy() ||
    234           V->getType()->getScalarType()->isPointerTy()) &&
    235          "Not integer or pointer type!");
    236   assert((!TD ||
    237           TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
    238          (!V->getType()->isIntOrIntVectorTy() ||
    239           V->getType()->getScalarSizeInBits() == BitWidth) &&
    240          KnownZero.getBitWidth() == BitWidth &&
    241          KnownOne.getBitWidth() == BitWidth &&
    242          "V, KnownOne and KnownZero should have same BitWidth");
    243 
    244   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    245     // We know all of the bits for a constant!
    246     KnownOne = CI->getValue();
    247     KnownZero = ~KnownOne;
    248     return;
    249   }
    250   // Null and aggregate-zero are all-zeros.
    251   if (isa<ConstantPointerNull>(V) ||
    252       isa<ConstantAggregateZero>(V)) {
    253     KnownOne.clearAllBits();
    254     KnownZero = APInt::getAllOnesValue(BitWidth);
    255     return;
    256   }
    257   // Handle a constant vector by taking the intersection of the known bits of
    258   // each element.  There is no real need to handle ConstantVector here, because
    259   // we don't handle undef in any particularly useful way.
    260   if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
    261     // We know that CDS must be a vector of integers. Take the intersection of
    262     // each element.
    263     KnownZero.setAllBits(); KnownOne.setAllBits();
    264     APInt Elt(KnownZero.getBitWidth(), 0);
    265     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
    266       Elt = CDS->getElementAsInteger(i);
    267       KnownZero &= ~Elt;
    268       KnownOne &= Elt;
    269     }
    270     return;
    271   }
    272 
    273   // The address of an aligned GlobalValue has trailing zeros.
    274   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    275     unsigned Align = GV->getAlignment();
    276     if (Align == 0 && TD) {
    277       if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
    278         Type *ObjectType = GVar->getType()->getElementType();
    279         if (ObjectType->isSized()) {
    280           // If the object is defined in the current Module, we'll be giving
    281           // it the preferred alignment. Otherwise, we have to assume that it
    282           // may only have the minimum ABI alignment.
    283           if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
    284             Align = TD->getPreferredAlignment(GVar);
    285           else
    286             Align = TD->getABITypeAlignment(ObjectType);
    287         }
    288       }
    289     }
    290     if (Align > 0)
    291       KnownZero = APInt::getLowBitsSet(BitWidth,
    292                                        countTrailingZeros(Align));
    293     else
    294       KnownZero.clearAllBits();
    295     KnownOne.clearAllBits();
    296     return;
    297   }
    298   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
    299   // the bits of its aliasee.
    300   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    301     if (GA->mayBeOverridden()) {
    302       KnownZero.clearAllBits(); KnownOne.clearAllBits();
    303     } else {
    304       computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
    305     }
    306     return;
    307   }
    308 
    309   if (Argument *A = dyn_cast<Argument>(V)) {
    310     unsigned Align = 0;
    311 
    312     if (A->hasByValOrInAllocaAttr()) {
    313       // Get alignment information off byval/inalloca arguments if specified in
    314       // the IR.
    315       Align = A->getParamAlignment();
    316     } else if (TD && A->hasStructRetAttr()) {
    317       // An sret parameter has at least the ABI alignment of the return type.
    318       Type *EltTy = cast<PointerType>(A->getType())->getElementType();
    319       if (EltTy->isSized())
    320         Align = TD->getABITypeAlignment(EltTy);
    321     }
    322 
    323     if (Align)
    324       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
    325     return;
    326   }
    327 
    328   // Start out not knowing anything.
    329   KnownZero.clearAllBits(); KnownOne.clearAllBits();
    330 
    331   if (Depth == MaxDepth)
    332     return;  // Limit search depth.
    333 
    334   Operator *I = dyn_cast<Operator>(V);
    335   if (!I) return;
    336 
    337   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
    338   switch (I->getOpcode()) {
    339   default: break;
    340   case Instruction::Load:
    341     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
    342       computeKnownBitsFromRangeMetadata(*MD, KnownZero);
    343     break;
    344   case Instruction::And: {
    345     // If either the LHS or the RHS are Zero, the result is zero.
    346     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
    347     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
    348 
    349     // Output known-1 bits are only known if set in both the LHS & RHS.
    350     KnownOne &= KnownOne2;
    351     // Output known-0 are known to be clear if zero in either the LHS | RHS.
    352     KnownZero |= KnownZero2;
    353     break;
    354   }
    355   case Instruction::Or: {
    356     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
    357     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
    358 
    359     // Output known-0 bits are only known if clear in both the LHS & RHS.
    360     KnownZero &= KnownZero2;
    361     // Output known-1 are known to be set if set in either the LHS | RHS.
    362     KnownOne |= KnownOne2;
    363     break;
    364   }
    365   case Instruction::Xor: {
    366     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
    367     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
    368 
    369     // Output known-0 bits are known if clear or set in both the LHS & RHS.
    370     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
    371     // Output known-1 are known to be set if set in only one of the LHS, RHS.
    372     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
    373     KnownZero = KnownZeroOut;
    374     break;
    375   }
    376   case Instruction::Mul: {
    377     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
    378     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
    379                          KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
    380     break;
    381   }
    382   case Instruction::UDiv: {
    383     // For the purposes of computing leading zeros we can conservatively
    384     // treat a udiv as a logical right shift by the power of 2 known to
    385     // be less than the denominator.
    386     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
    387     unsigned LeadZ = KnownZero2.countLeadingOnes();
    388 
    389     KnownOne2.clearAllBits();
    390     KnownZero2.clearAllBits();
    391     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
    392     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
    393     if (RHSUnknownLeadingOnes != BitWidth)
    394       LeadZ = std::min(BitWidth,
    395                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
    396 
    397     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
    398     break;
    399   }
    400   case Instruction::Select:
    401     computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
    402     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
    403                       Depth+1);
    404 
    405     // Only known if known in both the LHS and RHS.
    406     KnownOne &= KnownOne2;
    407     KnownZero &= KnownZero2;
    408     break;
    409   case Instruction::FPTrunc:
    410   case Instruction::FPExt:
    411   case Instruction::FPToUI:
    412   case Instruction::FPToSI:
    413   case Instruction::SIToFP:
    414   case Instruction::UIToFP:
    415     break; // Can't work with floating point.
    416   case Instruction::PtrToInt:
    417   case Instruction::IntToPtr:
    418     // We can't handle these if we don't know the pointer size.
    419     if (!TD) break;
    420     // FALL THROUGH and handle them the same as zext/trunc.
    421   case Instruction::ZExt:
    422   case Instruction::Trunc: {
    423     Type *SrcTy = I->getOperand(0)->getType();
    424 
    425     unsigned SrcBitWidth;
    426     // Note that we handle pointer operands here because of inttoptr/ptrtoint
    427     // which fall through here.
    428     if(TD) {
    429       SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
    430     } else {
    431       SrcBitWidth = SrcTy->getScalarSizeInBits();
    432       if (!SrcBitWidth) break;
    433     }
    434 
    435     assert(SrcBitWidth && "SrcBitWidth can't be zero");
    436     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
    437     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
    438     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
    439     KnownZero = KnownZero.zextOrTrunc(BitWidth);
    440     KnownOne = KnownOne.zextOrTrunc(BitWidth);
    441     // Any top bits are known to be zero.
    442     if (BitWidth > SrcBitWidth)
    443       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
    444     break;
    445   }
    446   case Instruction::BitCast: {
    447     Type *SrcTy = I->getOperand(0)->getType();
    448     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
    449         // TODO: For now, not handling conversions like:
    450         // (bitcast i64 %x to <2 x i32>)
    451         !I->getType()->isVectorTy()) {
    452       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
    453       break;
    454     }
    455     break;
    456   }
    457   case Instruction::SExt: {
    458     // Compute the bits in the result that are not present in the input.
    459     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
    460 
    461     KnownZero = KnownZero.trunc(SrcBitWidth);
    462     KnownOne = KnownOne.trunc(SrcBitWidth);
    463     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
    464     KnownZero = KnownZero.zext(BitWidth);
    465     KnownOne = KnownOne.zext(BitWidth);
    466 
    467     // If the sign bit of the input is known set or clear, then we know the
    468     // top bits of the result.
