Home | History | Annotate | Download | only in arm64
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #include "src/arm64/lithium-codegen-arm64.h"
      8 #include "src/arm64/lithium-gap-resolver-arm64.h"
      9 #include "src/code-stubs.h"
     10 #include "src/stub-cache.h"
     11 #include "src/hydrogen-osr.h"
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 
     17 class SafepointGenerator V8_FINAL : public CallWrapper {
     18  public:
     19   SafepointGenerator(LCodeGen* codegen,
     20                      LPointerMap* pointers,
     21                      Safepoint::DeoptMode mode)
     22       : codegen_(codegen),
     23         pointers_(pointers),
     24         deopt_mode_(mode) { }
     25   virtual ~SafepointGenerator() { }
     26 
     27   virtual void BeforeCall(int call_size) const { }
     28 
     29   virtual void AfterCall() const {
     30     codegen_->RecordSafepoint(pointers_, deopt_mode_);
     31   }
     32 
     33  private:
     34   LCodeGen* codegen_;
     35   LPointerMap* pointers_;
     36   Safepoint::DeoptMode deopt_mode_;
     37 };
     38 
     39 
     40 #define __ masm()->
     41 
     42 // Emit code to branch if the given condition holds.
     43 // The code generated here doesn't modify the flags and they must have
     44 // been set by some prior instructions.
     45 //
     46 // The EmitInverted function simply inverts the condition.
     47 class BranchOnCondition : public BranchGenerator {
     48  public:
     49   BranchOnCondition(LCodeGen* codegen, Condition cond)
     50     : BranchGenerator(codegen),
     51       cond_(cond) { }
     52 
     53   virtual void Emit(Label* label) const {
     54     __ B(cond_, label);
     55   }
     56 
     57   virtual void EmitInverted(Label* label) const {
     58     if (cond_ != al) {
     59       __ B(NegateCondition(cond_), label);
     60     }
     61   }
     62 
     63  private:
     64   Condition cond_;
     65 };
     66 
     67 
     68 // Emit code to compare lhs and rhs and branch if the condition holds.
     69 // This uses MacroAssembler's CompareAndBranch function so it will handle
     70 // converting the comparison to Cbz/Cbnz if the right-hand side is 0.
     71 //
     72 // EmitInverted still compares the two operands but inverts the condition.
     73 class CompareAndBranch : public BranchGenerator {
     74  public:
     75   CompareAndBranch(LCodeGen* codegen,
     76                    Condition cond,
     77                    const Register& lhs,
     78                    const Operand& rhs)
     79     : BranchGenerator(codegen),
     80       cond_(cond),
     81       lhs_(lhs),
     82       rhs_(rhs) { }
     83 
     84   virtual void Emit(Label* label) const {
     85     __ CompareAndBranch(lhs_, rhs_, cond_, label);
     86   }
     87 
     88   virtual void EmitInverted(Label* label) const {
     89     __ CompareAndBranch(lhs_, rhs_, NegateCondition(cond_), label);
     90   }
     91 
     92  private:
     93   Condition cond_;
     94   const Register& lhs_;
     95   const Operand& rhs_;
     96 };
     97 
     98 
     99 // Test the input with the given mask and branch if the condition holds.
    100 // If the condition is 'eq' or 'ne' this will use MacroAssembler's
    101 // TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the
    102 // conversion to Tbz/Tbnz when possible.
    103 class TestAndBranch : public BranchGenerator {
    104  public:
    105   TestAndBranch(LCodeGen* codegen,
    106                 Condition cond,
    107                 const Register& value,
    108                 uint64_t mask)
    109     : BranchGenerator(codegen),
    110       cond_(cond),
    111       value_(value),
    112       mask_(mask) { }
    113 
    114   virtual void Emit(Label* label) const {
    115     switch (cond_) {
    116       case eq:
    117         __ TestAndBranchIfAllClear(value_, mask_, label);
    118         break;
    119       case ne:
    120         __ TestAndBranchIfAnySet(value_, mask_, label);
    121         break;
    122       default:
    123         __ Tst(value_, mask_);
    124         __ B(cond_, label);
    125     }
    126   }
    127 
    128   virtual void EmitInverted(Label* label) const {
    129     // The inverse of "all clear" is "any set" and vice versa.
    130     switch (cond_) {
    131       case eq:
    132         __ TestAndBranchIfAnySet(value_, mask_, label);
    133         break;
    134       case ne:
    135         __ TestAndBranchIfAllClear(value_, mask_, label);
    136         break;
    137       default:
    138         __ Tst(value_, mask_);
    139         __ B(NegateCondition(cond_), label);
    140     }
    141   }
    142 
    143  private:
    144   Condition cond_;
    145   const Register& value_;
    146   uint64_t mask_;
    147 };
    148 
    149 
    150 // Test the input and branch if it is non-zero and not a NaN.
    151 class BranchIfNonZeroNumber : public BranchGenerator {
    152  public:
    153   BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value,
    154                         const FPRegister& scratch)
    155     : BranchGenerator(codegen), value_(value), scratch_(scratch) { }
    156 
    157   virtual void Emit(Label* label) const {
    158     __ Fabs(scratch_, value_);
    159     // Compare with 0.0. Because scratch_ is positive, the result can be one of
    160     // nZCv (equal), nzCv (greater) or nzCV (unordered).
    161     __ Fcmp(scratch_, 0.0);
    162     __ B(gt, label);
    163   }
    164 
    165   virtual void EmitInverted(Label* label) const {
    166     __ Fabs(scratch_, value_);
    167     __ Fcmp(scratch_, 0.0);
    168     __ B(le, label);
    169   }
    170 
    171  private:
    172   const FPRegister& value_;
    173   const FPRegister& scratch_;
    174 };
    175 
    176 
    177 // Test the input and branch if it is a heap number.
    178 class BranchIfHeapNumber : public BranchGenerator {
    179  public:
    180   BranchIfHeapNumber(LCodeGen* codegen, const Register& value)
    181       : BranchGenerator(codegen), value_(value) { }
    182 
    183   virtual void Emit(Label* label) const {
    184     __ JumpIfHeapNumber(value_, label);
    185   }
    186 
    187   virtual void EmitInverted(Label* label) const {
    188     __ JumpIfNotHeapNumber(value_, label);
    189   }
    190 
    191  private:
    192   const Register& value_;
    193 };
    194 
    195 
    196 // Test the input and branch if it is the specified root value.
