1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/MemoryBuiltins.h" 19 #include "llvm/IR/CallSite.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/GlobalAlias.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/MathExtras.h" 33 #include <cstring> 34 using namespace llvm; 35 using namespace llvm::PatternMatch; 36 37 const unsigned MaxDepth = 6; 38 39 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if 40 /// unknown returns 0). For vector types, returns the element type's bitwidth. 41 static unsigned getBitWidth(Type *Ty, const DataLayout *TD) { 42 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 43 return BitWidth; 44 45 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0; 46 } 47 48 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 49 APInt &KnownZero, APInt &KnownOne, 50 APInt &KnownZero2, APInt &KnownOne2, 51 const DataLayout *TD, unsigned Depth) { 52 if (!Add) { 53 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 54 // We know that the top bits of C-X are clear if X contains less bits 55 // than C (i.e. no wrap-around can happen). For example, 20-X is 56 // positive if we can prove that X is >= 0 and < 16. 57 if (!CLHS->getValue().isNegative()) { 58 unsigned BitWidth = KnownZero.getBitWidth(); 59 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 60 // NLZ can't be BitWidth with no sign bit 61 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 62 llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); 63 64 // If all of the MaskV bits are known to be zero, then we know the 65 // output top bits are zero, because we now know that the output is 66 // from [0-C]. 67 if ((KnownZero2 & MaskV) == MaskV) { 68 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 69 // Top bits known zero. 70 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 71 } 72 } 73 } 74 } 75 76 unsigned BitWidth = KnownZero.getBitWidth(); 77 78 // If one of the operands has trailing zeros, then the bits that the 79 // other operand has in those bit positions will be preserved in the 80 // result. For an add, this works with either operand. For a subtract, 81 // this only works if the known zeros are in the right operand. 82 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 83 llvm::computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1); 84 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); 85 86 llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); 87 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); 88 89 // Determine which operand has more trailing zeros, and use that 90 // many bits from the other operand. 91 if (LHSKnownZeroOut > RHSKnownZeroOut) { 92 if (Add) { 93 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); 94 KnownZero |= KnownZero2 & Mask; 95 KnownOne |= KnownOne2 & Mask; 96 } else { 97 // If the known zeros are in the left operand for a subtract, 98 // fall back to the minimum known zeros in both operands. 99 KnownZero |= APInt::getLowBitsSet(BitWidth, 100 std::min(LHSKnownZeroOut, 101 RHSKnownZeroOut)); 102 } 103 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { 104 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); 105 KnownZero |= LHSKnownZero & Mask; 106 KnownOne |= LHSKnownOne & Mask; 107 } 108 109 // Are we still trying to solve for the sign bit? 110 if (!KnownZero.isNegative() && !KnownOne.isNegative()) { 111 if (NSW) { 112 if (Add) { 113 // Adding two positive numbers can't wrap into negative 114 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 115 KnownZero |= APInt::getSignBit(BitWidth); 116 // and adding two negative numbers can't wrap into positive. 117 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 118 KnownOne |= APInt::getSignBit(BitWidth); 119 } else { 120 // Subtracting a negative number from a positive one can't wrap 121 if (LHSKnownZero.isNegative() && KnownOne2.isNegative()) 122 KnownZero |= APInt::getSignBit(BitWidth); 123 // neither can subtracting a positive number from a negative one. 124 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative()) 125 KnownOne |= APInt::getSignBit(BitWidth); 126 } 127 } 128 } 129 } 130 131 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 132 APInt &KnownZero, APInt &KnownOne, 133 APInt &KnownZero2, APInt &KnownOne2, 134 const DataLayout *TD, unsigned Depth) { 135 unsigned BitWidth = KnownZero.getBitWidth(); 136 computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1); 137 computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1); 138 139 bool isKnownNegative = false; 140 bool isKnownNonNegative = false; 141 // If the multiplication is known not to overflow, compute the sign bit. 142 if (NSW) { 143 if (Op0 == Op1) { 144 // The product of a number with itself is non-negative. 145 isKnownNonNegative = true; 146 } else { 147 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 148 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 149 bool isKnownNegativeOp1 = KnownOne.isNegative(); 150 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 151 // The product of two numbers with the same sign is non-negative. 152 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 153 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 154 // The product of a negative number and a non-negative number is either 155 // negative or zero. 156 if (!isKnownNonNegative) 157 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 158 isKnownNonZero(Op0, TD, Depth)) || 159 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 160 isKnownNonZero(Op1, TD, Depth)); 161 } 162 } 163 164 // If low bits are zero in either operand, output low known-0 bits. 165 // Also compute a conserative estimate for high known-0 bits. 166 // More trickiness is possible, but this is sufficient for the 167 // interesting case of alignment computation. 168 KnownOne.clearAllBits(); 169 unsigned TrailZ = KnownZero.countTrailingOnes() + 170 KnownZero2.countTrailingOnes(); 171 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 172 KnownZero2.countLeadingOnes(), 173 BitWidth) - BitWidth; 174 175 TrailZ = std::min(TrailZ, BitWidth); 176 LeadZ = std::min(LeadZ, BitWidth); 177 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 178 APInt::getHighBitsSet(BitWidth, LeadZ); 179 180 // Only make use of no-wrap flags if we failed to compute the sign bit 181 // directly. This matters if the multiplication always overflows, in 182 // which case we prefer to follow the result of the direct computation, 183 // though as the program is invoking undefined behaviour we can choose 184 // whatever we like here. 185 if (isKnownNonNegative && !KnownOne.isNegative()) 186 KnownZero.setBit(BitWidth - 1); 187 else if (isKnownNegative && !KnownZero.isNegative()) 188 KnownOne.setBit(BitWidth - 1); 189 } 190 191 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 192 APInt &KnownZero) { 193 unsigned BitWidth = KnownZero.getBitWidth(); 194 unsigned NumRanges = Ranges.getNumOperands() / 2; 195 assert(NumRanges >= 1); 196 197 // Use the high end of the ranges to find leading zeros. 198 unsigned MinLeadingZeros = BitWidth; 199 for (unsigned i = 0; i < NumRanges; ++i) { 200 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0)); 201 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1)); 202 ConstantRange Range(Lower->getValue(), Upper->getValue()); 203 if (Range.isWrappedSet()) 204 MinLeadingZeros = 0; // -1 has no zeros 205 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); 206 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 207 } 208 209 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 210 } 211 212 /// Determine which bits of V are known to be either zero or one and return 213 /// them in the KnownZero/KnownOne bit sets. 214 /// 215 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 216 /// we cannot optimize based on the assumption that it is zero without changing 217 /// it to be an explicit zero. If we don't change it to zero, other code could 218 /// optimized based on the contradictory assumption that it is non-zero. 219 /// Because instcombine aggressively folds operations with undef args anyway, 220 /// this won't lose us code quality. 221 /// 222 /// This function is defined on values with integer type, values with pointer 223 /// type (but only if TD is non-null), and vectors of integers. In the case 224 /// where V is a vector, known zero, and known one values are the 225 /// same width as the vector element, and the bit is set only if it is true 226 /// for all of the elements in the vector. 227 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 228 const DataLayout *TD, unsigned Depth) { 229 assert(V && "No Value?"); 230 assert(Depth <= MaxDepth && "Limit Search Depth"); 231 unsigned BitWidth = KnownZero.getBitWidth(); 232 233 assert((V->getType()->isIntOrIntVectorTy() || 234 V->getType()->getScalarType()->isPointerTy()) && 235 "Not integer or pointer type!"); 236 assert((!TD || 237 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 238 (!V->getType()->isIntOrIntVectorTy() || 239 V->getType()->getScalarSizeInBits() == BitWidth) && 240 KnownZero.getBitWidth() == BitWidth && 241 KnownOne.getBitWidth() == BitWidth && 242 "V, KnownOne and KnownZero should have same BitWidth"); 243 244 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 245 // We know all of the bits for a constant! 246 KnownOne = CI->getValue(); 247 KnownZero = ~KnownOne; 248 return; 249 } 250 // Null and aggregate-zero are all-zeros. 