    469     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
    470       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
    471     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
    472       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
    473     break;
    474   }
    475   case Instruction::Shl:
    476     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
    477     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    478       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
    479       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
    480       KnownZero <<= ShiftAmt;
    481       KnownOne  <<= ShiftAmt;
    482       KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
    483       break;
    484     }
    485     break;
    486   case Instruction::LShr:
    487     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
    488     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    489       // Compute the new bits that are at the top now.
    490       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
    491 
    492       // Unsigned shift right.
    493       computeKnownBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
    494       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
    495       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
    496       // high bits known zero.
    497       KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
    498       break;
    499     }
    500     break;
    501   case Instruction::AShr:
    502     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
    503     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    504       // Compute the new bits that are at the top now.
    505       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
    506 
    507       // Signed shift right.
    508       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
    509       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
    510       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
    511 
    512       APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
    513       if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
    514         KnownZero |= HighBits;
    515       else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
    516         KnownOne |= HighBits;
    517       break;
    518     }
    519     break;
    520   case Instruction::Sub: {
    521     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
    522     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
    523                             KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
    524                             Depth);
    525     break;
    526   }
    527   case Instruction::Add: {
    528     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
    529     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
    530                             KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
    531                             Depth);
    532     break;
    533   }
    534   case Instruction::SRem:
    535     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
    536       APInt RA = Rem->getValue().abs();
    537       if (RA.isPowerOf2()) {
    538         APInt LowBits = RA - 1;
    539         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
    540 
    541         // The low bits of the first operand are unchanged by the srem.
    542         KnownZero = KnownZero2 & LowBits;
    543         KnownOne = KnownOne2 & LowBits;
    544 
    545         // If the first operand is non-negative or has all low bits zero, then
    546         // the upper bits are all zero.
    547         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
    548           KnownZero |= ~LowBits;
    549 
    550         // If the first operand is negative and not all low bits are zero, then
    551         // the upper bits are all one.
    552         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
    553           KnownOne |= ~LowBits;
    554 
    555         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    556       }
    557     }
    558 
    559     // The sign bit is the LHS's sign bit, except when the result of the
    560     // remainder is zero.
    561     if (KnownZero.isNonNegative()) {
    562       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
    563       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
    564                        Depth+1);
    565       // If it's known zero, our sign bit is also zero.
    566       if (LHSKnownZero.isNegative())
    567         KnownZero.setBit(BitWidth - 1);
    568     }
    569 
    570     break;
    571   case Instruction::URem: {
    572     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
    573       APInt RA = Rem->getValue();
    574       if (RA.isPowerOf2()) {
    575         APInt LowBits = (RA - 1);
    576         computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
    577                          Depth+1);
    578         KnownZero |= ~LowBits;
    579         KnownOne &= LowBits;
    580         break;
    581       }
    582     }
    583 
    584     // Since the result is less than or equal to either operand, any leading
    585     // zero bits in either operand must also exist in the result.
    586     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
    587     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
    588 
    589     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
    590                                 KnownZero2.countLeadingOnes());
    591     KnownOne.clearAllBits();
    592     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
    593     break;
    594   }
    595 
    596   case Instruction::Alloca: {
    597     AllocaInst *AI = cast<AllocaInst>(V);
    598     unsigned Align = AI->getAlignment();
    599     if (Align == 0 && TD)
    600       Align = TD->getABITypeAlignment(AI->getType()->getElementType());
    601 
    602     if (Align > 0)
    603       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
    604     break;
    605   }
    606   case Instruction::GetElementPtr: {
    607     // Analyze all of the subscripts of this getelementptr instruction
    608     // to determine if we can prove known low zero bits.
    609     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
    610     computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
    611                      Depth+1);
    612     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
    613 
    614     gep_type_iterator GTI = gep_type_begin(I);
    615     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
    616       Value *Index = I->getOperand(i);
    617       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    618         // Handle struct member offset arithmetic.
    619         if (!TD) {
    620           TrailZ = 0;
    621           break;
    622         }
    623 
    624         // Handle case when index is vector zeroinitializer
    625         Constant *CIndex = cast<Constant>(Index);
    626         if (CIndex->isZeroValue())
    627           continue;
    628 
    629         if (CIndex->getType()->isVectorTy())
    630           Index = CIndex->getSplatValue();
    631 
    632         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
    633         const StructLayout *SL = TD->getStructLayout(STy);
    634         uint64_t Offset = SL->getElementOffset(Idx);
    635         TrailZ = std::min<unsigned>(TrailZ,
    636                                     countTrailingZeros(Offset));
    637       } else {
    638         // Handle array index arithmetic.
    639         Type *IndexedTy = GTI.getIndexedType();
    640         if (!IndexedTy->isSized()) {
    641           TrailZ = 0;
    642           break;
    643         }
    644         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
    645         uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
    646         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
    647         computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
    648         TrailZ = std::min(TrailZ,
    649                           unsigned(countTrailingZeros(TypeSize) +
    650                                    LocalKnownZero.countTrailingOnes()));
    651       }
    652     }
    653 
    654     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
    655     break;
    656   }
    657   case Instruction::PHI: {
    658     PHINode *P = cast<PHINode>(I);
    659     // Handle the case of a simple two-predecessor recurrence PHI.
    660     // There's a lot more that could theoretically be done here, but
    661     // this is sufficient to catch some interesting cases.
    662     if (P->getNumIncomingValues() == 2) {
    663       for (unsigned i = 0; i != 2; ++i) {
    664         Value *L = P->getIncomingValue(i);
    665         Value *R = P->getIncomingValue(!i);
    666         Operator *LU = dyn_cast<Operator>(L);
    667         if (!LU)
    668           continue;
    669         unsigned Opcode = LU->getOpcode();
    670         // Check for operations that have the property that if
    671         // both their operands have low zero bits, the result
    672         // will have low zero bits.
    673         if (Opcode == Instruction::Add ||
    674             Opcode == Instruction::Sub ||
    675             Opcode == Instruction::And ||
    676             Opcode == Instruction::Or ||
    677             Opcode == Instruction::Mul) {
    678           Value *LL = LU->getOperand(0);
    679           Value *LR = LU->getOperand(1);
    680           // Find a recurrence.
    681           if (LL == I)
    682             L = LR;
    683           else if (LR == I)
    684             L = LL;
    685           else
    686             break;
    687           // Ok, we have a PHI of the form L op= R. Check for low
    688           // zero bits.
    689           computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1);
    690 
    691           // We need to take the minimum number of known bits
    692           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
    693           computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1);
    694 
    695           KnownZero = APInt::getLowBitsSet(BitWidth,
    696                                            std::min(KnownZero2.countTrailingOnes(),
    697                                                     KnownZero3.countTrailingOnes()));
    698           break;
    699         }
    700       }
    701     }
    702 
    703     // Unreachable blocks may have zero-operand PHI nodes.
    704     if (P->getNumIncomingValues() == 0)
    705       break;
    706 
    707     // Otherwise take the unions of the known bit sets of the operands,
    708     // taking conservative care to avoid excessive recursion.
    709     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
    710       // Skip if every incoming value references to ourself.
    711       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
    712         break;
    713 
    714       KnownZero = APInt::getAllOnesValue(BitWidth);
    715       KnownOne = APInt::getAllOnesValue(BitWidth);
    716       for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
    717         // Skip direct self references.
    718         if (P->getIncomingValue(i) == P) continue;
    719 
    720         KnownZero2 = APInt(BitWidth, 0);
    721         KnownOne2 = APInt(BitWidth, 0);
    722         // Recurse, but cap the recursion to one level, because we don't
    723         // want to waste time spinning around in loops.
    724         computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
    725                          MaxDepth-1);
    726         KnownZero &= KnownZero2;
    727         KnownOne &= KnownOne2;
    728         // If all bits have been ruled out, there's no need to check
    729         // more operands.
    730         if (!KnownZero && !KnownOne)
    731           break;
    732       }
    733     }
    734     break;
    735   }
    736   case Instruction::Call:
    737   case Instruction::Invoke:
    738     if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
    739       computeKnownBitsFromRangeMetadata(*MD, KnownZero);
    740     // If a range metadata is attached to this IntrinsicInst, intersect the
    741     // explicit range specified by the metadata and the implicit range of
    742     // the intrinsic.