    197 class BranchIfRoot : public BranchGenerator {
    198  public:
    199   BranchIfRoot(LCodeGen* codegen, const Register& value,
    200                Heap::RootListIndex index)
    201       : BranchGenerator(codegen), value_(value), index_(index) { }
    202 
    203   virtual void Emit(Label* label) const {
    204     __ JumpIfRoot(value_, index_, label);
    205   }
    206 
    207   virtual void EmitInverted(Label* label) const {
    208     __ JumpIfNotRoot(value_, index_, label);
    209   }
    210 
    211  private:
    212   const Register& value_;
    213   const Heap::RootListIndex index_;
    214 };
    215 
    216 
    217 void LCodeGen::WriteTranslation(LEnvironment* environment,
    218                                 Translation* translation) {
    219   if (environment == NULL) return;
    220 
    221   // The translation includes one command per value in the environment.
    222   int translation_size = environment->translation_size();
    223   // The output frame height does not include the parameters.
    224   int height = translation_size - environment->parameter_count();
    225 
    226   WriteTranslation(environment->outer(), translation);
    227   bool has_closure_id = !info()->closure().is_null() &&
    228       !info()->closure().is_identical_to(environment->closure());
    229   int closure_id = has_closure_id
    230       ? DefineDeoptimizationLiteral(environment->closure())
    231       : Translation::kSelfLiteralId;
    232 
    233   switch (environment->frame_type()) {
    234     case JS_FUNCTION:
    235       translation->BeginJSFrame(environment->ast_id(), closure_id, height);
    236       break;
    237     case JS_CONSTRUCT:
    238       translation->BeginConstructStubFrame(closure_id, translation_size);
    239       break;
    240     case JS_GETTER:
    241       ASSERT(translation_size == 1);
    242       ASSERT(height == 0);
    243       translation->BeginGetterStubFrame(closure_id);
    244       break;
    245     case JS_SETTER:
    246       ASSERT(translation_size == 2);
    247       ASSERT(height == 0);
    248       translation->BeginSetterStubFrame(closure_id);
    249       break;
    250     case STUB:
    251       translation->BeginCompiledStubFrame();
    252       break;
    253     case ARGUMENTS_ADAPTOR:
    254       translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
    255       break;
    256     default:
    257       UNREACHABLE();
    258   }
    259 
    260   int object_index = 0;
    261   int dematerialized_index = 0;
    262   for (int i = 0; i < translation_size; ++i) {
    263     LOperand* value = environment->values()->at(i);
    264 
    265     AddToTranslation(environment,
    266                      translation,
    267                      value,
    268                      environment->HasTaggedValueAt(i),
    269                      environment->HasUint32ValueAt(i),
    270                      &object_index,
    271                      &dematerialized_index);
    272   }
    273 }
    274 
    275 
    276 void LCodeGen::AddToTranslation(LEnvironment* environment,
    277                                 Translation* translation,
    278                                 LOperand* op,
    279                                 bool is_tagged,
    280                                 bool is_uint32,
    281                                 int* object_index_pointer,
    282                                 int* dematerialized_index_pointer) {
    283   if (op == LEnvironment::materialization_marker()) {
    284     int object_index = (*object_index_pointer)++;
    285     if (environment->ObjectIsDuplicateAt(object_index)) {
    286       int dupe_of = environment->ObjectDuplicateOfAt(object_index);
    287       translation->DuplicateObject(dupe_of);
    288       return;
    289     }
    290     int object_length = environment->ObjectLengthAt(object_index);
    291     if (environment->ObjectIsArgumentsAt(object_index)) {
    292       translation->BeginArgumentsObject(object_length);
    293     } else {
    294       translation->BeginCapturedObject(object_length);
    295     }
    296     int dematerialized_index = *dematerialized_index_pointer;
    297     int env_offset = environment->translation_size() + dematerialized_index;
    298     *dematerialized_index_pointer += object_length;
    299     for (int i = 0; i < object_length; ++i) {
    300       LOperand* value = environment->values()->at(env_offset + i);
    301       AddToTranslation(environment,
    302                        translation,
    303                        value,
    304                        environment->HasTaggedValueAt(env_offset + i),
    305                        environment->HasUint32ValueAt(env_offset + i),
    306                        object_index_pointer,
    307                        dematerialized_index_pointer);
    308     }
    309     return;
    310   }
    311 
    312   if (op->IsStackSlot()) {
    313     if (is_tagged) {
    314       translation->StoreStackSlot(op->index());
    315     } else if (is_uint32) {
    316       translation->StoreUint32StackSlot(op->index());
    317     } else {
    318       translation->StoreInt32StackSlot(op->index());
    319     }
    320   } else if (op->IsDoubleStackSlot()) {
    321     translation->StoreDoubleStackSlot(op->index());
    322   } else if (op->IsRegister()) {
    323     Register reg = ToRegister(op);
    324     if (is_tagged) {
    325       translation->StoreRegister(reg);
    326     } else if (is_uint32) {
    327       translation->StoreUint32Register(reg);
    328     } else {
    329       translation->StoreInt32Register(reg);
    330     }
    331   } else if (op->IsDoubleRegister()) {
    332     DoubleRegister reg = ToDoubleRegister(op);
    333     translation->StoreDoubleRegister(reg);
    334   } else if (op->IsConstantOperand()) {
    335     HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
    336     int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
    337     translation->StoreLiteral(src_index);
    338   } else {
    339     UNREACHABLE();
    340   }
    341 }
    342 
    343 
    344 int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
    345   int result = deoptimization_literals_.length();
    346   for (int i = 0; i < deoptimization_literals_.length(); ++i) {
    347     if (deoptimization_literals_[i].is_identical_to(literal)) return i;
    348   }
    349   deoptimization_literals_.Add(literal, zone());
    350   return result;
    351 }
    352 
    353 
    354 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
    355                                                     Safepoint::DeoptMode mode) {
    356   environment->set_has_been_used();
    357   if (!environment->HasBeenRegistered()) {
    358     int frame_count = 0;
    359     int jsframe_count = 0;
    360     for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
    361       ++frame_count;
    362       if (e->frame_type() == JS_FUNCTION) {
    363         ++jsframe_count;
    364       }
    365     }
    366     Translation translation(&translations_, frame_count, jsframe_count, zone());
    367     WriteTranslation(environment, &translation);
    368     int deoptimization_index = deoptimizations_.length();
    369     int pc_offset = masm()->pc_offset();
    370     environment->Register(deoptimization_index,
    371                           translation.index(),
    372                           (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
    373     deoptimizations_.Add(environment, zone());
    374   }
    375 }
    376 
    377 
    378 void LCodeGen::CallCode(Handle<Code> code,
    379                         RelocInfo::Mode mode,
    380                         LInstruction* instr) {
    381   CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
    382 }
    383 
    384 
    385 void LCodeGen::CallCodeGeneric(Handle<Code> code,
    386                                RelocInfo::Mode mode,
    387                                LInstruction* instr,
    388                                SafepointMode safepoint_mode) {
    389   ASSERT(instr != NULL);
    390 
    391   Assembler::BlockPoolsScope scope(masm_);
    392   __ Call(code, mode);
    393   RecordSafepointWithLazyDeopt(instr, safepoint_mode);
    394 
    395   if ((code->kind() == Code::BINARY_OP_IC) ||
    396       (code->kind() == Code::COMPARE_IC)) {
    397     // Signal that we don't inline smi code before these stubs in the
    398     // optimizing code generator.