251 if (isa<ConstantPointerNull>(V) || 252 isa<ConstantAggregateZero>(V)) { 253 KnownOne.clearAllBits(); 254 KnownZero = APInt::getAllOnesValue(BitWidth); 255 return; 256 } 257 // Handle a constant vector by taking the intersection of the known bits of 258 // each element. There is no real need to handle ConstantVector here, because 259 // we don't handle undef in any particularly useful way. 260 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 261 // We know that CDS must be a vector of integers. Take the intersection of 262 // each element. 263 KnownZero.setAllBits(); KnownOne.setAllBits(); 264 APInt Elt(KnownZero.getBitWidth(), 0); 265 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 266 Elt = CDS->getElementAsInteger(i); 267 KnownZero &= ~Elt; 268 KnownOne &= Elt; 269 } 270 return; 271 } 272 273 // The address of an aligned GlobalValue has trailing zeros. 274 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 275 unsigned Align = GV->getAlignment(); 276 if (Align == 0 && TD) { 277 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) { 278 Type *ObjectType = GVar->getType()->getElementType(); 279 if (ObjectType->isSized()) { 280 // If the object is defined in the current Module, we'll be giving 281 // it the preferred alignment. Otherwise, we have to assume that it 282 // may only have the minimum ABI alignment. 283 if (!GVar->isDeclaration() && !GVar->isWeakForLinker()) 284 Align = TD->getPreferredAlignment(GVar); 285 else 286 Align = TD->getABITypeAlignment(ObjectType); 287 } 288 } 289 } 290 if (Align > 0) 291 KnownZero = APInt::getLowBitsSet(BitWidth, 292 countTrailingZeros(Align)); 293 else 294 KnownZero.clearAllBits(); 295 KnownOne.clearAllBits(); 296 return; 297 } 298 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 299 // the bits of its aliasee. 300 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 301 if (GA->mayBeOverridden()) { 302 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 303 } else { 304 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1); 305 } 306 return; 307 } 308 309 if (Argument *A = dyn_cast<Argument>(V)) { 310 unsigned Align = 0; 311 312 if (A->hasByValOrInAllocaAttr()) { 313 // Get alignment information off byval/inalloca arguments if specified in 314 // the IR. 315 Align = A->getParamAlignment(); 316 } else if (TD && A->hasStructRetAttr()) { 317 // An sret parameter has at least the ABI alignment of the return type. 318 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 319 if (EltTy->isSized()) 320 Align = TD->getABITypeAlignment(EltTy); 321 } 322 323 if (Align) 324 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 325 return; 326 } 327 328 // Start out not knowing anything. 329 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 330 331 if (Depth == MaxDepth) 332 return; // Limit search depth. 333 334 Operator *I = dyn_cast<Operator>(V); 335 if (!I) return; 336 337 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 338 switch (I->getOpcode()) { 339 default: break; 340 case Instruction::Load: 341 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 342 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 343 break; 344 case Instruction::And: { 345 // If either the LHS or the RHS are Zero, the result is zero. 346 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 347 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 348 349 // Output known-1 bits are only known if set in both the LHS & RHS. 350 KnownOne &= KnownOne2; 351 // Output known-0 are known to be clear if zero in either the LHS | RHS. 352 KnownZero |= KnownZero2; 353 break; 354 } 355 case Instruction::Or: { 356 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 357 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 358 359 // Output known-0 bits are only known if clear in both the LHS & RHS. 360 KnownZero &= KnownZero2; 361 // Output known-1 are known to be set if set in either the LHS | RHS. 362 KnownOne |= KnownOne2; 363 break; 364 } 365 case Instruction::Xor: { 366 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 367 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 368 369 // Output known-0 bits are known if clear or set in both the LHS & RHS. 370 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 371 // Output known-1 are known to be set if set in only one of the LHS, RHS. 372 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 373 KnownZero = KnownZeroOut; 374 break; 375 } 376 case Instruction::Mul: { 377 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 378 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, 379 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth); 380 break; 381 } 382 case Instruction::UDiv: { 383 // For the purposes of computing leading zeros we can conservatively 384 // treat a udiv as a logical right shift by the power of 2 known to 385 // be less than the denominator. 386 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 387 unsigned LeadZ = KnownZero2.countLeadingOnes(); 388 389 KnownOne2.clearAllBits(); 390 KnownZero2.clearAllBits(); 391 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); 392 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 393 if (RHSUnknownLeadingOnes != BitWidth) 394 LeadZ = std::min(BitWidth, 395 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 396 397 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 398 break; 399 } 400 case Instruction::Select: 401 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1); 402 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, 403 Depth+1); 404 405 // Only known if known in both the LHS and RHS. 406 KnownOne &= KnownOne2; 407 KnownZero &= KnownZero2; 408 break; 409 case Instruction::FPTrunc: 410 case Instruction::FPExt: 411 case Instruction::FPToUI: 412 case Instruction::FPToSI: 413 case Instruction::SIToFP: 414 case Instruction::UIToFP: 415 break; // Can't work with floating point. 416 case Instruction::PtrToInt: 417 case Instruction::IntToPtr: 418 // We can't handle these if we don't know the pointer size. 419 if (!TD) break; 420 // FALL THROUGH and handle them the same as zext/trunc. 421 case Instruction::ZExt: 422 case Instruction::Trunc: { 423 Type *SrcTy = I->getOperand(0)->getType(); 424 425 unsigned SrcBitWidth; 426 // Note that we handle pointer operands here because of inttoptr/ptrtoint 427 // which fall through here. 428 if(TD) { 429 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType()); 430 } else { 431 SrcBitWidth = SrcTy->getScalarSizeInBits(); 432 if (!SrcBitWidth) break; 433 } 434 435 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 436 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 437 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 438 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 439 KnownZero = KnownZero.zextOrTrunc(BitWidth); 440 KnownOne = KnownOne.zextOrTrunc(BitWidth); 441 // Any top bits are known to be zero. 442 if (BitWidth > SrcBitWidth) 443 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 444 break; 445 } 446 case Instruction::BitCast: { 447 Type *SrcTy = I->getOperand(0)->getType(); 448 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 449 // TODO: For now, not handling conversions like: 450 // (bitcast i64 %x to <2 x i32>) 451 !I->getType()->isVectorTy()) { 452 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 453 break; 454 } 455 break; 456 } 457 case Instruction::SExt: { 458 // Compute the bits in the result that are not present in the input. 459 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 460 461 KnownZero = KnownZero.trunc(SrcBitWidth); 462 KnownOne = KnownOne.trunc(SrcBitWidth); 463 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 464 KnownZero = KnownZero.zext(BitWidth); 465 KnownOne = KnownOne.zext(BitWidth); 466 467 // If the sign bit of the input is known set or clear, then we know the 468 // top bits of the result. 469 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 470 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 471 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 472 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 473 break; 474 } 475 case Instruction::Shl: 476 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 477 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 478 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 479 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 480 KnownZero <<= ShiftAmt; 481 KnownOne <<= ShiftAmt; 482 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 483 break; 484 } 485 break; 486 case Instruction::LShr: 487 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 488 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 489 // Compute the new bits that are at the top now. 490 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 491 492 // Unsigned shift right. 493 computeKnownBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1); 494 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 495 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 496 // high bits known zero. 497 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 498 break; 499 } 500 break; 501 case Instruction::AShr: 502 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 503 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 504 // Compute the new bits that are at the top now. 505 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 506 507 // Signed shift right. 