    743     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    744       switch (II->getIntrinsicID()) {
    745       default: break;
    746       case Intrinsic::ctlz:
    747       case Intrinsic::cttz: {
    748         unsigned LowBits = Log2_32(BitWidth)+1;
    749         // If this call is undefined for 0, the result will be less than 2^n.
    750         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
    751           LowBits -= 1;
    752         KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
    753         break;
    754       }
    755       case Intrinsic::ctpop: {
    756         unsigned LowBits = Log2_32(BitWidth)+1;
    757         KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
    758         break;
    759       }
    760       case Intrinsic::x86_sse42_crc32_64_64:
    761         KnownZero |= APInt::getHighBitsSet(64, 32);
    762         break;
    763       }
    764     }
    765     break;
    766   case Instruction::ExtractValue:
    767     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
    768       ExtractValueInst *EVI = cast<ExtractValueInst>(I);
    769       if (EVI->getNumIndices() != 1) break;
    770       if (EVI->getIndices()[0] == 0) {
    771         switch (II->getIntrinsicID()) {
    772         default: break;
    773         case Intrinsic::uadd_with_overflow:
    774         case Intrinsic::sadd_with_overflow:
    775           computeKnownBitsAddSub(true, II->getArgOperand(0),
    776                                  II->getArgOperand(1), false, KnownZero,
    777                                  KnownOne, KnownZero2, KnownOne2, TD, Depth);
    778           break;
    779         case Intrinsic::usub_with_overflow:
    780         case Intrinsic::ssub_with_overflow:
    781           computeKnownBitsAddSub(false, II->getArgOperand(0),
    782                                  II->getArgOperand(1), false, KnownZero,
    783                                  KnownOne, KnownZero2, KnownOne2, TD, Depth);
    784           break;
    785         case Intrinsic::umul_with_overflow:
    786         case Intrinsic::smul_with_overflow:
    787           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
    788                               false, KnownZero, KnownOne,
    789                               KnownZero2, KnownOne2, TD, Depth);
    790           break;
    791         }
    792       }
    793     }
    794   }
    795 
    796   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    797 }
    798 
    799 /// ComputeSignBit - Determine whether the sign bit is known to be zero or
    800 /// one.  Convenience wrapper around computeKnownBits.
    801 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
    802                           const DataLayout *TD, unsigned Depth) {
    803   unsigned BitWidth = getBitWidth(V->getType(), TD);
    804   if (!BitWidth) {
    805     KnownZero = false;
    806     KnownOne = false;
    807     return;
    808   }
    809   APInt ZeroBits(BitWidth, 0);
    810   APInt OneBits(BitWidth, 0);
    811   computeKnownBits(V, ZeroBits, OneBits, TD, Depth);
    812   KnownOne = OneBits[BitWidth - 1];
    813   KnownZero = ZeroBits[BitWidth - 1];
    814 }
    815 
    816 /// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one
    817 /// bit set when defined. For vectors return true if every element is known to
    818 /// be a power of two when defined.  Supports values with integer or pointer
    819 /// types and vectors of integers.
    820 bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
    821   if (Constant *C = dyn_cast<Constant>(V)) {
    822     if (C->isNullValue())
    823       return OrZero;
    824     if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
    825       return CI->getValue().isPowerOf2();
    826     // TODO: Handle vector constants.
    827   }
    828 
    829   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
    830   // it is shifted off the end then the result is undefined.
    831   if (match(V, m_Shl(m_One(), m_Value())))
    832     return true;
    833 
    834   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
    835   // bottom.  If it is shifted off the bottom then the result is undefined.
    836   if (match(V, m_LShr(m_SignBit(), m_Value())))
    837     return true;
    838 
    839   // The remaining tests are all recursive, so bail out if we hit the limit.
    840   if (Depth++ == MaxDepth)
    841     return false;
    842 
    843   Value *X = nullptr, *Y = nullptr;
    844   // A shift of a power of two is a power of two or zero.
    845   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
    846                  match(V, m_Shr(m_Value(X), m_Value()))))
    847     return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth);
    848 
    849   if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
    850     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth);
    851 
    852   if (SelectInst *SI = dyn_cast<SelectInst>(V))
    853     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) &&
    854       isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth);
    855 
    856   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
    857     // A power of two and'd with anything is a power of two or zero.
    858     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) ||
    859         isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth))
    860       return true;
    861     // X & (-X) is always a power of two or zero.
    862     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
    863       return true;
    864     return false;
    865   }
    866 
    867   // Adding a power-of-two or zero to the same power-of-two or zero yields
    868   // either the original power-of-two, a larger power-of-two or zero.
    869   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
    870     OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
    871     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
    872       if (match(X, m_And(m_Specific(Y), m_Value())) ||
    873           match(X, m_And(m_Value(), m_Specific(Y))))
    874         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth))
    875           return true;
    876       if (match(Y, m_And(m_Specific(X), m_Value())) ||
    877           match(Y, m_And(m_Value(), m_Specific(X))))
    878         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth))
    879           return true;
    880 
    881       unsigned BitWidth = V->getType()->getScalarSizeInBits();
    882       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
    883       computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth);
    884 
    885       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
    886       computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth);
    887       // If i8 V is a power of two or zero:
    888       //  ZeroBits: 1 1 1 0 1 1 1 1
    889       // ~ZeroBits: 0 0 0 1 0 0 0 0
    890       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
    891         // If OrZero isn't set, we cannot give back a zero result.
    892         // Make sure either the LHS or RHS has a bit set.
    893         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
    894           return true;
    895     }
    896   }
    897 
    898   // An exact divide or right shift can only shift off zero bits, so the result
    899   // is a power of two only if the first operand is a power of two and not
    900   // copying a sign bit (sdiv int_min, 2).
    901   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
    902       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
    903     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth);
    904   }
    905 
    906   return false;
    907 }
    908 
    909 /// \brief Test whether a GEP's result is known to be non-null.
    910 ///
    911 /// Uses properties inherent in a GEP to try to determine whether it is known
    912 /// to be non-null.
    913 ///
    914 /// Currently this routine does not support vector GEPs.
    915 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
    916                               unsigned Depth) {
    917   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
    918     return false;
    919 
    920   // FIXME: Support vector-GEPs.
    921   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
    922 
    923   // If the base pointer is non-null, we cannot walk to a null address with an
    924   // inbounds GEP in address space zero.
    925   if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth))
    926     return true;
    927 
    928   // Past this, if we don't have DataLayout, we can't do much.
    929   if (!DL)
    930     return false;
    931 
    932   // Walk the GEP operands and see if any operand introduces a non-zero offset.
    933   // If so, then the GEP cannot produce a null pointer, as doing so would
    934   // inherently violate the inbounds contract within address space zero.
    935   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
    936        GTI != GTE; ++GTI) {
    937     // Struct types are easy -- they must always be indexed by a constant.
    938     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    939       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
    940       unsigned ElementIdx = OpC->getZExtValue();
    941       const StructLayout *SL = DL->getStructLayout(STy);
    942       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
    943       if (ElementOffset > 0)
    944         return true;
    945       continue;
    946     }
    947 
    948     // If we have a zero-sized type, the index doesn't matter. Keep looping.
    949     if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
    950       continue;
    951 
    952     // Fast path the constant operand case both for efficiency and so we don't
    953     // increment Depth when just zipping down an all-constant GEP.
    954     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
    955       if (!OpC->isZero())
    956         return true;
    957       continue;
    958     }
    959 
    960     // We post-increment Depth here because while isKnownNonZero increments it
    961     // as well, when we pop back up that increment won't persist. We don't want
    962     // to recurse 10k times just because we have 10k GEP operands. We don't
    963     // bail completely out because we want to handle constant GEPs regardless
    964     // of depth.
    965     if (Depth++ >= MaxDepth)
    966       continue;
    967 
    968     if (isKnownNonZero(GTI.getOperand(), DL, Depth))
    969       return true;
    970   }
    971 
    972   return false;
    973 }
    974 
    975 /// isKnownNonZero - Return true if the given value is known to be non-zero
    976 /// when defined.  For vectors return true if every element is known to be
    977 /// non-zero when defined.  Supports values with integer or pointer type and
    978 /// vectors of integers.