    399     InlineSmiCheckInfo::EmitNotInlined(masm());
    400   }
    401 }
    402 
    403 
    404 void LCodeGen::DoCallFunction(LCallFunction* instr) {
    405   ASSERT(ToRegister(instr->context()).is(cp));
    406   ASSERT(ToRegister(instr->function()).Is(x1));
    407   ASSERT(ToRegister(instr->result()).Is(x0));
    408 
    409   int arity = instr->arity();
    410   CallFunctionStub stub(isolate(), arity, instr->hydrogen()->function_flags());
    411   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
    412   after_push_argument_ = false;
    413 }
    414 
    415 
    416 void LCodeGen::DoCallNew(LCallNew* instr) {
    417   ASSERT(ToRegister(instr->context()).is(cp));
    418   ASSERT(instr->IsMarkedAsCall());
    419   ASSERT(ToRegister(instr->constructor()).is(x1));
    420 
    421   __ Mov(x0, instr->arity());
    422   // No cell in x2 for construct type feedback in optimized code.
    423   __ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
    424 
    425   CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
    426   CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
    427   after_push_argument_ = false;
    428 
    429   ASSERT(ToRegister(instr->result()).is(x0));
    430 }
    431 
    432 
    433 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
    434   ASSERT(instr->IsMarkedAsCall());
    435   ASSERT(ToRegister(instr->context()).is(cp));
    436   ASSERT(ToRegister(instr->constructor()).is(x1));
    437 
    438   __ Mov(x0, Operand(instr->arity()));
    439   __ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
    440 
    441   ElementsKind kind = instr->hydrogen()->elements_kind();
    442   AllocationSiteOverrideMode override_mode =
    443       (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
    444           ? DISABLE_ALLOCATION_SITES
    445           : DONT_OVERRIDE;
    446 
    447   if (instr->arity() == 0) {
    448     ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
    449     CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
    450   } else if (instr->arity() == 1) {
    451     Label done;
    452     if (IsFastPackedElementsKind(kind)) {
    453       Label packed_case;
    454 
    455       // We might need to create a holey array; look at the first argument.
    456       __ Peek(x10, 0);
    457       __ Cbz(x10, &packed_case);
    458 
    459       ElementsKind holey_kind = GetHoleyElementsKind(kind);
    460       ArraySingleArgumentConstructorStub stub(isolate(),
    461                                               holey_kind,
    462                                               override_mode);
    463       CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
    464       __ B(&done);
    465       __ Bind(&packed_case);
    466     }
    467 
    468     ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
    469     CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
    470     __ Bind(&done);
    471   } else {
    472     ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
    473     CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
    474   }
    475   after_push_argument_ = false;
    476 
    477   ASSERT(ToRegister(instr->result()).is(x0));
    478 }
    479 
    480 
    481 void LCodeGen::CallRuntime(const Runtime::Function* function,
    482                            int num_arguments,
    483                            LInstruction* instr,
    484                            SaveFPRegsMode save_doubles) {
    485   ASSERT(instr != NULL);
    486 
    487   __ CallRuntime(function, num_arguments, save_doubles);
    488 
    489   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
    490 }
    491 
    492 
    493 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
    494   if (context->IsRegister()) {
    495     __ Mov(cp, ToRegister(context));
    496   } else if (context->IsStackSlot()) {
    497     __ Ldr(cp, ToMemOperand(context, kMustUseFramePointer));
    498   } else if (context->IsConstantOperand()) {
    499     HConstant* constant =
    500         chunk_->LookupConstant(LConstantOperand::cast(context));
    501     __ LoadHeapObject(cp,
    502                       Handle<HeapObject>::cast(constant->handle(isolate())));
    503   } else {
    504     UNREACHABLE();
    505   }
    506 }
    507 
    508 
    509 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
    510                                        int argc,
    511                                        LInstruction* instr,
    512                                        LOperand* context) {
    513   LoadContextFromDeferred(context);
    514   __ CallRuntimeSaveDoubles(id);
    515   RecordSafepointWithRegisters(
    516       instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
    517 }
    518 
    519 
    520 void LCodeGen::RecordAndWritePosition(int position) {
    521   if (position == RelocInfo::kNoPosition) return;
    522   masm()->positions_recorder()->RecordPosition(position);
    523   masm()->positions_recorder()->WriteRecordedPositions();
    524 }
    525 
    526 
    527 void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
    528                                             SafepointMode safepoint_mode) {
    529   if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
    530     RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
    531   } else {
    532     ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
    533     RecordSafepointWithRegisters(
    534         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
    535   }
    536 }
    537 
    538 
    539 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
    540                                Safepoint::Kind kind,
    541                                int arguments,
    542                                Safepoint::DeoptMode deopt_mode) {
    543   ASSERT(expected_safepoint_kind_ == kind);
    544 
    545   const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
    546   Safepoint safepoint = safepoints_.DefineSafepoint(
    547       masm(), kind, arguments, deopt_mode);
    548 
    549   for (int i = 0; i < operands->length(); i++) {
    550     LOperand* pointer = operands->at(i);
    551     if (pointer->IsStackSlot()) {
    552       safepoint.DefinePointerSlot(pointer->index(), zone());
    553     } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
    554       safepoint.DefinePointerRegister(ToRegister(pointer), zone());
    555     }
    556   }
    557 
    558   if (kind & Safepoint::kWithRegisters) {
    559     // Register cp always contains a pointer to the context.