508 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 509 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 510 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 511 512 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 513 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 514 KnownZero |= HighBits; 515 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 516 KnownOne |= HighBits; 517 break; 518 } 519 break; 520 case Instruction::Sub: { 521 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 522 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 523 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 524 Depth); 525 break; 526 } 527 case Instruction::Add: { 528 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 529 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 530 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 531 Depth); 532 break; 533 } 534 case Instruction::SRem: 535 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 536 APInt RA = Rem->getValue().abs(); 537 if (RA.isPowerOf2()) { 538 APInt LowBits = RA - 1; 539 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 540 541 // The low bits of the first operand are unchanged by the srem. 542 KnownZero = KnownZero2 & LowBits; 543 KnownOne = KnownOne2 & LowBits; 544 545 // If the first operand is non-negative or has all low bits zero, then 546 // the upper bits are all zero. 547 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 548 KnownZero |= ~LowBits; 549 550 // If the first operand is negative and not all low bits are zero, then 551 // the upper bits are all one. 552 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 553 KnownOne |= ~LowBits; 554 555 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 556 } 557 } 558 559 // The sign bit is the LHS's sign bit, except when the result of the 560 // remainder is zero. 561 if (KnownZero.isNonNegative()) { 562 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 563 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD, 564 Depth+1); 565 // If it's known zero, our sign bit is also zero. 566 if (LHSKnownZero.isNegative()) 567 KnownZero.setBit(BitWidth - 1); 568 } 569 570 break; 571 case Instruction::URem: { 572 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 573 APInt RA = Rem->getValue(); 574 if (RA.isPowerOf2()) { 575 APInt LowBits = (RA - 1); 576 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, 577 Depth+1); 578 KnownZero |= ~LowBits; 579 KnownOne &= LowBits; 580 break; 581 } 582 } 583 584 // Since the result is less than or equal to either operand, any leading 585 // zero bits in either operand must also exist in the result. 586 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 587 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); 588 589 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 590 KnownZero2.countLeadingOnes()); 591 KnownOne.clearAllBits(); 592 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 593 break; 594 } 595 596 case Instruction::Alloca: { 597 AllocaInst *AI = cast<AllocaInst>(V); 598 unsigned Align = AI->getAlignment(); 599 if (Align == 0 && TD) 600 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 601 602 if (Align > 0) 603 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 604 break; 605 } 606 case Instruction::GetElementPtr: { 607 // Analyze all of the subscripts of this getelementptr instruction 608 // to determine if we can prove known low zero bits. 609 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 610 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD, 611 Depth+1); 612 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 613 614 gep_type_iterator GTI = gep_type_begin(I); 615 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 616 Value *Index = I->getOperand(i); 617 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 618 // Handle struct member offset arithmetic. 619 if (!TD) { 620 TrailZ = 0; 621 break; 622 } 623 624 // Handle case when index is vector zeroinitializer 625 Constant *CIndex = cast<Constant>(Index); 626 if (CIndex->isZeroValue()) 627 continue; 628 629 if (CIndex->getType()->isVectorTy()) 630 Index = CIndex->getSplatValue(); 631 632 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 633 const StructLayout *SL = TD->getStructLayout(STy); 634 uint64_t Offset = SL->getElementOffset(Idx); 635 TrailZ = std::min<unsigned>(TrailZ, 636 countTrailingZeros(Offset)); 637 } else { 638 // Handle array index arithmetic. 639 Type *IndexedTy = GTI.getIndexedType(); 640 if (!IndexedTy->isSized()) { 641 TrailZ = 0; 642 break; 643 } 644 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 645 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 646 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 647 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1); 648 TrailZ = std::min(TrailZ, 649 unsigned(countTrailingZeros(TypeSize) + 650 LocalKnownZero.countTrailingOnes())); 651 } 652 } 653 654 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 655 break; 656 } 657 case Instruction::PHI: { 658 PHINode *P = cast<PHINode>(I); 659 // Handle the case of a simple two-predecessor recurrence PHI. 660 // There's a lot more that could theoretically be done here, but 661 // this is sufficient to catch some interesting cases. 662 if (P->getNumIncomingValues() == 2) { 663 for (unsigned i = 0; i != 2; ++i) { 664 Value *L = P->getIncomingValue(i); 665 Value *R = P->getIncomingValue(!i); 666 Operator *LU = dyn_cast<Operator>(L); 667 if (!LU) 668 continue; 669 unsigned Opcode = LU->getOpcode(); 670 // Check for operations that have the property that if 671 // both their operands have low zero bits, the result 672 // will have low zero bits. 673 if (Opcode == Instruction::Add || 674 Opcode == Instruction::Sub || 675 Opcode == Instruction::And || 676 Opcode == Instruction::Or || 677 Opcode == Instruction::Mul) { 678 Value *LL = LU->getOperand(0); 679 Value *LR = LU->getOperand(1); 680 // Find a recurrence. 681 if (LL == I) 682 L = LR; 683 else if (LR == I) 684 L = LL; 685 else 686 break; 687 // Ok, we have a PHI of the form L op= R. Check for low 688 // zero bits. 689 computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1); 690 691 // We need to take the minimum number of known bits 692 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 693 computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1); 694 695 KnownZero = APInt::getLowBitsSet(BitWidth, 696 std::min(KnownZero2.countTrailingOnes(), 697 KnownZero3.countTrailingOnes())); 698 break; 699 } 700 } 701 } 702 703 // Unreachable blocks may have zero-operand PHI nodes. 704 if (P->getNumIncomingValues() == 0) 705 break; 706 707 // Otherwise take the unions of the known bit sets of the operands, 708 // taking conservative care to avoid excessive recursion. 709 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 710 // Skip if every incoming value references to ourself. 711 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 712 break; 713 714 KnownZero = APInt::getAllOnesValue(BitWidth); 715 KnownOne = APInt::getAllOnesValue(BitWidth); 716 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 717 // Skip direct self references. 718 if (P->getIncomingValue(i) == P) continue; 719 720 KnownZero2 = APInt(BitWidth, 0); 721 KnownOne2 = APInt(BitWidth, 0); 722 // Recurse, but cap the recursion to one level, because we don't 723 // want to waste time spinning around in loops. 724 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD, 725 MaxDepth-1); 726 KnownZero &= KnownZero2; 727 KnownOne &= KnownOne2; 728 // If all bits have been ruled out, there's no need to check 729 // more operands. 730 if (!KnownZero && !KnownOne) 731 break; 732 } 733 } 734 break; 735 } 736 case Instruction::Call: 737 case Instruction::Invoke: 738 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 739 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 740 // If a range metadata is attached to this IntrinsicInst, intersect the 741 // explicit range specified by the metadata and the implicit range of 742 // the intrinsic. 743 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 744 switch (II->getIntrinsicID()) { 745 default: break; 746 case Intrinsic::ctlz: 747 case Intrinsic::cttz: { 748 unsigned LowBits = Log2_32(BitWidth)+1; 749 // If this call is undefined for 0, the result will be less than 2^n. 750 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 751 LowBits -= 1; 752 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 753 break; 754 } 755 case Intrinsic::ctpop: { 756 unsigned LowBits = Log2_32(BitWidth)+1; 757 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 758 break; 759 } 760 case Intrinsic::x86_sse42_crc32_64_64: 761 KnownZero |= APInt::getHighBitsSet(64, 32); 762 break; 763 } 764 } 765 break; 766 case Instruction::ExtractValue: 767 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 768 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 769 if (EVI->getNumIndices() != 1) break; 770 if (EVI->getIndices()[0] == 0) { 771 switch (II->getIntrinsicID()) { 772 default: break; 773 case Intrinsic::uadd_with_overflow: 774 case Intrinsic::sadd_with_overflow: 775 computeKnownBitsAddSub(true, II->getArgOperand(0), 776 II->getArgOperand(1), false, KnownZero, 777 KnownOne, KnownZero2, KnownOne2, TD, Depth); 778 break; 779 case Intrinsic::usub_with_overflow: 780 case Intrinsic::ssub_with_overflow: 781 computeKnownBitsAddSub(false, II->getArgOperand(0), 782 II->getArgOperand(1), false, KnownZero, 783 KnownOne, KnownZero2, KnownOne2, TD, Depth); 784 break; 785 case Intrinsic::umul_with_overflow: 786 case Intrinsic::smul_with_overflow: 787 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), 788 false, KnownZero, KnownOne, 789 KnownZero2, KnownOne2, TD, Depth); 790 break; 791 } 792 } 793 } 794 } 795 796 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 797 } 798 799 /// ComputeSignBit - Determine whether the sign bit is known to be zero or 800 /// one. Convenience wrapper around computeKnownBits. 