    979 bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
    980   if (Constant *C = dyn_cast<Constant>(V)) {
    981     if (C->isNullValue())
    982       return false;
    983     if (isa<ConstantInt>(C))
    984       // Must be non-zero due to null test above.
    985       return true;
    986     // TODO: Handle vectors
    987     return false;
    988   }
    989 
    990   // The remaining tests are all recursive, so bail out if we hit the limit.
    991   if (Depth++ >= MaxDepth)
    992     return false;
    993 
    994   // Check for pointer simplifications.
    995   if (V->getType()->isPointerTy()) {
    996     if (isKnownNonNull(V))
    997       return true;
    998     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
    999       if (isGEPKnownNonNull(GEP, TD, Depth))
   1000         return true;
   1001   }
   1002 
   1003   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
   1004 
   1005   // X | Y != 0 if X != 0 or Y != 0.
   1006   Value *X = nullptr, *Y = nullptr;
   1007   if (match(V, m_Or(m_Value(X), m_Value(Y))))
   1008     return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
   1009 
   1010   // ext X != 0 if X != 0.
   1011   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
   1012     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
   1013 
   1014   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
   1015   // if the lowest bit is shifted off the end.
   1016   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
   1017     // shl nuw can't remove any non-zero bits.
   1018     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
   1019     if (BO->hasNoUnsignedWrap())
   1020       return isKnownNonZero(X, TD, Depth);
   1021 
   1022     APInt KnownZero(BitWidth, 0);
   1023     APInt KnownOne(BitWidth, 0);
   1024     computeKnownBits(X, KnownZero, KnownOne, TD, Depth);
   1025     if (KnownOne[0])
   1026       return true;
   1027   }
   1028   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
   1029   // defined if the sign bit is shifted off the end.
   1030   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
   1031     // shr exact can only shift out zero bits.
   1032     PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
   1033     if (BO->isExact())
   1034       return isKnownNonZero(X, TD, Depth);
   1035 
   1036     bool XKnownNonNegative, XKnownNegative;
   1037     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
   1038     if (XKnownNegative)
   1039       return true;
   1040   }
   1041   // div exact can only produce a zero if the dividend is zero.
   1042   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
   1043     return isKnownNonZero(X, TD, Depth);
   1044   }
   1045   // X + Y.
   1046   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
   1047     bool XKnownNonNegative, XKnownNegative;
   1048     bool YKnownNonNegative, YKnownNegative;
   1049     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
   1050     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
   1051 
   1052     // If X and Y are both non-negative (as signed values) then their sum is not
   1053     // zero unless both X and Y are zero.
   1054     if (XKnownNonNegative && YKnownNonNegative)
   1055       if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
   1056         return true;
   1057 
   1058     // If X and Y are both negative (as signed values) then their sum is not
   1059     // zero unless both X and Y equal INT_MIN.
   1060     if (BitWidth && XKnownNegative && YKnownNegative) {
   1061       APInt KnownZero(BitWidth, 0);
   1062       APInt KnownOne(BitWidth, 0);
   1063       APInt Mask = APInt::getSignedMaxValue(BitWidth);
   1064       // The sign bit of X is set.  If some other bit is set then X is not equal
   1065       // to INT_MIN.
   1066       computeKnownBits(X, KnownZero, KnownOne, TD, Depth);
   1067       if ((KnownOne & Mask) != 0)
   1068         return true;
   1069       // The sign bit of Y is set.  If some other bit is set then Y is not equal
   1070       // to INT_MIN.
   1071       computeKnownBits(Y, KnownZero, KnownOne, TD, Depth);
   1072       if ((KnownOne & Mask) != 0)
   1073         return true;
   1074     }
   1075 
   1076     // The sum of a non-negative number and a power of two is not zero.
   1077     if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth))
   1078       return true;
   1079     if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth))
   1080       return true;
   1081   }
   1082   // X * Y.
   1083   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
   1084     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
   1085     // If X and Y are non-zero then so is X * Y as long as the multiplication
   1086     // does not overflow.
   1087     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
   1088         isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
   1089       return true;
   1090   }
   1091   // (C ? X : Y) != 0 if X != 0 and Y != 0.
   1092   else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
   1093     if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
   1094         isKnownNonZero(SI->getFalseValue(), TD, Depth))
   1095       return true;
   1096   }
   1097 
   1098   if (!BitWidth) return false;
   1099   APInt KnownZero(BitWidth, 0);
   1100   APInt KnownOne(BitWidth, 0);
   1101   computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
   1102   return KnownOne != 0;
   1103 }
   1104 
   1105 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
   1106 /// this predicate to simplify operations downstream.  Mask is known to be zero
   1107 /// for bits that V cannot have.
   1108 ///
   1109 /// This function is defined on values with integer type, values with pointer
   1110 /// type (but only if TD is non-null), and vectors of integers.  In the case
   1111 /// where V is a vector, the mask, known zero, and known one values are the
   1112 /// same width as the vector element, and the bit is set only if it is true
   1113 /// for all of the elements in the vector.
   1114 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
   1115                              const DataLayout *TD, unsigned Depth) {
   1116   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
   1117   computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
   1118   return (KnownZero & Mask) == Mask;
   1119 }
   1120 
   1121 
   1122 
   1123 /// ComputeNumSignBits - Return the number of times the sign bit of the
   1124 /// register is replicated into the other bits.  We know that at least 1 bit
   1125 /// is always equal to the sign bit (itself), but other cases can give us
   1126 /// information.  For example, immediately after an "ashr X, 2", we know that
   1127 /// the top 3 bits are all equal to each other, so we return 3.
   1128 ///
   1129 /// 'Op' must have a scalar integer type.
   1130 ///
   1131 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
   1132                                   unsigned Depth) {
   1133   assert((TD || V->getType()->isIntOrIntVectorTy()) &&
   1134          "ComputeNumSignBits requires a DataLayout object to operate "
   1135          "on non-integer values!");
   1136   Type *Ty = V->getType();
   1137   unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
   1138                          Ty->getScalarSizeInBits();
   1139   unsigned Tmp, Tmp2;
   1140   unsigned FirstAnswer = 1;
   1141 
   1142   // Note that ConstantInt is handled by the general computeKnownBits case
   1143   // below.
   1144 
   1145   if (Depth == 6)
   1146     return 1;  // Limit search depth.
   1147 
   1148   Operator *U = dyn_cast<Operator>(V);
   1149   switch (Operator::getOpcode(V)) {
   1150   default: break;
   1151   case Instruction::SExt:
   1152     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
   1153     return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
   1154 
   1155   case Instruction::AShr: {
   1156     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
   1157     // ashr X, C   -> adds C sign bits.  Vectors too.
   1158     const APInt *ShAmt;
   1159     if (match(U->getOperand(1), m_APInt(ShAmt))) {
   1160       Tmp += ShAmt->getZExtValue();
   1161       if (Tmp > TyBits) Tmp = TyBits;
   1162     }
   1163     return Tmp;
   1164   }
   1165   case Instruction::Shl: {
   1166     const APInt *ShAmt;
   1167     if (match(U->getOperand(1), m_APInt(ShAmt))) {
   1168       // shl destroys sign bits.
   1169       Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
   1170       Tmp2 = ShAmt->getZExtValue();
   1171       if (Tmp2 >= TyBits ||      // Bad shift.
   1172           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
   1173       return Tmp - Tmp2;
   1174     }
   1175     break;
   1176   }
   1177   case Instruction::And:
   1178   case Instruction::Or:
   1179   case Instruction::Xor:    // NOT is handled here.
   1180     // Logical binary ops preserve the number of sign bits at the worst.
   1181     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
   1182     if (Tmp != 1) {
   1183       Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
   1184       FirstAnswer = std::min(Tmp, Tmp2);
   1185       // We computed what we know about the sign bits as our first
   1186       // answer. Now proceed to the generic code that uses
   1187       // computeKnownBits, and pick whichever answer is better.
   1188     }
   1189     break;
   1190 
   1191   case Instruction::Select:
   1192     Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
   1193     if (Tmp == 1) return 1;  // Early out.