    560     safepoint.DefinePointerRegister(cp, zone());
    561   }
    562 }
    563 
    564 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
    565                                Safepoint::DeoptMode deopt_mode) {
    566   RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
    567 }
    568 
    569 
    570 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
    571   LPointerMap empty_pointers(zone());
    572   RecordSafepoint(&empty_pointers, deopt_mode);
    573 }
    574 
    575 
    576 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
    577                                             int arguments,
    578                                             Safepoint::DeoptMode deopt_mode) {
    579   RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
    580 }
    581 
    582 
    583 void LCodeGen::RecordSafepointWithRegistersAndDoubles(
    584     LPointerMap* pointers, int arguments, Safepoint::DeoptMode deopt_mode) {
    585   RecordSafepoint(
    586       pointers, Safepoint::kWithRegistersAndDoubles, arguments, deopt_mode);
    587 }
    588 
    589 
    590 bool LCodeGen::GenerateCode() {
    591   LPhase phase("Z_Code generation", chunk());
    592   ASSERT(is_unused());
    593   status_ = GENERATING;
    594 
    595   // Open a frame scope to indicate that there is a frame on the stack.  The
    596   // NONE indicates that the scope shouldn't actually generate code to set up
    597   // the frame (that is done in GeneratePrologue).
    598   FrameScope frame_scope(masm_, StackFrame::NONE);
    599 
    600   return GeneratePrologue() &&
    601       GenerateBody() &&
    602       GenerateDeferredCode() &&
    603       GenerateDeoptJumpTable() &&
    604       GenerateSafepointTable();
    605 }
    606 
    607 
    608 void LCodeGen::SaveCallerDoubles() {
    609   ASSERT(info()->saves_caller_doubles());
    610   ASSERT(NeedsEagerFrame());
    611   Comment(";;; Save clobbered callee double registers");
    612   BitVector* doubles = chunk()->allocated_double_registers();
    613   BitVector::Iterator iterator(doubles);
    614   int count = 0;
    615   while (!iterator.Done()) {
    616     // TODO(all): Is this supposed to save just the callee-saved doubles? It
    617     // looks like it's saving all of them.
    618     FPRegister value = FPRegister::FromAllocationIndex(iterator.Current());
    619     __ Poke(value, count * kDoubleSize);
    620     iterator.Advance();
    621     count++;
    622   }
    623 }
    624 
    625 
    626 void LCodeGen::RestoreCallerDoubles() {
    627   ASSERT(info()->saves_caller_doubles());
    628   ASSERT(NeedsEagerFrame());
    629   Comment(";;; Restore clobbered callee double registers");
    630   BitVector* doubles = chunk()->allocated_double_registers();
    631   BitVector::Iterator iterator(doubles);
    632   int count = 0;
    633   while (!iterator.Done()) {
    634     // TODO(all): Is this supposed to restore just the callee-saved doubles? It
    635     // looks like it's restoring all of them.
    636     FPRegister value = FPRegister::FromAllocationIndex(iterator.Current());
    637     __ Peek(value, count * kDoubleSize);
    638     iterator.Advance();
    639     count++;
    640   }
    641 }
    642 
    643 
    644 bool LCodeGen::GeneratePrologue() {
    645   ASSERT(is_generating());
    646 
    647   if (info()->IsOptimizing()) {
    648     ProfileEntryHookStub::MaybeCallEntryHook(masm_);
    649 
    650     // TODO(all): Add support for stop_t FLAG in DEBUG mode.
    651 
    652     // Sloppy mode functions and builtins need to replace the receiver with the
    653     // global proxy when called as functions (without an explicit receiver
    654     // object).
    655     if (info_->this_has_uses() &&
    656         info_->strict_mode() == SLOPPY &&
    657         !info_->is_native()) {
    658       Label ok;
    659       int receiver_offset = info_->scope()->num_parameters() * kXRegSize;
    660       __ Peek(x10, receiver_offset);
    661       __ JumpIfNotRoot(x10, Heap::kUndefinedValueRootIndex, &ok);
    662 
    663       __ Ldr(x10, GlobalObjectMemOperand());
    664       __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kGlobalReceiverOffset));
    665       __ Poke(x10, receiver_offset);
    666 
    667       __ Bind(&ok);
    668     }
    669   }
    670 
    671   ASSERT(__ StackPointer().Is(jssp));
    672   info()->set_prologue_offset(masm_->pc_offset());
    673   if (NeedsEagerFrame()) {
    674     if (info()->IsStub()) {
    675       __ StubPrologue();
    676     } else {
    677       __ Prologue(info()->IsCodePreAgingActive());
    678     }
    679     frame_is_built_ = true;
    680     info_->AddNoFrameRange(0, masm_->pc_offset());
    681   }
    682 
    683   // Reserve space for the stack slots needed by the code.
    684   int slots = GetStackSlotCount();
    685   if (slots > 0) {
    686     __ Claim(slots, kPointerSize);
    687   }
    688 
    689   if (info()->saves_caller_doubles()) {
    690     SaveCallerDoubles();
    691   }
    692 
    693   // Allocate a local context if needed.
    694   int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
    695   if (heap_slots > 0) {
    696     Comment(";;; Allocate local context");
    697     bool need_write_barrier = true;
    698     // Argument to NewContext is the function, which is in x1.
    699     if (heap_slots <= FastNewContextStub::kMaximumSlots) {
    700       FastNewContextStub stub(isolate(), heap_slots);
    701       __ CallStub(&stub);
    702       // Result of FastNewContextStub is always in new space.
    703       need_write_barrier = false;
    704     } else {
    705       __ Push(x1);
    706       __ CallRuntime(Runtime::kHiddenNewFunctionContext, 1);
    707     }
    708     RecordSafepoint(Safepoint::kNoLazyDeopt);
    709     // Context is returned in x0. It replaces the context passed to us. It's
    710     // saved in the stack and kept live in cp.
    711     __ Mov(cp, x0);
    712     __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
    713     // Copy any necessary parameters into the context.
    714     int num_parameters = scope()->num_parameters();
    715     for (int i = 0; i < num_parameters; i++) {
    716       Variable* var = scope()->parameter(i);
    717       if (var->IsContextSlot()) {
    718         Register value = x0;
    719         Register scratch = x3;
    720 
    721         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
    722             (num_parameters - 1 - i) * kPointerSize;
    723         // Load parameter from stack.
    724         __ Ldr(value, MemOperand(fp, parameter_offset));
    725         // Store it in the context.
    726         MemOperand target = ContextMemOperand(cp, var->index());
    727         __ Str(value, target);
    728         // Update the write barrier. This clobbers value and scratch.