801 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 802 const DataLayout *TD, unsigned Depth) { 803 unsigned BitWidth = getBitWidth(V->getType(), TD); 804 if (!BitWidth) { 805 KnownZero = false; 806 KnownOne = false; 807 return; 808 } 809 APInt ZeroBits(BitWidth, 0); 810 APInt OneBits(BitWidth, 0); 811 computeKnownBits(V, ZeroBits, OneBits, TD, Depth); 812 KnownOne = OneBits[BitWidth - 1]; 813 KnownZero = ZeroBits[BitWidth - 1]; 814 } 815 816 /// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one 817 /// bit set when defined. For vectors return true if every element is known to 818 /// be a power of two when defined. Supports values with integer or pointer 819 /// types and vectors of integers. 820 bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) { 821 if (Constant *C = dyn_cast<Constant>(V)) { 822 if (C->isNullValue()) 823 return OrZero; 824 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 825 return CI->getValue().isPowerOf2(); 826 // TODO: Handle vector constants. 827 } 828 829 // 1 << X is clearly a power of two if the one is not shifted off the end. If 830 // it is shifted off the end then the result is undefined. 831 if (match(V, m_Shl(m_One(), m_Value()))) 832 return true; 833 834 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 835 // bottom. If it is shifted off the bottom then the result is undefined. 836 if (match(V, m_LShr(m_SignBit(), m_Value()))) 837 return true; 838 839 // The remaining tests are all recursive, so bail out if we hit the limit. 840 if (Depth++ == MaxDepth) 841 return false; 842 843 Value *X = nullptr, *Y = nullptr; 844 // A shift of a power of two is a power of two or zero. 845 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 846 match(V, m_Shr(m_Value(X), m_Value())))) 847 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth); 848 849 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 850 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth); 851 852 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 853 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) && 854 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth); 855 856 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 857 // A power of two and'd with anything is a power of two or zero. 858 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) || 859 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth)) 860 return true; 861 // X & (-X) is always a power of two or zero. 862 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 863 return true; 864 return false; 865 } 866 867 // Adding a power-of-two or zero to the same power-of-two or zero yields 868 // either the original power-of-two, a larger power-of-two or zero. 869 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 870 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 871 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 872 if (match(X, m_And(m_Specific(Y), m_Value())) || 873 match(X, m_And(m_Value(), m_Specific(Y)))) 874 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth)) 875 return true; 876 if (match(Y, m_And(m_Specific(X), m_Value())) || 877 match(Y, m_And(m_Value(), m_Specific(X)))) 878 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth)) 879 return true; 880 881 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 882 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 883 computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth); 884 885 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 886 computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth); 887 // If i8 V is a power of two or zero: 888 // ZeroBits: 1 1 1 0 1 1 1 1 889 // ~ZeroBits: 0 0 0 1 0 0 0 0 890 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 891 // If OrZero isn't set, we cannot give back a zero result. 892 // Make sure either the LHS or RHS has a bit set. 893 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 894 return true; 895 } 896 } 897 898 // An exact divide or right shift can only shift off zero bits, so the result 899 // is a power of two only if the first operand is a power of two and not 900 // copying a sign bit (sdiv int_min, 2). 901 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 902 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 903 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth); 904 } 905 906 return false; 907 } 908 909 /// \brief Test whether a GEP's result is known to be non-null. 910 /// 911 /// Uses properties inherent in a GEP to try to determine whether it is known 912 /// to be non-null. 913 /// 914 /// Currently this routine does not support vector GEPs. 915 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, 916 unsigned Depth) { 917 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 918 return false; 919 920 // FIXME: Support vector-GEPs. 921 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 922 923 // If the base pointer is non-null, we cannot walk to a null address with an 924 // inbounds GEP in address space zero. 925 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth)) 926 return true; 927 928 // Past this, if we don't have DataLayout, we can't do much. 929 if (!DL) 930 return false; 931 932 // Walk the GEP operands and see if any operand introduces a non-zero offset. 933 // If so, then the GEP cannot produce a null pointer, as doing so would 934 // inherently violate the inbounds contract within address space zero. 935 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 936 GTI != GTE; ++GTI) { 937 // Struct types are easy -- they must always be indexed by a constant. 938 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 939 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 940 unsigned ElementIdx = OpC->getZExtValue(); 941 const StructLayout *SL = DL->getStructLayout(STy); 942 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 943 if (ElementOffset > 0) 944 return true; 945 continue; 946 } 947 948 // If we have a zero-sized type, the index doesn't matter. Keep looping. 949 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0) 950 continue; 951 952 // Fast path the constant operand case both for efficiency and so we don't 953 // increment Depth when just zipping down an all-constant GEP. 954 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 955 if (!OpC->isZero()) 956 return true; 957 continue; 958 } 959 960 // We post-increment Depth here because while isKnownNonZero increments it 961 // as well, when we pop back up that increment won't persist. We don't want 962 // to recurse 10k times just because we have 10k GEP operands. We don't 963 // bail completely out because we want to handle constant GEPs regardless 964 // of depth. 965 if (Depth++ >= MaxDepth) 966 continue; 967 968 if (isKnownNonZero(GTI.getOperand(), DL, Depth)) 969 return true; 970 } 971 972 return false; 973 } 974 975 /// isKnownNonZero - Return true if the given value is known to be non-zero 976 /// when defined. For vectors return true if every element is known to be 977 /// non-zero when defined. Supports values with integer or pointer type and 978 /// vectors of integers. 979 bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { 980 if (Constant *C = dyn_cast<Constant>(V)) { 981 if (C->isNullValue()) 982 return false; 983 if (isa<ConstantInt>(C)) 984 // Must be non-zero due to null test above. 985 return true; 986 // TODO: Handle vectors 987 return false; 988 } 989 990 // The remaining tests are all recursive, so bail out if we hit the limit. 991 if (Depth++ >= MaxDepth) 992 return false; 993 994 // Check for pointer simplifications. 995 if (V->getType()->isPointerTy()) { 996 if (isKnownNonNull(V)) 997 return true; 998 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 999 if (isGEPKnownNonNull(GEP, TD, Depth)) 1000 return true; 1001 } 1002 1003 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD); 1004 1005 // X | Y != 0 if X != 0 or Y != 0. 1006 Value *X = nullptr, *Y = nullptr; 1007 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1008 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); 1009 1010 // ext X != 0 if X != 0. 