   1194     Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
   1195     return std::min(Tmp, Tmp2);
   1196 
   1197   case Instruction::Add:
   1198     // Add can have at most one carry bit.  Thus we know that the output
   1199     // is, at worst, one more bit than the inputs.
   1200     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
   1201     if (Tmp == 1) return 1;  // Early out.
   1202 
   1203     // Special case decrementing a value (ADD X, -1):
   1204     if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
   1205       if (CRHS->isAllOnesValue()) {
   1206         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
   1207         computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
   1208 
   1209         // If the input is known to be 0 or 1, the output is 0/-1, which is all
   1210         // sign bits set.
   1211         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
   1212           return TyBits;
   1213 
   1214         // If we are subtracting one from a positive number, there is no carry
   1215         // out of the result.
   1216         if (KnownZero.isNegative())
   1217           return Tmp;
   1218       }
   1219 
   1220     Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
   1221     if (Tmp2 == 1) return 1;
   1222     return std::min(Tmp, Tmp2)-1;
   1223 
   1224   case Instruction::Sub:
   1225     Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
   1226     if (Tmp2 == 1) return 1;
   1227 
   1228     // Handle NEG.
   1229     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
   1230       if (CLHS->isNullValue()) {
   1231         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
   1232         computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
   1233         // If the input is known to be 0 or 1, the output is 0/-1, which is all
   1234         // sign bits set.
   1235         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
   1236           return TyBits;
   1237 
   1238         // If the input is known to be positive (the sign bit is known clear),
   1239         // the output of the NEG has the same number of sign bits as the input.
   1240         if (KnownZero.isNegative())
   1241           return Tmp2;
   1242 
   1243         // Otherwise, we treat this like a SUB.
   1244       }
   1245 
   1246     // Sub can have at most one carry bit.  Thus we know that the output
   1247     // is, at worst, one more bit than the inputs.
   1248     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
   1249     if (Tmp == 1) return 1;  // Early out.
   1250     return std::min(Tmp, Tmp2)-1;
   1251 
   1252   case Instruction::PHI: {
   1253     PHINode *PN = cast<PHINode>(U);
   1254     // Don't analyze large in-degree PHIs.
   1255     if (PN->getNumIncomingValues() > 4) break;
   1256 
   1257     // Take the minimum of all incoming values.  This can't infinitely loop
   1258     // because of our depth threshold.
   1259     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
   1260     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
   1261       if (Tmp == 1) return Tmp;
   1262       Tmp = std::min(Tmp,
   1263                      ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
   1264     }
   1265     return Tmp;
   1266   }
   1267 
   1268   case Instruction::Trunc:
   1269     // FIXME: it's tricky to do anything useful for this, but it is an important
   1270     // case for targets like X86.
   1271     break;
   1272   }
   1273 
   1274   // Finally, if we can prove that the top bits of the result are 0's or 1's,
   1275   // use this information.
   1276   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
   1277   APInt Mask;
   1278   computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
   1279 
   1280   if (KnownZero.isNegative()) {        // sign bit is 0
   1281     Mask = KnownZero;
   1282   } else if (KnownOne.isNegative()) {  // sign bit is 1;
   1283     Mask = KnownOne;
   1284   } else {
   1285     // Nothing known.
   1286     return FirstAnswer;
   1287   }
   1288 
   1289   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
   1290   // the number of identical bits in the top of the input value.
   1291   Mask = ~Mask;
   1292   Mask <<= Mask.getBitWidth()-TyBits;
   1293   // Return # leading zeros.  We use 'min' here in case Val was zero before
   1294   // shifting.  We don't want to return '64' as for an i32 "0".
   1295   return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
   1296 }
   1297 
   1298 /// ComputeMultiple - This function computes the integer multiple of Base that
   1299 /// equals V.  If successful, it returns true and returns the multiple in
   1300 /// Multiple.  If unsuccessful, it returns false. It looks
   1301 /// through SExt instructions only if LookThroughSExt is true.
   1302 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
   1303                            bool LookThroughSExt, unsigned Depth) {
   1304   const unsigned MaxDepth = 6;
   1305 
   1306   assert(V && "No Value?");
   1307   assert(Depth <= MaxDepth && "Limit Search Depth");
   1308   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
   1309 
   1310   Type *T = V->getType();
   1311 
   1312   ConstantInt *CI = dyn_cast<ConstantInt>(V);
   1313 
   1314   if (Base == 0)
   1315     return false;
   1316 
   1317   if (Base == 1) {
   1318     Multiple = V;
   1319     return true;
   1320   }
   1321 
   1322   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
   1323   Constant *BaseVal = ConstantInt::get(T, Base);
   1324   if (CO && CO == BaseVal) {
   1325     // Multiple is 1.
   1326     Multiple = ConstantInt::get(T, 1);
   1327     return true;
   1328   }
   1329 
   1330   if (CI && CI->getZExtValue() % Base == 0) {
   1331     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
   1332     return true;
   1333   }
   1334 
   1335   if (Depth == MaxDepth) return false;  // Limit search depth.
   1336 
   1337   Operator *I = dyn_cast<Operator>(V);
   1338   if (!I) return false;
   1339 
   1340   switch (I->getOpcode()) {
   1341   default: break;
   1342   case Instruction::SExt:
   1343     if (!LookThroughSExt) return false;
   1344     // otherwise fall through to ZExt
   1345   case Instruction::ZExt:
   1346     return ComputeMultiple(I->getOperand(0), Base, Multiple,
   1347                            LookThroughSExt, Depth+1);
   1348   case Instruction::Shl:
   1349   case Instruction::Mul: {
   1350     Value *Op0 = I->getOperand(0);
   1351     Value *Op1 = I->getOperand(1);
   1352 
   1353     if (I->getOpcode() == Instruction::Shl) {
   1354       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
   1355       if (!Op1CI) return false;
   1356       // Turn Op0 << Op1 into Op0 * 2^Op1
   1357       APInt Op1Int = Op1CI->getValue();
   1358       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
   1359       APInt API(Op1Int.getBitWidth(), 0);
   1360       API.setBit(BitToSet);
   1361       Op1 = ConstantInt::get(V->getContext(), API);
   1362     }
   1363 
   1364     Value *Mul0 = nullptr;
   1365     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
   1366       if (Constant *Op1C = dyn_cast<Constant>(Op1))
   1367         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
   1368           if (Op1C->getType()->getPrimitiveSizeInBits() <
   1369               MulC->getType()->getPrimitiveSizeInBits())
   1370             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
   1371           if (Op1C->getType()->getPrimitiveSizeInBits() >
   1372               MulC->getType()->getPrimitiveSizeInBits())
   1373             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
   1374 
   1375           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
   1376           Multiple = ConstantExpr::getMul(MulC, Op1C);
   1377           return true;
   1378         }
   1379 
   1380       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
   1381         if (Mul0CI->getValue() == 1) {
   1382           // V == Base * Op1, so return Op1
   1383           Multiple = Op1;
   1384           return true;
   1385         }
   1386     }
   1387 
   1388     Value *Mul1 = nullptr;
   1389     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
   1390       if (Constant *Op0C = dyn_cast<Constant>(Op0))
   1391         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
   1392           if (Op0C->getType()->getPrimitiveSizeInBits() <
   1393               MulC->getType()->getPrimitiveSizeInBits())
   1394             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
   1395           if (Op0C->getType()->getPrimitiveSizeInBits() >
   1396               MulC->getType()->getPrimitiveSizeInBits())
   1397             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
   1398 
   1399           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
   1400           Multiple = ConstantExpr::getMul(MulC, Op0C);
   1401           return true;
   1402         }
   1403 
   1404       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
   1405         if (Mul1CI->getValue() == 1) {
   1406           // V == Base * Op0, so return Op0
   1407           Multiple = Op0;
   1408           return true;
   1409         }
   1410     }
   1411   }
   1412   }
   1413 
   1414   // We could not determine if V is a multiple of Base.
   1415   return false;
   1416 }
   1417 
   1418 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
   1419 /// value is never equal to -0.0.
   1420 ///
   1421 /// NOTE: this function will need to be revisited when we support non-default
   1422 /// rounding modes!