    729         if (need_write_barrier) {
    730           __ RecordWriteContextSlot(cp, target.offset(), value, scratch,
    731                                     GetLinkRegisterState(), kSaveFPRegs);
    732         } else if (FLAG_debug_code) {
    733           Label done;
    734           __ JumpIfInNewSpace(cp, &done);
    735           __ Abort(kExpectedNewSpaceObject);
    736           __ bind(&done);
    737         }
    738       }
    739     }
    740     Comment(";;; End allocate local context");
    741   }
    742 
    743   // Trace the call.
    744   if (FLAG_trace && info()->IsOptimizing()) {
    745     // We have not executed any compiled code yet, so cp still holds the
    746     // incoming context.
    747     __ CallRuntime(Runtime::kTraceEnter, 0);
    748   }
    749 
    750   return !is_aborted();
    751 }
    752 
    753 
    754 void LCodeGen::GenerateOsrPrologue() {
    755   // Generate the OSR entry prologue at the first unknown OSR value, or if there
    756   // are none, at the OSR entrypoint instruction.
    757   if (osr_pc_offset_ >= 0) return;
    758 
    759   osr_pc_offset_ = masm()->pc_offset();
    760 
    761   // Adjust the frame size, subsuming the unoptimized frame into the
    762   // optimized frame.
    763   int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
    764   ASSERT(slots >= 0);
    765   __ Claim(slots);
    766 }
    767 
    768 
    769 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
    770   if (instr->IsCall()) {
    771     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
    772   }
    773   if (!instr->IsLazyBailout() && !instr->IsGap()) {
    774     safepoints_.BumpLastLazySafepointIndex();
    775   }
    776 }
    777 
    778 
    779 bool LCodeGen::GenerateDeferredCode() {
    780   ASSERT(is_generating());
    781   if (deferred_.length() > 0) {
    782     for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) {
    783       LDeferredCode* code = deferred_[i];
    784 
    785       HValue* value =
    786           instructions_->at(code->instruction_index())->hydrogen_value();
    787       RecordAndWritePosition(
    788           chunk()->graph()->SourcePositionToScriptPosition(value->position()));
    789 
    790       Comment(";;; <@%d,#%d> "
    791               "-------------------- Deferred %s --------------------",
    792               code->instruction_index(),
    793               code->instr()->hydrogen_value()->id(),
    794               code->instr()->Mnemonic());
    795 
    796       __ Bind(code->entry());
    797 
    798       if (NeedsDeferredFrame()) {
    799         Comment(";;; Build frame");
    800         ASSERT(!frame_is_built_);
    801         ASSERT(info()->IsStub());
    802         frame_is_built_ = true;
    803         __ Push(lr, fp, cp);
    804         __ Mov(fp, Smi::FromInt(StackFrame::STUB));
    805         __ Push(fp);
    806         __ Add(fp, __ StackPointer(),
    807                StandardFrameConstants::kFixedFrameSizeFromFp);
    808         Comment(";;; Deferred code");
    809       }
    810 
    811       code->Generate();
    812 
    813       if (NeedsDeferredFrame()) {
    814         Comment(";;; Destroy frame");
    815         ASSERT(frame_is_built_);
    816         __ Pop(xzr, cp, fp, lr);
    817         frame_is_built_ = false;
    818       }
    819 
    820       __ B(code->exit());
    821     }
    822   }
    823 
    824   // Force constant pool emission at the end of the deferred code to make
    825   // sure that no constant pools are emitted after deferred code because
    826   // deferred code generation is the last step which generates code. The two
    827   // following steps will only output data used by crakshaft.
    828   masm()->CheckConstPool(true, false);
    829 
    830   return !is_aborted();
    831 }
    832 
    833 
    834 bool LCodeGen::GenerateDeoptJumpTable() {
    835   Label needs_frame, restore_caller_doubles, call_deopt_entry;
    836 
    837   if (deopt_jump_table_.length() > 0) {
    838     Comment(";;; -------------------- Jump table --------------------");
    839     Address base = deopt_jump_table_[0]->address;
    840 
    841     UseScratchRegisterScope temps(masm());
    842     Register entry_offset = temps.AcquireX();
    843 
    844     int length = deopt_jump_table_.length();
    845     for (int i = 0; i < length; i++) {
    846       __ Bind(&deopt_jump_table_[i]->label);
    847 
    848       Deoptimizer::BailoutType type = deopt_jump_table_[i]->bailout_type;
    849       Address entry = deopt_jump_table_[i]->address;
    850       int id = Deoptimizer::GetDeoptimizationId(isolate(), entry, type);
    851       if (id == Deoptimizer::kNotDeoptimizationEntry) {
    852         Comment(";;; jump table entry %d.", i);
    853       } else {
    854         Comment(";;; jump table entry %d: deoptimization bailout %d.", i, id);
    855       }
    856 
    857       // Second-level deopt table entries are contiguous and small, so instead
    858       // of loading the full, absolute address of each one, load the base
    859       // address and add an immediate offset.
    860       __ Mov(entry_offset, entry - base);
    861 
    862       // The last entry can fall through into `call_deopt_entry`, avoiding a
    863       // branch.
    864       bool last_entry = (i + 1) == length;
    865 
    866       if (deopt_jump_table_[i]->needs_frame) {
    867         ASSERT(!info()->saves_caller_doubles());
    868         if (!needs_frame.is_bound()) {
    869           // This variant of deopt can only be used with stubs. Since we don't
    870           // have a function pointer to install in the stack frame that we're
    871           // building, install a special marker there instead.
    872           ASSERT(info()->IsStub());
    873 
    874           UseScratchRegisterScope temps(masm());
    875           Register stub_marker = temps.AcquireX();
    876           __ Bind(&needs_frame);
    877           __ Mov(stub_marker, Smi::FromInt(StackFrame::STUB));
    878           __ Push(lr, fp, cp, stub_marker);
    879           __ Add(fp, __ StackPointer(), 2 * kPointerSize);
    880           if (!last_entry) __ B(&call_deopt_entry);
    881         } else {
    882           // Reuse the existing needs_frame code.
    883           __ B(&needs_frame);
    884         }
    885       } else if (info()->saves_caller_doubles()) {
    886         ASSERT(info()->IsStub());
    887         if (!restore_caller_doubles.is_bound()) {
    888           __ Bind(&restore_caller_doubles);
    889           RestoreCallerDoubles();
    890           if (!last_entry) __ B(&call_deopt_entry);
    891         } else {
    892           // Reuse the existing restore_caller_doubles code.