1011 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1012 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); 1013 1014 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1015 // if the lowest bit is shifted off the end. 1016 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1017 // shl nuw can't remove any non-zero bits. 1018 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1019 if (BO->hasNoUnsignedWrap()) 1020 return isKnownNonZero(X, TD, Depth); 1021 1022 APInt KnownZero(BitWidth, 0); 1023 APInt KnownOne(BitWidth, 0); 1024 computeKnownBits(X, KnownZero, KnownOne, TD, Depth); 1025 if (KnownOne[0]) 1026 return true; 1027 } 1028 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1029 // defined if the sign bit is shifted off the end. 1030 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1031 // shr exact can only shift out zero bits. 1032 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1033 if (BO->isExact()) 1034 return isKnownNonZero(X, TD, Depth); 1035 1036 bool XKnownNonNegative, XKnownNegative; 1037 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 1038 if (XKnownNegative) 1039 return true; 1040 } 1041 // div exact can only produce a zero if the dividend is zero. 1042 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1043 return isKnownNonZero(X, TD, Depth); 1044 } 1045 // X + Y. 1046 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1047 bool XKnownNonNegative, XKnownNegative; 1048 bool YKnownNonNegative, YKnownNegative; 1049 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 1050 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); 1051 1052 // If X and Y are both non-negative (as signed values) then their sum is not 1053 // zero unless both X and Y are zero. 1054 if (XKnownNonNegative && YKnownNonNegative) 1055 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) 1056 return true; 1057 1058 // If X and Y are both negative (as signed values) then their sum is not 1059 // zero unless both X and Y equal INT_MIN. 1060 if (BitWidth && XKnownNegative && YKnownNegative) { 1061 APInt KnownZero(BitWidth, 0); 1062 APInt KnownOne(BitWidth, 0); 1063 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1064 // The sign bit of X is set. If some other bit is set then X is not equal 1065 // to INT_MIN. 1066 computeKnownBits(X, KnownZero, KnownOne, TD, Depth); 1067 if ((KnownOne & Mask) != 0) 1068 return true; 1069 // The sign bit of Y is set. If some other bit is set then Y is not equal 1070 // to INT_MIN. 1071 computeKnownBits(Y, KnownZero, KnownOne, TD, Depth); 1072 if ((KnownOne & Mask) != 0) 1073 return true; 1074 } 1075 1076 // The sum of a non-negative number and a power of two is not zero. 1077 if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth)) 1078 return true; 1079 if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth)) 1080 return true; 1081 } 1082 // X * Y. 1083 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1084 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1085 // If X and Y are non-zero then so is X * Y as long as the multiplication 1086 // does not overflow. 1087 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1088 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) 1089 return true; 1090 } 1091 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1092 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1093 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && 1094 isKnownNonZero(SI->getFalseValue(), TD, Depth)) 1095 return true; 1096 } 1097 1098 if (!BitWidth) return false; 1099 APInt KnownZero(BitWidth, 0); 1100 APInt KnownOne(BitWidth, 0); 1101 computeKnownBits(V, KnownZero, KnownOne, TD, Depth); 1102 return KnownOne != 0; 1103 } 1104 1105 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 1106 /// this predicate to simplify operations downstream. Mask is known to be zero 1107 /// for bits that V cannot have. 1108 /// 1109 /// This function is defined on values with integer type, values with pointer 1110 /// type (but only if TD is non-null), and vectors of integers. In the case 1111 /// where V is a vector, the mask, known zero, and known one values are the 1112 /// same width as the vector element, and the bit is set only if it is true 1113 /// for all of the elements in the vector. 1114 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 1115 const DataLayout *TD, unsigned Depth) { 1116 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1117 computeKnownBits(V, KnownZero, KnownOne, TD, Depth); 1118 return (KnownZero & Mask) == Mask; 1119 } 1120 1121 1122 1123 /// ComputeNumSignBits - Return the number of times the sign bit of the 1124 /// register is replicated into the other bits. We know that at least 1 bit 1125 /// is always equal to the sign bit (itself), but other cases can give us 1126 /// information. For example, immediately after an "ashr X, 2", we know that 1127 /// the top 3 bits are all equal to each other, so we return 3. 1128 /// 1129 /// 'Op' must have a scalar integer type. 1130 /// 1131 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, 1132 unsigned Depth) { 1133 assert((TD || V->getType()->isIntOrIntVectorTy()) && 1134 "ComputeNumSignBits requires a DataLayout object to operate " 1135 "on non-integer values!"); 1136 Type *Ty = V->getType(); 1137 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 1138 Ty->getScalarSizeInBits(); 1139 unsigned Tmp, Tmp2; 1140 unsigned FirstAnswer = 1; 1141 1142 // Note that ConstantInt is handled by the general computeKnownBits case 1143 // below. 1144 1145 if (Depth == 6) 1146 return 1; // Limit search depth. 1147 1148 Operator *U = dyn_cast<Operator>(V); 1149 switch (Operator::getOpcode(V)) { 1150 default: break; 1151 case Instruction::SExt: 1152 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1153 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; 1154 1155 case Instruction::AShr: { 1156 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1157 // ashr X, C -> adds C sign bits. Vectors too. 1158 const APInt *ShAmt; 1159 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1160 Tmp += ShAmt->getZExtValue(); 1161 if (Tmp > TyBits) Tmp = TyBits; 1162 } 1163 return Tmp; 1164 } 1165 case Instruction::Shl: { 1166 const APInt *ShAmt; 1167 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1168 // shl destroys sign bits. 1169 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1170 Tmp2 = ShAmt->getZExtValue(); 1171 if (Tmp2 >= TyBits || // Bad shift. 1172 Tmp2 >= Tmp) break; // Shifted all sign bits out. 1173 return Tmp - Tmp2; 1174 } 1175 break; 1176 } 1177 case Instruction::And: 1178 case Instruction::Or: 1179 case Instruction::Xor: // NOT is handled here. 1180 // Logical binary ops preserve the number of sign bits at the worst. 1181 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1182 if (Tmp != 1) { 1183 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1184 FirstAnswer = std::min(Tmp, Tmp2); 1185 // We computed what we know about the sign bits as our first 1186 // answer. Now proceed to the generic code that uses 1187 // computeKnownBits, and pick whichever answer is better. 1188 } 1189 break; 1190 1191 case Instruction::Select: 1192 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1193 if (Tmp == 1) return 1; // Early out. 1194 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); 1195 return std::min(Tmp, Tmp2); 1196 1197 case Instruction::Add: 1198 // Add can have at most one carry bit. Thus we know that the output 1199 // is, at worst, one more bit than the inputs. 1200 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1201 if (Tmp == 1) return 1; // Early out. 1202 1203 // Special case decrementing a value (ADD X, -1): 1204 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 1205 if (CRHS->isAllOnesValue()) { 1206 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1207 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 1208 1209 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1210 // sign bits set. 1211 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1212 return TyBits; 1213 1214 // If we are subtracting one from a positive number, there is no carry 1215 // out of the result. 1216 if (KnownZero.isNegative()) 1217 return Tmp; 1218 } 1219 1220 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1221 if (Tmp2 == 1) return 1; 1222 return std::min(Tmp, Tmp2)-1; 1223 1224 case Instruction::Sub: 1225 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1226 if (Tmp2 == 1) return 1; 1227 1228 // Handle NEG. 1229 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 1230 if (CLHS->isNullValue()) { 1231 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1232 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 1233 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1234 // sign bits set. 1235 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1236 return TyBits; 1237 1238 // If the input is known to be positive (the sign bit is known clear), 1239 // the output of the NEG has the same number of sign bits as the input. 1240 if (KnownZero.isNegative()) 1241 return Tmp2; 1242 1243 // Otherwise, we treat this like a SUB. 1244 } 1245 1246 // Sub can have at most one carry bit. Thus we know that the output 1247 // is, at worst, one more bit than the inputs. 1248 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1249 if (Tmp == 1) return 1; // Early out. 1250 return std::min(Tmp, Tmp2)-1; 1251 1252 case Instruction::PHI: { 1253 PHINode *PN = cast<PHINode>(U); 1254 // Don't analyze large in-degree PHIs. 1255 if (PN->getNumIncomingValues() > 4) break; 1256 1257 // Take the minimum of all incoming values. This can't infinitely loop 1258 // because of our depth threshold. 1259 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); 1260 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1261 if (Tmp == 1) return Tmp; 1262 Tmp = std::min(Tmp, 1263 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); 1264 } 1265 return Tmp; 1266 } 1267 1268 case Instruction::Trunc: 1269 // FIXME: it's tricky to do anything useful for this, but it is an important 1270 // case for targets like X86. 1271 break; 1272 } 1273 1274 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1275 // use this information. 1276 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1277 APInt Mask; 1278 computeKnownBits(V, KnownZero, KnownOne, TD, Depth); 1279 1280 if (KnownZero.isNegative()) { // sign bit is 0 1281 Mask = KnownZero; 1282 } else if (KnownOne.isNegative()) { // sign bit is 1; 1283 Mask = KnownOne; 1284 } else { 1285 // Nothing known. 1286 return FirstAnswer; 1287 } 1288 1289 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1290 // the number of identical bits in the top of the input value. 1291 Mask = ~Mask; 1292 Mask <<= Mask.getBitWidth()-TyBits; 1293 // Return # leading zeros. We use 'min' here in case Val was zero before 1294 // shifting. We don't want to return '64' as for an i32 "0". 