   1423 ///
   1424 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
   1425   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
   1426     return !CFP->getValueAPF().isNegZero();
   1427 
   1428   if (Depth == 6)
   1429     return 1;  // Limit search depth.
   1430 
   1431   const Operator *I = dyn_cast<Operator>(V);
   1432   if (!I) return false;
   1433 
   1434   // Check if the nsz fast-math flag is set
   1435   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
   1436     if (FPO->hasNoSignedZeros())
   1437       return true;
   1438 
   1439   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
   1440   if (I->getOpcode() == Instruction::FAdd)
   1441     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
   1442       if (CFP->isNullValue())
   1443         return true;
   1444 
   1445   // sitofp and uitofp turn into +0.0 for zero.
   1446   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
   1447     return true;
   1448 
   1449   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
   1450     // sqrt(-0.0) = -0.0, no other negative results are possible.
   1451     if (II->getIntrinsicID() == Intrinsic::sqrt)
   1452       return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
   1453 
   1454   if (const CallInst *CI = dyn_cast<CallInst>(I))
   1455     if (const Function *F = CI->getCalledFunction()) {
   1456       if (F->isDeclaration()) {
   1457         // abs(x) != -0.0
   1458         if (F->getName() == "abs") return true;
   1459         // fabs[lf](x) != -0.0
   1460         if (F->getName() == "fabs") return true;
   1461         if (F->getName() == "fabsf") return true;
   1462         if (F->getName() == "fabsl") return true;
   1463         if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
   1464             F->getName() == "sqrtl")
   1465           return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
   1466       }
   1467     }
   1468 
   1469   return false;
   1470 }
   1471 
   1472 /// isBytewiseValue - If the specified value can be set by repeating the same
   1473 /// byte in memory, return the i8 value that it is represented with.  This is
   1474 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
   1475 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
   1476 /// byte store (e.g. i16 0x1234), return null.
   1477 Value *llvm::isBytewiseValue(Value *V) {
   1478   // All byte-wide stores are splatable, even of arbitrary variables.
   1479   if (V->getType()->isIntegerTy(8)) return V;
   1480 
   1481   // Handle 'null' ConstantArrayZero etc.
   1482   if (Constant *C = dyn_cast<Constant>(V))
   1483     if (C->isNullValue())
   1484       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
   1485 
   1486   // Constant float and double values can be handled as integer values if the
   1487   // corresponding integer value is "byteable".  An important case is 0.0.
   1488   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
   1489     if (CFP->getType()->isFloatTy())
   1490       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
   1491     if (CFP->getType()->isDoubleTy())
   1492       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
   1493     // Don't handle long double formats, which have strange constraints.
   1494   }
   1495 
   1496   // We can handle constant integers that are power of two in size and a
   1497   // multiple of 8 bits.
   1498   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   1499     unsigned Width = CI->getBitWidth();
   1500     if (isPowerOf2_32(Width) && Width > 8) {
   1501       // We can handle this value if the recursive binary decomposition is the
   1502       // same at all levels.
   1503       APInt Val = CI->getValue();
   1504       APInt Val2;
   1505       while (Val.getBitWidth() != 8) {
   1506         unsigned NextWidth = Val.getBitWidth()/2;
   1507         Val2  = Val.lshr(NextWidth);
   1508         Val2 = Val2.trunc(Val.getBitWidth()/2);
   1509         Val = Val.trunc(Val.getBitWidth()/2);
   1510 
   1511         // If the top/bottom halves aren't the same, reject it.
   1512         if (Val != Val2)
   1513           return nullptr;
   1514       }
   1515       return ConstantInt::get(V->getContext(), Val);
   1516     }
   1517   }
   1518 
   1519   // A ConstantDataArray/Vector is splatable if all its members are equal and
   1520   // also splatable.
   1521   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
   1522     Value *Elt = CA->getElementAsConstant(0);
   1523     Value *Val = isBytewiseValue(Elt);
   1524     if (!Val)
   1525       return nullptr;
   1526 
   1527     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
   1528       if (CA->getElementAsConstant(I) != Elt)
   1529         return nullptr;
   1530 
   1531     return Val;
   1532   }
   1533 
   1534   // Conceptually, we could handle things like:
   1535   //   %a = zext i8 %X to i16
   1536   //   %b = shl i16 %a, 8
   1537   //   %c = or i16 %a, %b
   1538   // but until there is an example that actually needs this, it doesn't seem
   1539   // worth worrying about.
   1540   return nullptr;
   1541 }
   1542 
   1543 
   1544 // This is the recursive version of BuildSubAggregate. It takes a few different
   1545 // arguments. Idxs is the index within the nested struct From that we are
   1546 // looking at now (which is of type IndexedType). IdxSkip is the number of
   1547 // indices from Idxs that should be left out when inserting into the resulting
   1548 // struct. To is the result struct built so far, new insertvalue instructions
   1549 // build on that.
   1550 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
   1551                                 SmallVectorImpl<unsigned> &Idxs,
   1552                                 unsigned IdxSkip,
   1553                                 Instruction *InsertBefore) {
   1554   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
   1555   if (STy) {
   1556     // Save the original To argument so we can modify it
   1557     Value *OrigTo = To;
   1558     // General case, the type indexed by Idxs is a struct
   1559     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1560       // Process each struct element recursively
   1561       Idxs.push_back(i);
   1562       Value *PrevTo = To;
   1563       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
   1564                              InsertBefore);
   1565       Idxs.pop_back();
   1566       if (!To) {
   1567         // Couldn't find any inserted value for this index? Cleanup
   1568         while (PrevTo != OrigTo) {
   1569           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
   1570           PrevTo = Del->getAggregateOperand();
   1571           Del->eraseFromParent();
   1572         }
   1573         // Stop processing elements
   1574         break;
   1575       }
   1576     }
   1577     // If we successfully found a value for each of our subaggregates
   1578     if (To)
   1579       return To;
   1580   }
   1581   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
   1582   // the struct's elements had a value that was inserted directly. In the latter
   1583   // case, perhaps we can't determine each of the subelements individually, but
   1584   // we might be able to find the complete struct somewhere.
   1585 
   1586   // Find the value that is at that particular spot
   1587   Value *V = FindInsertedValue(From, Idxs);
   1588 
   1589   if (!V)
   1590     return nullptr;
   1591 
   1592   // Insert the value in the new (sub) aggregrate
   1593   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
   1594                                        "tmp", InsertBefore);
   1595 }
   1596 
   1597 // This helper takes a nested struct and extracts a part of it (which is again a
   1598 // struct) into a new value. For example, given the struct:
   1599 // { a, { b, { c, d }, e } }
   1600 // and the indices "1, 1" this returns
   1601 // { c, d }.
   1602 //
   1603 // It does this by inserting an insertvalue for each element in the resulting
   1604 // struct, as opposed to just inserting a single struct. This will only work if
   1605 // each of the elements of the substruct are known (ie, inserted into From by an
   1606 // insertvalue instruction somewhere).
   1607 //
   1608 // All inserted insertvalue instructions are inserted before InsertBefore
   1609 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
   1610                                 Instruction *InsertBefore) {
   1611   assert(InsertBefore && "Must have someplace to insert!");
   1612   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
   1613                                                              idx_range);
   1614   Value *To = UndefValue::get(IndexedType);
   1615   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
   1616   unsigned IdxSkip = Idxs.size();
   1617 
   1618   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
   1619 }
   1620 
   1621 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
   1622 /// the scalar value indexed is already around as a register, for example if it
   1623 /// were inserted directly into the aggregrate.
   1624 ///
   1625 /// If InsertBefore is not null, this function will duplicate (modified)
   1626 /// insertvalues when a part of a nested struct is extracted.
   1627 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
   1628                                Instruction *InsertBefore) {
   1629   // Nothing to index? Just return V then (this is useful at the end of our
   1630   // recursion).
   1631   if (idx_range.empty())
   1632     return V;
   1633   // We have indices, so V should have an indexable type.