    893           __ B(&restore_caller_doubles);
    894         }
    895       } else {
    896         // There is nothing special to do, so just continue to the second-level
    897         // table.
    898         if (!last_entry) __ B(&call_deopt_entry);
    899       }
    900 
    901       masm()->CheckConstPool(false, last_entry);
    902     }
    903 
    904     // Generate common code for calling the second-level deopt table.
    905     Register deopt_entry = temps.AcquireX();
    906     __ Bind(&call_deopt_entry);
    907     __ Mov(deopt_entry, Operand(reinterpret_cast<uint64_t>(base),
    908                                 RelocInfo::RUNTIME_ENTRY));
    909     __ Add(deopt_entry, deopt_entry, entry_offset);
    910     __ Call(deopt_entry);
    911   }
    912 
    913   // Force constant pool emission at the end of the deopt jump table to make
    914   // sure that no constant pools are emitted after.
    915   masm()->CheckConstPool(true, false);
    916 
    917   // The deoptimization jump table is the last part of the instruction
    918   // sequence. Mark the generated code as done unless we bailed out.
    919   if (!is_aborted()) status_ = DONE;
    920   return !is_aborted();
    921 }
    922 
    923 
    924 bool LCodeGen::GenerateSafepointTable() {
    925   ASSERT(is_done());
    926   // We do not know how much data will be emitted for the safepoint table, so
    927   // force emission of the veneer pool.
    928   masm()->CheckVeneerPool(true, true);
    929   safepoints_.Emit(masm(), GetStackSlotCount());
    930   return !is_aborted();
    931 }
    932 
    933 
    934 void LCodeGen::FinishCode(Handle<Code> code) {
    935   ASSERT(is_done());
    936   code->set_stack_slots(GetStackSlotCount());
    937   code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
    938   if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code);
    939   PopulateDeoptimizationData(code);
    940 }
    941 
    942 
    943 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
    944   int length = deoptimizations_.length();
    945   if (length == 0) return;
    946 
    947   Handle<DeoptimizationInputData> data =
    948       DeoptimizationInputData::New(isolate(), length, TENURED);
    949 
    950   Handle<ByteArray> translations =
    951       translations_.CreateByteArray(isolate()->factory());
    952   data->SetTranslationByteArray(*translations);
    953   data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
    954   data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
    955   if (info_->IsOptimizing()) {
    956     // Reference to shared function info does not change between phases.
    957     AllowDeferredHandleDereference allow_handle_dereference;
    958     data->SetSharedFunctionInfo(*info_->shared_info());
    959   } else {
    960     data->SetSharedFunctionInfo(Smi::FromInt(0));
    961   }
    962 
    963   Handle<FixedArray> literals =
    964       factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
    965   { AllowDeferredHandleDereference copy_handles;
    966     for (int i = 0; i < deoptimization_literals_.length(); i++) {
    967       literals->set(i, *deoptimization_literals_[i]);
    968     }
    969     data->SetLiteralArray(*literals);
    970   }
    971 
    972   data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
    973   data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
    974 
    975   // Populate the deoptimization entries.
    976   for (int i = 0; i < length; i++) {
    977     LEnvironment* env = deoptimizations_[i];
    978     data->SetAstId(i, env->ast_id());
    979     data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
    980     data->SetArgumentsStackHeight(i,
    981                                   Smi::FromInt(env->arguments_stack_height()));
    982     data->SetPc(i, Smi::FromInt(env->pc_offset()));
    983   }
    984 
    985   code->set_deoptimization_data(*data);
    986 }
    987 
    988 
    989 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
    990   ASSERT(deoptimization_literals_.length() == 0);
    991 
    992   const ZoneList<Handle<JSFunction> >* inlined_closures =
    993       chunk()->inlined_closures();
    994 
    995   for (int i = 0, length = inlined_closures->length(); i < length; i++) {
    996     DefineDeoptimizationLiteral(inlined_closures->at(i));
    997   }
    998 
    999   inlined_function_count_ = deoptimization_literals_.length();
   1000 }
   1001 
   1002 
   1003 void LCodeGen::DeoptimizeBranch(
   1004     LEnvironment* environment,
   1005     BranchType branch_type, Register reg, int bit,
   1006     Deoptimizer::BailoutType* override_bailout_type) {
   1007   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
   1008   Deoptimizer::BailoutType bailout_type =
   1009     info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
   1010 
   1011   if (override_bailout_type != NULL) {
   1012     bailout_type = *override_bailout_type;
   1013   }
   1014 
   1015   ASSERT(environment->HasBeenRegistered());
   1016   ASSERT(info()->IsOptimizing() || info()->IsStub());
   1017   int id = environment->deoptimization_index();
   1018   Address entry =
   1019       Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
   1020 
   1021   if (entry == NULL) {
   1022     Abort(kBailoutWasNotPrepared);
   1023   }
   1024 
   1025   if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
   1026     Label not_zero;
   1027     ExternalReference count = ExternalReference::stress_deopt_count(isolate());
   1028 
   1029     __ Push(x0, x1, x2);
   1030     __ Mrs(x2, NZCV);
   1031     __ Mov(x0, count);
   1032     __ Ldr(w1, MemOperand(x0));
   1033     __ Subs(x1, x1, 1);
   1034     __ B(gt, &not_zero);
   1035     __ Mov(w1, FLAG_deopt_every_n_times);
   1036     __ Str(w1, MemOperand(x0));
   1037     __ Pop(x2, x1, x0);
   1038     ASSERT(frame_is_built_);
   1039     __ Call(entry, RelocInfo::RUNTIME_ENTRY);
   1040     __ Unreachable();
   1041 
   1042     __ Bind(&not_zero);
   1043     __ Str(w1, MemOperand(x0));
   1044     __ Msr(NZCV, x2);
   1045     __ Pop(x2, x1, x0);
   1046   }
   1047 
   1048   if (info()->ShouldTrapOnDeopt()) {
   1049     Label dont_trap;
   1050     __ B(&dont_trap, InvertBranchType(branch_type), reg, bit);
   1051     __ Debug("trap_on_deopt", __LINE__, BREAK);
   1052     __ Bind(&dont_trap);
   1053   }
   1054 
   1055   ASSERT(info()->IsStub() || frame_is_built_);
   1056   // Go through jump table if we need to build frame, or restore caller doubles.