1295 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1296 } 1297 1298 /// ComputeMultiple - This function computes the integer multiple of Base that 1299 /// equals V. If successful, it returns true and returns the multiple in 1300 /// Multiple. If unsuccessful, it returns false. It looks 1301 /// through SExt instructions only if LookThroughSExt is true. 1302 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1303 bool LookThroughSExt, unsigned Depth) { 1304 const unsigned MaxDepth = 6; 1305 1306 assert(V && "No Value?"); 1307 assert(Depth <= MaxDepth && "Limit Search Depth"); 1308 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1309 1310 Type *T = V->getType(); 1311 1312 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1313 1314 if (Base == 0) 1315 return false; 1316 1317 if (Base == 1) { 1318 Multiple = V; 1319 return true; 1320 } 1321 1322 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1323 Constant *BaseVal = ConstantInt::get(T, Base); 1324 if (CO && CO == BaseVal) { 1325 // Multiple is 1. 1326 Multiple = ConstantInt::get(T, 1); 1327 return true; 1328 } 1329 1330 if (CI && CI->getZExtValue() % Base == 0) { 1331 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1332 return true; 1333 } 1334 1335 if (Depth == MaxDepth) return false; // Limit search depth. 1336 1337 Operator *I = dyn_cast<Operator>(V); 1338 if (!I) return false; 1339 1340 switch (I->getOpcode()) { 1341 default: break; 1342 case Instruction::SExt: 1343 if (!LookThroughSExt) return false; 1344 // otherwise fall through to ZExt 1345 case Instruction::ZExt: 1346 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1347 LookThroughSExt, Depth+1); 1348 case Instruction::Shl: 1349 case Instruction::Mul: { 1350 Value *Op0 = I->getOperand(0); 1351 Value *Op1 = I->getOperand(1); 1352 1353 if (I->getOpcode() == Instruction::Shl) { 1354 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1355 if (!Op1CI) return false; 1356 // Turn Op0 << Op1 into Op0 * 2^Op1 1357 APInt Op1Int = Op1CI->getValue(); 1358 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1359 APInt API(Op1Int.getBitWidth(), 0); 1360 API.setBit(BitToSet); 1361 Op1 = ConstantInt::get(V->getContext(), API); 1362 } 1363 1364 Value *Mul0 = nullptr; 1365 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1366 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1367 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1368 if (Op1C->getType()->getPrimitiveSizeInBits() < 1369 MulC->getType()->getPrimitiveSizeInBits()) 1370 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1371 if (Op1C->getType()->getPrimitiveSizeInBits() > 1372 MulC->getType()->getPrimitiveSizeInBits()) 1373 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1374 1375 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1376 Multiple = ConstantExpr::getMul(MulC, Op1C); 1377 return true; 1378 } 1379 1380 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1381 if (Mul0CI->getValue() == 1) { 1382 // V == Base * Op1, so return Op1 1383 Multiple = Op1; 1384 return true; 1385 } 1386 } 1387 1388 Value *Mul1 = nullptr; 1389 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1390 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1391 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1392 if (Op0C->getType()->getPrimitiveSizeInBits() < 1393 MulC->getType()->getPrimitiveSizeInBits()) 1394 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1395 if (Op0C->getType()->getPrimitiveSizeInBits() > 1396 MulC->getType()->getPrimitiveSizeInBits()) 1397 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1398 1399 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1400 Multiple = ConstantExpr::getMul(MulC, Op0C); 1401 return true; 1402 } 1403 1404 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1405 if (Mul1CI->getValue() == 1) { 1406 // V == Base * Op0, so return Op0 1407 Multiple = Op0; 1408 return true; 1409 } 1410 } 1411 } 1412 } 1413 1414 // We could not determine if V is a multiple of Base. 1415 return false; 1416 } 1417 1418 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 1419 /// value is never equal to -0.0. 1420 /// 1421 /// NOTE: this function will need to be revisited when we support non-default 1422 /// rounding modes! 1423 /// 1424 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1425 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1426 return !CFP->getValueAPF().isNegZero(); 1427 1428 if (Depth == 6) 1429 return 1; // Limit search depth. 1430 1431 const Operator *I = dyn_cast<Operator>(V); 1432 if (!I) return false; 1433 1434 // Check if the nsz fast-math flag is set 1435 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 1436 if (FPO->hasNoSignedZeros()) 1437 return true; 1438 1439 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 1440 if (I->getOpcode() == Instruction::FAdd) 1441 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 1442 if (CFP->isNullValue()) 1443 return true; 1444 1445 // sitofp and uitofp turn into +0.0 for zero. 1446 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 1447 return true; 1448 1449 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1450 // sqrt(-0.0) = -0.0, no other negative results are possible. 1451 if (II->getIntrinsicID() == Intrinsic::sqrt) 1452 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 1453 1454 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1455 if (const Function *F = CI->getCalledFunction()) { 1456 if (F->isDeclaration()) { 1457 // abs(x) != -0.0 1458 if (F->getName() == "abs") return true; 1459 // fabs[lf](x) != -0.0 1460 if (F->getName() == "fabs") return true; 1461 if (F->getName() == "fabsf") return true; 1462 if (F->getName() == "fabsl") return true; 1463 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 1464 F->getName() == "sqrtl") 1465 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 1466 } 1467 } 1468 1469 return false; 1470 } 1471 1472 /// isBytewiseValue - If the specified value can be set by repeating the same 1473 /// byte in memory, return the i8 value that it is represented with. This is 1474 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 1475 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 1476 /// byte store (e.g. i16 0x1234), return null. 1477 Value *llvm::isBytewiseValue(Value *V) { 1478 // All byte-wide stores are splatable, even of arbitrary variables. 1479 if (V->getType()->isIntegerTy(8)) return V; 1480 1481 // Handle 'null' ConstantArrayZero etc. 1482 if (Constant *C = dyn_cast<Constant>(V)) 1483 if (C->isNullValue()) 1484 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 1485 1486 // Constant float and double values can be handled as integer values if the 1487 // corresponding integer value is "byteable". An important case is 0.0. 1488 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1489 if (CFP->getType()->isFloatTy()) 1490 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 1491 if (CFP->getType()->isDoubleTy()) 1492 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 1493 // Don't handle long double formats, which have strange constraints. 1494 } 1495 1496 // We can handle constant integers that are power of two in size and a 1497 // multiple of 8 bits. 1498 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1499 unsigned Width = CI->getBitWidth(); 1500 if (isPowerOf2_32(Width) && Width > 8) { 1501 // We can handle this value if the recursive binary decomposition is the 1502 // same at all levels. 1503 APInt Val = CI->getValue(); 1504 APInt Val2; 1505 while (Val.getBitWidth() != 8) { 1506 unsigned NextWidth = Val.getBitWidth()/2; 1507 Val2 = Val.lshr(NextWidth); 1508 Val2 = Val2.trunc(Val.getBitWidth()/2); 1509 Val = Val.trunc(Val.getBitWidth()/2); 1510 1511 // If the top/bottom halves aren't the same, reject it. 1512 if (Val != Val2) 1513 return nullptr; 1514 } 1515 return ConstantInt::get(V->getContext(), Val); 1516 } 1517 } 1518 1519 // A ConstantDataArray/Vector is splatable if all its members are equal and 1520 // also splatable. 1521 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 1522 Value *Elt = CA->getElementAsConstant(0); 1523 Value *Val = isBytewiseValue(Elt); 1524 if (!Val) 1525 return nullptr; 1526 1527 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 1528 if (CA->getElementAsConstant(I) != Elt) 1529 return nullptr; 1530 1531 return Val; 1532 } 1533 1534 // Conceptually, we could handle things like: 1535 // %a = zext i8 %X to i16 1536 // %b = shl i16 %a, 8 1537 // %c = or i16 %a, %b 1538 // but until there is an example that actually needs this, it doesn't seem 1539 // worth worrying about. 1540 return nullptr; 1541 } 1542 1543 1544 // This is the recursive version of BuildSubAggregate. It takes a few different 1545 // arguments. Idxs is the index within the nested struct From that we are 1546 // looking at now (which is of type IndexedType). IdxSkip is the number of 1547 // indices from Idxs that should be left out when inserting into the resulting 1548 // struct. To is the result struct built so far, new insertvalue instructions 1549 // build on that. 1550 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 1551 SmallVectorImpl<unsigned> &Idxs, 1552 unsigned IdxSkip, 1553 Instruction *InsertBefore) { 1554 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 1555 if (STy) { 1556 // Save the original To argument so we can modify it 1557 Value *OrigTo = To; 1558 // General case, the type indexed by Idxs is a struct 1559 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1560 // Process each struct element recursively 1561 Idxs.push_back(i); 1562 Value *PrevTo = To; 1563 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 1564 InsertBefore); 1565 Idxs.pop_back(); 1566 if (!To) { 1567 // Couldn't find any inserted value for this index? Cleanup 1568 while (PrevTo != OrigTo) { 1569 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 1570 PrevTo = Del->getAggregateOperand(); 1571 Del->eraseFromParent(); 1572 } 1573 // Stop processing elements 1574 break; 1575 } 1576 } 1577 // If we successfully found a value for each of our subaggregates 1578 if (To) 1579 return To; 1580 } 1581 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 1582 // the struct's elements had a value that was inserted directly. In the latter 1583 // case, perhaps we can't determine each of the subelements individually, but 1584 // we might be able to find the complete struct somewhere. 