   1634   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
   1635          "Not looking at a struct or array?");
   1636   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
   1637          "Invalid indices for type?");
   1638 
   1639   if (Constant *C = dyn_cast<Constant>(V)) {
   1640     C = C->getAggregateElement(idx_range[0]);
   1641     if (!C) return nullptr;
   1642     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
   1643   }
   1644 
   1645   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
   1646     // Loop the indices for the insertvalue instruction in parallel with the
   1647     // requested indices
   1648     const unsigned *req_idx = idx_range.begin();
   1649     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
   1650          i != e; ++i, ++req_idx) {
   1651       if (req_idx == idx_range.end()) {
   1652         // We can't handle this without inserting insertvalues
   1653         if (!InsertBefore)
   1654           return nullptr;
   1655 
   1656         // The requested index identifies a part of a nested aggregate. Handle
   1657         // this specially. For example,
   1658         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
   1659         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
   1660         // %C = extractvalue {i32, { i32, i32 } } %B, 1
   1661         // This can be changed into
   1662         // %A = insertvalue {i32, i32 } undef, i32 10, 0
   1663         // %C = insertvalue {i32, i32 } %A, i32 11, 1
   1664         // which allows the unused 0,0 element from the nested struct to be
   1665         // removed.
   1666         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
   1667                                  InsertBefore);
   1668       }
   1669 
   1670       // This insert value inserts something else than what we are looking for.
   1671       // See if the (aggregrate) value inserted into has the value we are
   1672       // looking for, then.
   1673       if (*req_idx != *i)
   1674         return FindInsertedValue(I->getAggregateOperand(), idx_range,
   1675                                  InsertBefore);
   1676     }
   1677     // If we end up here, the indices of the insertvalue match with those
   1678     // requested (though possibly only partially). Now we recursively look at
   1679     // the inserted value, passing any remaining indices.
   1680     return FindInsertedValue(I->getInsertedValueOperand(),
   1681                              makeArrayRef(req_idx, idx_range.end()),
   1682                              InsertBefore);
   1683   }
   1684 
   1685   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
   1686     // If we're extracting a value from an aggregrate that was extracted from
   1687     // something else, we can extract from that something else directly instead.
   1688     // However, we will need to chain I's indices with the requested indices.
   1689 
   1690     // Calculate the number of indices required
   1691     unsigned size = I->getNumIndices() + idx_range.size();
   1692     // Allocate some space to put the new indices in
   1693     SmallVector<unsigned, 5> Idxs;
   1694     Idxs.reserve(size);
   1695     // Add indices from the extract value instruction
   1696     Idxs.append(I->idx_begin(), I->idx_end());
   1697 
   1698     // Add requested indices
   1699     Idxs.append(idx_range.begin(), idx_range.end());
   1700 
   1701     assert(Idxs.size() == size
   1702            && "Number of indices added not correct?");
   1703 
   1704     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
   1705   }
   1706   // Otherwise, we don't know (such as, extracting from a function return value
   1707   // or load instruction)
   1708   return nullptr;
   1709 }
   1710 
   1711 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
   1712 /// it can be expressed as a base pointer plus a constant offset.  Return the
   1713 /// base and offset to the caller.
   1714 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
   1715                                               const DataLayout *DL) {
   1716   // Without DataLayout, conservatively assume 64-bit offsets, which is
   1717   // the widest we support.
   1718   unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
   1719   APInt ByteOffset(BitWidth, 0);
   1720   while (1) {
   1721     if (Ptr->getType()->isVectorTy())
   1722       break;
   1723 
   1724     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
   1725       if (DL) {
   1726         APInt GEPOffset(BitWidth, 0);
   1727         if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
   1728           break;
   1729 
   1730         ByteOffset += GEPOffset;
   1731       }
   1732 
   1733       Ptr = GEP->getPointerOperand();
   1734     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
   1735       Ptr = cast<Operator>(Ptr)->getOperand(0);
   1736     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
   1737       if (GA->mayBeOverridden())
   1738         break;
   1739       Ptr = GA->getAliasee();
   1740     } else {
   1741       break;
   1742     }
   1743   }
   1744   Offset = ByteOffset.getSExtValue();
   1745   return Ptr;
   1746 }
   1747 
   1748 
   1749 /// getConstantStringInfo - This function computes the length of a
   1750 /// null-terminated C string pointed to by V.  If successful, it returns true
   1751 /// and returns the string in Str.  If unsuccessful, it returns false.
   1752 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
   1753                                  uint64_t Offset, bool TrimAtNul) {
   1754   assert(V);
   1755 
   1756   // Look through bitcast instructions and geps.
   1757   V = V->stripPointerCasts();
   1758 
   1759   // If the value is a GEP instructionor  constant expression, treat it as an
   1760   // offset.
   1761   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
   1762     // Make sure the GEP has exactly three arguments.
   1763     if (GEP->getNumOperands() != 3)
   1764       return false;
   1765 
   1766     // Make sure the index-ee is a pointer to array of i8.
   1767     PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
   1768     ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
   1769     if (!AT || !AT->getElementType()->isIntegerTy(8))
   1770       return false;
   1771 
   1772     // Check to make sure that the first operand of the GEP is an integer and
   1773     // has value 0 so that we are sure we're indexing into the initializer.
   1774     const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
   1775     if (!FirstIdx || !FirstIdx->isZero())
   1776       return false;
   1777 
   1778     // If the second index isn't a ConstantInt, then this is a variable index
   1779     // into the array.  If this occurs, we can't say anything meaningful about
   1780     // the string.
   1781     uint64_t StartIdx = 0;
   1782     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
   1783       StartIdx = CI->getZExtValue();
   1784     else
   1785       return false;
   1786     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
   1787   }
   1788 
   1789   // The GEP instruction, constant or instruction, must reference a global
   1790   // variable that is a constant and is initialized. The referenced constant
   1791   // initializer is the array that we'll use for optimization.
   1792   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
   1793   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
   1794     return false;
   1795 
   1796   // Handle the all-zeros case
   1797   if (GV->getInitializer()->isNullValue()) {
   1798     // This is a degenerate case. The initializer is constant zero so the
   1799     // length of the string must be zero.
   1800     Str = "";
   1801     return true;
   1802   }
   1803 
   1804   // Must be a Constant Array
   1805   const ConstantDataArray *Array =
   1806     dyn_cast<ConstantDataArray>(GV->getInitializer());
   1807   if (!Array || !Array->isString())
   1808     return false;
   1809 
   1810   // Get the number of elements in the array
   1811   uint64_t NumElts = Array->getType()->getArrayNumElements();
   1812 
   1813   // Start out with the entire array in the StringRef.
   1814   Str = Array->getAsString();
   1815 
   1816   if (Offset > NumElts)
   1817     return false;
   1818 
   1819   // Skip over 'offset' bytes.
   1820   Str = Str.substr(Offset);
   1821 
   1822   if (TrimAtNul) {
   1823     // Trim off the \0 and anything after it.  If the array is not nul
   1824     // terminated, we just return the whole end of string.  The client may know
   1825     // some other way that the string is length-bound.
   1826     Str = Str.substr(0, Str.find('\0'));
   1827   }
   1828   return true;
   1829 }
   1830 
   1831 // These next two are very similar to the above, but also look through PHI
   1832 // nodes.
   1833 // TODO: See if we can integrate these two together.
   1834 
   1835 /// GetStringLengthH - If we can compute the length of the string pointed to by
   1836 /// the specified pointer, return 'len+1'.  If we can't, return 0.
   1837 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
   1838   // Look through noop bitcast instructions.
   1839   V = V->stripPointerCasts();
   1840 
   1841   // If this is a PHI node, there are two cases: either we have already seen it
   1842   // or we haven't.
   1843   if (PHINode *PN = dyn_cast<PHINode>(V)) {
   1844     if (!PHIs.insert(PN))
   1845       return ~0ULL;  // already in the set.
   1846 
   1847     // If it was new, see if all the input strings are the same length.
   1848     uint64_t LenSoFar = ~0ULL;
   1849     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1850       uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
   1851       if (Len == 0) return 0; // Unknown length -> unknown.
   1852 
   1853       if (Len == ~0ULL) continue;
   1854 
   1855       if (Len != LenSoFar && LenSoFar != ~0ULL)
   1856         return 0;    // Disagree -> unknown.
   1857       LenSoFar = Len;
   1858     }
   1859 
   1860     // Success, all agree.