   1057   if (branch_type == always &&
   1058       frame_is_built_ && !info()->saves_caller_doubles()) {
   1059     __ Call(entry, RelocInfo::RUNTIME_ENTRY);
   1060   } else {
   1061     // We often have several deopts to the same entry, reuse the last
   1062     // jump entry if this is the case.
   1063     if (deopt_jump_table_.is_empty() ||
   1064         (deopt_jump_table_.last()->address != entry) ||
   1065         (deopt_jump_table_.last()->bailout_type != bailout_type) ||
   1066         (deopt_jump_table_.last()->needs_frame != !frame_is_built_)) {
   1067       Deoptimizer::JumpTableEntry* table_entry =
   1068         new(zone()) Deoptimizer::JumpTableEntry(entry,
   1069                                                 bailout_type,
   1070                                                 !frame_is_built_);
   1071       deopt_jump_table_.Add(table_entry, zone());
   1072     }
   1073     __ B(&deopt_jump_table_.last()->label,
   1074          branch_type, reg, bit);
   1075   }
   1076 }
   1077 
   1078 
   1079 void LCodeGen::Deoptimize(LEnvironment* environment,
   1080                           Deoptimizer::BailoutType* override_bailout_type) {
   1081   DeoptimizeBranch(environment, always, NoReg, -1, override_bailout_type);
   1082 }
   1083 
   1084 
   1085 void LCodeGen::DeoptimizeIf(Condition cond, LEnvironment* environment) {
   1086   DeoptimizeBranch(environment, static_cast<BranchType>(cond));
   1087 }
   1088 
   1089 
   1090 void LCodeGen::DeoptimizeIfZero(Register rt, LEnvironment* environment) {
   1091   DeoptimizeBranch(environment, reg_zero, rt);
   1092 }
   1093 
   1094 
   1095 void LCodeGen::DeoptimizeIfNotZero(Register rt, LEnvironment* environment) {
   1096   DeoptimizeBranch(environment, reg_not_zero, rt);
   1097 }
   1098 
   1099 
   1100 void LCodeGen::DeoptimizeIfNegative(Register rt, LEnvironment* environment) {
   1101   int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit;
   1102   DeoptimizeIfBitSet(rt, sign_bit, environment);
   1103 }
   1104 
   1105 
   1106 void LCodeGen::DeoptimizeIfSmi(Register rt,
   1107                                LEnvironment* environment) {
   1108   DeoptimizeIfBitClear(rt, MaskToBit(kSmiTagMask), environment);
   1109 }
   1110 
   1111 
   1112 void LCodeGen::DeoptimizeIfNotSmi(Register rt, LEnvironment* environment) {
   1113   DeoptimizeIfBitSet(rt, MaskToBit(kSmiTagMask), environment);
   1114 }
   1115 
   1116 
   1117 void LCodeGen::DeoptimizeIfRoot(Register rt,
   1118                                 Heap::RootListIndex index,
   1119                                 LEnvironment* environment) {
   1120   __ CompareRoot(rt, index);
   1121   DeoptimizeIf(eq, environment);
   1122 }
   1123 
   1124 
   1125 void LCodeGen::DeoptimizeIfNotRoot(Register rt,
   1126                                    Heap::RootListIndex index,
   1127                                    LEnvironment* environment) {
   1128   __ CompareRoot(rt, index);
   1129   DeoptimizeIf(ne, environment);
   1130 }
   1131 
   1132 
   1133 void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input,
   1134                                      LEnvironment* environment) {
   1135   __ TestForMinusZero(input);
   1136   DeoptimizeIf(vs, environment);
   1137 }
   1138 
   1139 
   1140 void LCodeGen::DeoptimizeIfBitSet(Register rt,
   1141                                   int bit,
   1142                                   LEnvironment* environment) {
   1143   DeoptimizeBranch(environment, reg_bit_set, rt, bit);
   1144 }
   1145 
   1146 
   1147 void LCodeGen::DeoptimizeIfBitClear(Register rt,
   1148                                     int bit,
   1149                                     LEnvironment* environment) {
   1150   DeoptimizeBranch(environment, reg_bit_clear, rt, bit);
   1151 }
   1152 
   1153 
   1154 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
   1155   if (!info()->IsStub()) {
   1156     // Ensure that we have enough space after the previous lazy-bailout
   1157     // instruction for patching the code here.
   1158     intptr_t current_pc = masm()->pc_offset();
   1159 
   1160     if (current_pc < (last_lazy_deopt_pc_ + space_needed)) {
   1161       ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
   1162       ASSERT((padding_size % kInstructionSize) == 0);
   1163       InstructionAccurateScope instruction_accurate(
   1164           masm(), padding_size / kInstructionSize);
   1165 
   1166       while (padding_size > 0) {
   1167         __ nop();
   1168         padding_size -= kInstructionSize;
   1169       }
   1170     }
   1171   }
   1172   last_lazy_deopt_pc_ = masm()->pc_offset();
   1173 }
   1174 
   1175 
   1176 Register LCodeGen::ToRegister(LOperand* op) const {
   1177   // TODO(all): support zero register results, as ToRegister32.
   1178   ASSERT((op != NULL) && op->IsRegister());
   1179   return Register::FromAllocationIndex(op->index());
   1180 }
   1181 
   1182 
   1183 Register LCodeGen::ToRegister32(LOperand* op) const {
   1184   ASSERT(op != NULL);
   1185   if (op->IsConstantOperand()) {
   1186     // If this is a constant operand, the result must be the zero register.
   1187     ASSERT(ToInteger32(LConstantOperand::cast(op)) == 0);
   1188     return wzr;
   1189   } else {
   1190     return ToRegister(op).W();
   1191   }
   1192 }
   1193 
   1194 
   1195 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
   1196   HConstant* constant = chunk_->LookupConstant(op);
   1197   return Smi::FromInt(constant->Integer32Value());
   1198 }
   1199 
   1200 
   1201 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
   1202   ASSERT((op != NULL) && op->IsDoubleRegister());
   1203   return DoubleRegister::FromAllocationIndex(op->index());
   1204 }
   1205 
   1206 
   1207 Operand LCodeGen::ToOperand(LOperand* op) {
   1208   ASSERT(op != NULL);
   1209   if (op->IsConstantOperand()) {
   1210     LConstantOperand* const_op = LConstantOperand::cast(op);
   1211     HConstant* constant = chunk()->LookupConstant(const_op);
   1212     Representation r = chunk_->LookupLiteralRepresentation(const_op);
   1213     if (r.IsSmi()) {
   1214       ASSERT(constant->HasSmiValue());
   1215       return Operand(Smi::FromInt(constant->Integer32Value()));
   1216     } else if (r.IsInteger32()) {
   1217       ASSERT(constant->HasInteger32Value());
   1218       return Operand(constant->Integer32Value());
   1219     } else if (r.IsDouble()) {
   1220       Abort(kToOperandUnsupportedDoubleImmediate);
   1221     }
   1222     ASSERT(r.IsTagged());
   1223     return Operand(constant->handle(isolate()));
   1224   } else if (op->IsRegister()) {
   1225     return Operand(ToRegister(op));
   1226   } else if (op->IsDoubleRegister()) {
   1227     Abort(kToOperandIsDoubleRegisterUnimplemented);
   1228     return Operand(0);
   1229   }
   1230   // Stack slots not implemented, use ToMemOperand instead.