1585 1586 // Find the value that is at that particular spot 1587 Value *V = FindInsertedValue(From, Idxs); 1588 1589 if (!V) 1590 return nullptr; 1591 1592 // Insert the value in the new (sub) aggregrate 1593 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 1594 "tmp", InsertBefore); 1595 } 1596 1597 // This helper takes a nested struct and extracts a part of it (which is again a 1598 // struct) into a new value. For example, given the struct: 1599 // { a, { b, { c, d }, e } } 1600 // and the indices "1, 1" this returns 1601 // { c, d }. 1602 // 1603 // It does this by inserting an insertvalue for each element in the resulting 1604 // struct, as opposed to just inserting a single struct. This will only work if 1605 // each of the elements of the substruct are known (ie, inserted into From by an 1606 // insertvalue instruction somewhere). 1607 // 1608 // All inserted insertvalue instructions are inserted before InsertBefore 1609 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 1610 Instruction *InsertBefore) { 1611 assert(InsertBefore && "Must have someplace to insert!"); 1612 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 1613 idx_range); 1614 Value *To = UndefValue::get(IndexedType); 1615 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 1616 unsigned IdxSkip = Idxs.size(); 1617 1618 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 1619 } 1620 1621 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 1622 /// the scalar value indexed is already around as a register, for example if it 1623 /// were inserted directly into the aggregrate. 1624 /// 1625 /// If InsertBefore is not null, this function will duplicate (modified) 1626 /// insertvalues when a part of a nested struct is extracted. 1627 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 1628 Instruction *InsertBefore) { 1629 // Nothing to index? Just return V then (this is useful at the end of our 1630 // recursion). 1631 if (idx_range.empty()) 1632 return V; 1633 // We have indices, so V should have an indexable type. 1634 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 1635 "Not looking at a struct or array?"); 1636 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 1637 "Invalid indices for type?"); 1638 1639 if (Constant *C = dyn_cast<Constant>(V)) { 1640 C = C->getAggregateElement(idx_range[0]); 1641 if (!C) return nullptr; 1642 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 1643 } 1644 1645 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 1646 // Loop the indices for the insertvalue instruction in parallel with the 1647 // requested indices 1648 const unsigned *req_idx = idx_range.begin(); 1649 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1650 i != e; ++i, ++req_idx) { 1651 if (req_idx == idx_range.end()) { 1652 // We can't handle this without inserting insertvalues 1653 if (!InsertBefore) 1654 return nullptr; 1655 1656 // The requested index identifies a part of a nested aggregate. Handle 1657 // this specially. For example, 1658 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 1659 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 1660 // %C = extractvalue {i32, { i32, i32 } } %B, 1 1661 // This can be changed into 1662 // %A = insertvalue {i32, i32 } undef, i32 10, 0 1663 // %C = insertvalue {i32, i32 } %A, i32 11, 1 1664 // which allows the unused 0,0 element from the nested struct to be 1665 // removed. 1666 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 1667 InsertBefore); 1668 } 1669 1670 // This insert value inserts something else than what we are looking for. 1671 // See if the (aggregrate) value inserted into has the value we are 1672 // looking for, then. 1673 if (*req_idx != *i) 1674 return FindInsertedValue(I->getAggregateOperand(), idx_range, 1675 InsertBefore); 1676 } 1677 // If we end up here, the indices of the insertvalue match with those 1678 // requested (though possibly only partially). Now we recursively look at 1679 // the inserted value, passing any remaining indices. 1680 return FindInsertedValue(I->getInsertedValueOperand(), 1681 makeArrayRef(req_idx, idx_range.end()), 1682 InsertBefore); 1683 } 1684 1685 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 1686 // If we're extracting a value from an aggregrate that was extracted from 1687 // something else, we can extract from that something else directly instead. 1688 // However, we will need to chain I's indices with the requested indices. 1689 1690 // Calculate the number of indices required 1691 unsigned size = I->getNumIndices() + idx_range.size(); 1692 // Allocate some space to put the new indices in 1693 SmallVector<unsigned, 5> Idxs; 1694 Idxs.reserve(size); 1695 // Add indices from the extract value instruction 1696 Idxs.append(I->idx_begin(), I->idx_end()); 1697 1698 // Add requested indices 1699 Idxs.append(idx_range.begin(), idx_range.end()); 1700 1701 assert(Idxs.size() == size 1702 && "Number of indices added not correct?"); 1703 1704 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 1705 } 1706 // Otherwise, we don't know (such as, extracting from a function return value 1707 // or load instruction) 1708 return nullptr; 1709 } 1710 1711 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if 1712 /// it can be expressed as a base pointer plus a constant offset. Return the 1713 /// base and offset to the caller. 1714 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 1715 const DataLayout *DL) { 1716 // Without DataLayout, conservatively assume 64-bit offsets, which is 1717 // the widest we support. 1718 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64; 1719 APInt ByteOffset(BitWidth, 0); 1720 while (1) { 1721 if (Ptr->getType()->isVectorTy()) 1722 break; 1723 1724 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 1725 if (DL) { 1726 APInt GEPOffset(BitWidth, 0); 1727 if (!GEP->accumulateConstantOffset(*DL, GEPOffset)) 1728 break; 1729 1730 ByteOffset += GEPOffset; 1731 } 1732 1733 Ptr = GEP->getPointerOperand(); 1734 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) { 1735 Ptr = cast<Operator>(Ptr)->getOperand(0); 1736 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 1737 if (GA->mayBeOverridden()) 1738 break; 1739 Ptr = GA->getAliasee(); 1740 } else { 1741 break; 1742 } 1743 } 1744 Offset = ByteOffset.getSExtValue(); 1745 return Ptr; 1746 } 1747 1748 1749 /// getConstantStringInfo - This function computes the length of a 1750 /// null-terminated C string pointed to by V. If successful, it returns true 1751 /// and returns the string in Str. If unsuccessful, it returns false. 1752 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 1753 uint64_t Offset, bool TrimAtNul) { 1754 assert(V); 1755 1756 // Look through bitcast instructions and geps. 1757 V = V->stripPointerCasts(); 1758 1759 // If the value is a GEP instructionor constant expression, treat it as an 1760 // offset. 1761 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1762 // Make sure the GEP has exactly three arguments. 1763 if (GEP->getNumOperands() != 3) 1764 return false; 1765 1766 // Make sure the index-ee is a pointer to array of i8. 1767 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 1768 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 1769 if (!AT || !AT->getElementType()->isIntegerTy(8)) 1770 return false; 1771 1772 // Check to make sure that the first operand of the GEP is an integer and 1773 // has value 0 so that we are sure we're indexing into the initializer. 1774 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 1775 if (!FirstIdx || !FirstIdx->isZero()) 1776 return false; 1777 1778 // If the second index isn't a ConstantInt, then this is a variable index 1779 // into the array. If this occurs, we can't say anything meaningful about 1780 // the string. 1781 uint64_t StartIdx = 0; 1782 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1783 StartIdx = CI->getZExtValue(); 1784 else 1785 return false; 1786 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset); 1787 } 1788 1789 // The GEP instruction, constant or instruction, must reference a global 1790 // variable that is a constant and is initialized. The referenced constant 1791 // initializer is the array that we'll use for optimization. 1792 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 1793 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 1794 return false; 1795 1796 // Handle the all-zeros case 1797 if (GV->getInitializer()->isNullValue()) { 1798 // This is a degenerate case. The initializer is constant zero so the 1799 // length of the string must be zero. 1800 Str = ""; 1801 return true; 1802 } 1803 1804 // Must be a Constant Array 1805 const ConstantDataArray *Array = 1806 dyn_cast<ConstantDataArray>(GV->getInitializer()); 1807 if (!Array || !Array->isString()) 1808 return false; 1809 1810 // Get the number of elements in the array 1811 uint64_t NumElts = Array->getType()->getArrayNumElements(); 1812 1813 // Start out with the entire array in the StringRef. 