   1861     return LenSoFar;
   1862   }
   1863 
   1864   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
   1865   if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
   1866     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
   1867     if (Len1 == 0) return 0;
   1868     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
   1869     if (Len2 == 0) return 0;
   1870     if (Len1 == ~0ULL) return Len2;
   1871     if (Len2 == ~0ULL) return Len1;
   1872     if (Len1 != Len2) return 0;
   1873     return Len1;
   1874   }
   1875 
   1876   // Otherwise, see if we can read the string.
   1877   StringRef StrData;
   1878   if (!getConstantStringInfo(V, StrData))
   1879     return 0;
   1880 
   1881   return StrData.size()+1;
   1882 }
   1883 
   1884 /// GetStringLength - If we can compute the length of the string pointed to by
   1885 /// the specified pointer, return 'len+1'.  If we can't, return 0.
   1886 uint64_t llvm::GetStringLength(Value *V) {
   1887   if (!V->getType()->isPointerTy()) return 0;
   1888 
   1889   SmallPtrSet<PHINode*, 32> PHIs;
   1890   uint64_t Len = GetStringLengthH(V, PHIs);
   1891   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
   1892   // an empty string as a length.
   1893   return Len == ~0ULL ? 1 : Len;
   1894 }
   1895 
   1896 Value *
   1897 llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
   1898   if (!V->getType()->isPointerTy())
   1899     return V;
   1900   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
   1901     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
   1902       V = GEP->getPointerOperand();
   1903     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
   1904       V = cast<Operator>(V)->getOperand(0);
   1905     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
   1906       if (GA->mayBeOverridden())
   1907         return V;
   1908       V = GA->getAliasee();
   1909     } else {
   1910       // See if InstructionSimplify knows any relevant tricks.
   1911       if (Instruction *I = dyn_cast<Instruction>(V))
   1912         // TODO: Acquire a DominatorTree and use it.
   1913         if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
   1914           V = Simplified;
   1915           continue;
   1916         }
   1917 
   1918       return V;
   1919     }
   1920     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
   1921   }
   1922   return V;
   1923 }
   1924 
   1925 void
   1926 llvm::GetUnderlyingObjects(Value *V,
   1927                            SmallVectorImpl<Value *> &Objects,
   1928                            const DataLayout *TD,
   1929                            unsigned MaxLookup) {
   1930   SmallPtrSet<Value *, 4> Visited;
   1931   SmallVector<Value *, 4> Worklist;
   1932   Worklist.push_back(V);
   1933   do {
   1934     Value *P = Worklist.pop_back_val();
   1935     P = GetUnderlyingObject(P, TD, MaxLookup);
   1936 
   1937     if (!Visited.insert(P))
   1938       continue;
   1939 
   1940     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
   1941       Worklist.push_back(SI->getTrueValue());
   1942       Worklist.push_back(SI->getFalseValue());
   1943       continue;
   1944     }
   1945 
   1946     if (PHINode *PN = dyn_cast<PHINode>(P)) {
   1947       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1948         Worklist.push_back(PN->getIncomingValue(i));
   1949       continue;
   1950     }
   1951 
   1952     Objects.push_back(P);
   1953   } while (!Worklist.empty());
   1954 }
   1955 
   1956 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
   1957 /// are lifetime markers.
   1958 ///
   1959 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
   1960   for (const User *U : V->users()) {
   1961     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
   1962     if (!II) return false;
   1963 
   1964     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
   1965         II->getIntrinsicID() != Intrinsic::lifetime_end)
   1966       return false;
   1967   }
   1968   return true;
   1969 }
   1970 
   1971 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
   1972                                         const DataLayout *TD) {
   1973   const Operator *Inst = dyn_cast<Operator>(V);
   1974   if (!Inst)
   1975     return false;
   1976 
   1977   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
   1978     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
   1979       if (C->canTrap())
   1980         return false;
   1981 
   1982   switch (Inst->getOpcode()) {
   1983   default:
   1984     return true;
   1985   case Instruction::UDiv:
   1986   case Instruction::URem:
   1987     // x / y is undefined if y == 0, but calculations like x / 3 are safe.
   1988     return isKnownNonZero(Inst->getOperand(1), TD);
   1989   case Instruction::SDiv:
   1990   case Instruction::SRem: {
   1991     Value *Op = Inst->getOperand(1);
   1992     // x / y is undefined if y == 0
   1993     if (!isKnownNonZero(Op, TD))
   1994       return false;
   1995     // x / y might be undefined if y == -1
   1996     unsigned BitWidth = getBitWidth(Op->getType(), TD);
   1997     if (BitWidth == 0)
   1998       return false;
   1999     APInt KnownZero(BitWidth, 0);
   2000     APInt KnownOne(BitWidth, 0);
   2001     computeKnownBits(Op, KnownZero, KnownOne, TD);
   2002     return !!KnownZero;
   2003   }
   2004   case Instruction::Load: {
   2005     const LoadInst *LI = cast<LoadInst>(Inst);
   2006     if (!LI->isUnordered() ||
   2007         // Speculative load may create a race that did not exist in the source.
   2008         LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
   2009       return false;
   2010     return LI->getPointerOperand()->isDereferenceablePointer(TD);
   2011   }
   2012   case Instruction::Call: {
   2013    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
   2014      switch (II->getIntrinsicID()) {
   2015        // These synthetic intrinsics have no side-effects and just mark
   2016        // information about their operands.
   2017        // FIXME: There are other no-op synthetic instructions that potentially
   2018        // should be considered at least *safe* to speculate...
   2019        case Intrinsic::dbg_declare:
   2020        case Intrinsic::dbg_value:
   2021          return true;
   2022 
   2023        case Intrinsic::bswap:
   2024        case Intrinsic::ctlz:
   2025        case Intrinsic::ctpop:
   2026        case Intrinsic::cttz:
   2027        case Intrinsic::objectsize:
   2028        case Intrinsic::sadd_with_overflow:
   2029        case Intrinsic::smul_with_overflow:
   2030        case Intrinsic::ssub_with_overflow:
   2031        case Intrinsic::uadd_with_overflow:
   2032        case Intrinsic::umul_with_overflow:
   2033        case Intrinsic::usub_with_overflow:
   2034          return true;
   2035        // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
   2036        // errno like libm sqrt would.
   2037        case Intrinsic::sqrt:
   2038        case Intrinsic::fma:
   2039        case Intrinsic::fmuladd:
   2040          return true;
   2041        // TODO: some fp intrinsics are marked as having the same error handling
   2042        // as libm. They're safe to speculate when they won't error.
   2043        // TODO: are convert_{from,to}_fp16 safe?
   2044        // TODO: can we list target-specific intrinsics here?
   2045        default: break;
   2046      }
   2047    }
   2048     return false; // The called function could have undefined behavior or
   2049                   // side-effects, even if marked readnone nounwind.
   2050   }
   2051   case Instruction::VAArg:
   2052   case Instruction::Alloca:
   2053   case Instruction::Invoke:
   2054   case Instruction::PHI:
   2055   case Instruction::Store:
   2056   case Instruction::Ret:
   2057   case Instruction::Br:
   2058   case Instruction::IndirectBr:
   2059   case Instruction::Switch:
   2060   case Instruction::Unreachable:
   2061   case Instruction::Fence:
   2062   case Instruction::LandingPad:
   2063   case Instruction::AtomicRMW:
   2064   case Instruction::AtomicCmpXchg:
   2065   case Instruction::Resume:
   2066     return false; // Misc instructions which have effects
   2067   }
   2068 }
   2069 
   2070 /// isKnownNonNull - Return true if we know that the specified value is never
   2071 /// null.
   2072 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
   2073   // Alloca never returns null, malloc might.
   2074   if (isa<AllocaInst>(V)) return true;
   2075 
   2076   // A byval, inalloca, or nonnull argument is never null.
   2077   if (const Argument *A = dyn_cast<Argument>(V))
   2078     return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
   2079 
   2080   // Global values are not null unless extern weak.
   2081   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
   2082     return !GV->hasExternalWeakLinkage();
   2083 
   2084   if (ImmutableCallSite CS = V)
   2085     if (CS.paramHasAttr(0, Attribute::NonNull))
   2086       return true;
   2087 
   2088   // operator new never returns null.
   2089   if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
   2090     return true;
   2091 
   2092   return false;
   2093 }
   2094