1814 Str = Array->getAsString(); 1815 1816 if (Offset > NumElts) 1817 return false; 1818 1819 // Skip over 'offset' bytes. 1820 Str = Str.substr(Offset); 1821 1822 if (TrimAtNul) { 1823 // Trim off the \0 and anything after it. If the array is not nul 1824 // terminated, we just return the whole end of string. The client may know 1825 // some other way that the string is length-bound. 1826 Str = Str.substr(0, Str.find('\0')); 1827 } 1828 return true; 1829 } 1830 1831 // These next two are very similar to the above, but also look through PHI 1832 // nodes. 1833 // TODO: See if we can integrate these two together. 1834 1835 /// GetStringLengthH - If we can compute the length of the string pointed to by 1836 /// the specified pointer, return 'len+1'. If we can't, return 0. 1837 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { 1838 // Look through noop bitcast instructions. 1839 V = V->stripPointerCasts(); 1840 1841 // If this is a PHI node, there are two cases: either we have already seen it 1842 // or we haven't. 1843 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1844 if (!PHIs.insert(PN)) 1845 return ~0ULL; // already in the set. 1846 1847 // If it was new, see if all the input strings are the same length. 1848 uint64_t LenSoFar = ~0ULL; 1849 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1850 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 1851 if (Len == 0) return 0; // Unknown length -> unknown. 1852 1853 if (Len == ~0ULL) continue; 1854 1855 if (Len != LenSoFar && LenSoFar != ~0ULL) 1856 return 0; // Disagree -> unknown. 1857 LenSoFar = Len; 1858 } 1859 1860 // Success, all agree. 1861 return LenSoFar; 1862 } 1863 1864 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 1865 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1866 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 1867 if (Len1 == 0) return 0; 1868 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 1869 if (Len2 == 0) return 0; 1870 if (Len1 == ~0ULL) return Len2; 1871 if (Len2 == ~0ULL) return Len1; 1872 if (Len1 != Len2) return 0; 1873 return Len1; 1874 } 1875 1876 // Otherwise, see if we can read the string. 1877 StringRef StrData; 1878 if (!getConstantStringInfo(V, StrData)) 1879 return 0; 1880 1881 return StrData.size()+1; 1882 } 1883 1884 /// GetStringLength - If we can compute the length of the string pointed to by 1885 /// the specified pointer, return 'len+1'. If we can't, return 0. 1886 uint64_t llvm::GetStringLength(Value *V) { 1887 if (!V->getType()->isPointerTy()) return 0; 1888 1889 SmallPtrSet<PHINode*, 32> PHIs; 1890 uint64_t Len = GetStringLengthH(V, PHIs); 1891 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 1892 // an empty string as a length. 1893 return Len == ~0ULL ? 1 : Len; 1894 } 1895 1896 Value * 1897 llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) { 1898 if (!V->getType()->isPointerTy()) 1899 return V; 1900 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 1901 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1902 V = GEP->getPointerOperand(); 1903 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1904 V = cast<Operator>(V)->getOperand(0); 1905 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1906 if (GA->mayBeOverridden()) 1907 return V; 1908 V = GA->getAliasee(); 1909 } else { 1910 // See if InstructionSimplify knows any relevant tricks. 1911 if (Instruction *I = dyn_cast<Instruction>(V)) 1912 // TODO: Acquire a DominatorTree and use it. 1913 if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) { 1914 V = Simplified; 1915 continue; 1916 } 1917 1918 return V; 1919 } 1920 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1921 } 1922 return V; 1923 } 1924 1925 void 1926 llvm::GetUnderlyingObjects(Value *V, 1927 SmallVectorImpl<Value *> &Objects, 1928 const DataLayout *TD, 1929 unsigned MaxLookup) { 1930 SmallPtrSet<Value *, 4> Visited; 1931 SmallVector<Value *, 4> Worklist; 1932 Worklist.push_back(V); 1933 do { 1934 Value *P = Worklist.pop_back_val(); 1935 P = GetUnderlyingObject(P, TD, MaxLookup); 1936 1937 if (!Visited.insert(P)) 1938 continue; 1939 1940 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 1941 Worklist.push_back(SI->getTrueValue()); 1942 Worklist.push_back(SI->getFalseValue()); 1943 continue; 1944 } 1945 1946 if (PHINode *PN = dyn_cast<PHINode>(P)) { 1947 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1948 Worklist.push_back(PN->getIncomingValue(i)); 1949 continue; 1950 } 1951 1952 Objects.push_back(P); 1953 } while (!Worklist.empty()); 1954 } 1955 1956 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer 1957 /// are lifetime markers. 1958 /// 1959 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 1960 for (const User *U : V->users()) { 1961 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 1962 if (!II) return false; 1963 1964 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1965 II->getIntrinsicID() != Intrinsic::lifetime_end) 1966 return false; 1967 } 1968 return true; 1969 } 1970 1971 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 1972 const DataLayout *TD) { 1973 const Operator *Inst = dyn_cast<Operator>(V); 1974 if (!Inst) 1975 return false; 1976 1977 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 1978 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 1979 if (C->canTrap()) 1980 return false; 1981 1982 switch (Inst->getOpcode()) { 1983 default: 1984 return true; 1985 case Instruction::UDiv: 1986 case Instruction::URem: 1987 // x / y is undefined if y == 0, but calculations like x / 3 are safe. 1988 return isKnownNonZero(Inst->getOperand(1), TD); 1989 case Instruction::SDiv: 1990 case Instruction::SRem: { 1991 Value *Op = Inst->getOperand(1); 1992 // x / y is undefined if y == 0 1993 if (!isKnownNonZero(Op, TD)) 1994 return false; 1995 // x / y might be undefined if y == -1 1996 unsigned BitWidth = getBitWidth(Op->getType(), TD); 1997 if (BitWidth == 0) 1998 return false; 1999 APInt KnownZero(BitWidth, 0); 2000 APInt KnownOne(BitWidth, 0); 2001 computeKnownBits(Op, KnownZero, KnownOne, TD); 2002 return !!KnownZero; 2003 } 2004 case Instruction::Load: { 2005 const LoadInst *LI = cast<LoadInst>(Inst); 2006 if (!LI->isUnordered() || 2007 // Speculative load may create a race that did not exist in the source. 2008 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 2009 return false; 2010 return LI->getPointerOperand()->isDereferenceablePointer(TD); 2011 } 2012 case Instruction::Call: { 2013 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 2014 switch (II->getIntrinsicID()) { 2015 // These synthetic intrinsics have no side-effects and just mark 2016 // information about their operands. 2017 // FIXME: There are other no-op synthetic instructions that potentially 2018 // should be considered at least *safe* to speculate... 2019 case Intrinsic::dbg_declare: 2020 case Intrinsic::dbg_value: 2021 return true; 2022 2023 case Intrinsic::bswap: 2024 case Intrinsic::ctlz: 2025 case Intrinsic::ctpop: 2026 case Intrinsic::cttz: 2027 case Intrinsic::objectsize: 2028 case Intrinsic::sadd_with_overflow: 2029 case Intrinsic::smul_with_overflow: 2030 case Intrinsic::ssub_with_overflow: 2031 case Intrinsic::uadd_with_overflow: 2032 case Intrinsic::umul_with_overflow: 2033 case Intrinsic::usub_with_overflow: 2034 return true; 2035 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 2036 // errno like libm sqrt would. 2037 case Intrinsic::sqrt: 2038 case Intrinsic::fma: 2039 case Intrinsic::fmuladd: 2040 return true; 2041 // TODO: some fp intrinsics are marked as having the same error handling 2042 // as libm. They're safe to speculate when they won't error. 2043 // TODO: are convert_{from,to}_fp16 safe? 2044 // TODO: can we list target-specific intrinsics here? 2045 default: break; 2046 } 2047 } 2048 return false; // The called function could have undefined behavior or 2049 // side-effects, even if marked readnone nounwind. 2050 } 2051 case Instruction::VAArg: 2052 case Instruction::Alloca: 2053 case Instruction::Invoke: 2054 case Instruction::PHI: 2055 case Instruction::Store: 2056 case Instruction::Ret: 2057 case Instruction::Br: 2058 case Instruction::IndirectBr: 2059 case Instruction::Switch: 2060 case Instruction::Unreachable: 2061 case Instruction::Fence: 2062 case Instruction::LandingPad: 2063 case Instruction::AtomicRMW: 2064 case Instruction::AtomicCmpXchg: 2065 case Instruction::Resume: 2066 return false; // Misc instructions which have effects 2067 } 2068 } 2069 2070 /// isKnownNonNull - Return true if we know that the specified value is never 2071 /// null. 2072 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 2073 // Alloca never returns null, malloc might. 2074 if (isa<AllocaInst>(V)) return true; 2075 2076 // A byval, inalloca, or nonnull argument is never null. 2077 if (const Argument *A = dyn_cast<Argument>(V)) 2078 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 2079 2080 // Global values are not null unless extern weak. 2081 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2082 return !GV->hasExternalWeakLinkage(); 2083 2084 if (ImmutableCallSite CS = V) 2085 if (CS.paramHasAttr(0, Attribute::NonNull)) 2086 return true; 2087 2088 // operator new never returns null. 2089 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true)) 2090 return true; 2091 2092 return false; 2093 } 2094