   1231   UNREACHABLE();
   1232   return Operand(0);
   1233 }
   1234 
   1235 
   1236 Operand LCodeGen::ToOperand32I(LOperand* op) {
   1237   return ToOperand32(op, SIGNED_INT32);
   1238 }
   1239 
   1240 
   1241 Operand LCodeGen::ToOperand32U(LOperand* op) {
   1242   return ToOperand32(op, UNSIGNED_INT32);
   1243 }
   1244 
   1245 
   1246 Operand LCodeGen::ToOperand32(LOperand* op, IntegerSignedness signedness) {
   1247   ASSERT(op != NULL);
   1248   if (op->IsRegister()) {
   1249     return Operand(ToRegister32(op));
   1250   } else if (op->IsConstantOperand()) {
   1251     LConstantOperand* const_op = LConstantOperand::cast(op);
   1252     HConstant* constant = chunk()->LookupConstant(const_op);
   1253     Representation r = chunk_->LookupLiteralRepresentation(const_op);
   1254     if (r.IsInteger32()) {
   1255       ASSERT(constant->HasInteger32Value());
   1256       return (signedness == SIGNED_INT32)
   1257           ? Operand(constant->Integer32Value())
   1258           : Operand(static_cast<uint32_t>(constant->Integer32Value()));
   1259     } else {
   1260       // Other constants not implemented.
   1261       Abort(kToOperand32UnsupportedImmediate);
   1262     }
   1263   }
   1264   // Other cases are not implemented.
   1265   UNREACHABLE();
   1266   return Operand(0);
   1267 }
   1268 
   1269 
   1270 static ptrdiff_t ArgumentsOffsetWithoutFrame(ptrdiff_t index) {
   1271   ASSERT(index < 0);
   1272   return -(index + 1) * kPointerSize;
   1273 }
   1274 
   1275 
   1276 MemOperand LCodeGen::ToMemOperand(LOperand* op, StackMode stack_mode) const {
   1277   ASSERT(op != NULL);
   1278   ASSERT(!op->IsRegister());
   1279   ASSERT(!op->IsDoubleRegister());
   1280   ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
   1281   if (NeedsEagerFrame()) {
   1282     int fp_offset = StackSlotOffset(op->index());
   1283     if (op->index() >= 0) {
   1284       // Loads and stores have a bigger reach in positive offset than negative.
   1285       // When the load or the store can't be done in one instruction via fp
   1286       // (too big negative offset), we try to access via jssp (positive offset).
   1287       // We can reference a stack slot from jssp only if jssp references the end
   1288       // of the stack slots. It's not the case when:
   1289       //  - stack_mode != kCanUseStackPointer: this is the case when a deferred
   1290       //     code saved the registers.
   1291       //  - after_push_argument_: arguments has been pushed for a call.
   1292       //  - inlined_arguments_: inlined arguments have been pushed once. All the
   1293       //     remainder of the function cannot trust jssp any longer.
   1294       //  - saves_caller_doubles: some double registers have been pushed, jssp
   1295       //     references the end of the double registers and not the end of the
   1296       //     stack slots.
   1297       // Also, if the offset from fp is small enough to make a load/store in
   1298       // one instruction, we use a fp access.
   1299       if ((stack_mode == kCanUseStackPointer) && !after_push_argument_ &&
   1300           !inlined_arguments_ && !is_int9(fp_offset) &&
   1301           !info()->saves_caller_doubles()) {
   1302         int jssp_offset =
   1303             (GetStackSlotCount() - op->index() - 1) * kPointerSize;
   1304         return MemOperand(masm()->StackPointer(), jssp_offset);
   1305       }
   1306     }
   1307     return MemOperand(fp, fp_offset);
   1308   } else {
   1309     // Retrieve parameter without eager stack-frame relative to the
   1310     // stack-pointer.
   1311     return MemOperand(masm()->StackPointer(),
   1312                       ArgumentsOffsetWithoutFrame(op->index()));
   1313   }
   1314 }
   1315 
   1316 
   1317 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
   1318   HConstant* constant = chunk_->LookupConstant(op);
   1319   ASSERT(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
   1320   return constant->handle(isolate());
   1321 }
   1322 
   1323 
   1324 template<class LI>
   1325 Operand LCodeGen::ToShiftedRightOperand32(LOperand* right, LI* shift_info,
   1326                                           IntegerSignedness signedness) {
   1327   if (shift_info->shift() == NO_SHIFT) {
   1328     return (signedness == SIGNED_INT32) ? ToOperand32I(right)
   1329                                         : ToOperand32U(right);
   1330   } else {
   1331     return Operand(
   1332         ToRegister32(right),
   1333         shift_info->shift(),
   1334         JSShiftAmountFromLConstant(shift_info->shift_amount()));
   1335   }
   1336 }
   1337 
   1338 
   1339 bool LCodeGen::IsSmi(LConstantOperand* op) const {
   1340   return chunk_->LookupLiteralRepresentation(op).IsSmi();
   1341 }
   1342 
   1343 
   1344 bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
   1345   return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
   1346 }
   1347 
   1348 
   1349 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
   1350   HConstant* constant = chunk_->LookupConstant(op);
   1351   return constant->Integer32Value();
   1352 }
   1353 
   1354 
   1355 double LCodeGen::ToDouble(LConstantOperand* op) const {
   1356   HConstant* constant = chunk_->LookupConstant(op);
   1357   ASSERT(constant->HasDoubleValue());
   1358   return constant->DoubleValue();
   1359 }
   1360 
   1361 
   1362 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
   1363   Condition cond = nv;
   1364   switch (op) {
   1365     case Token::EQ:
   1366     case Token::EQ_STRICT:
   1367       cond = eq;
   1368       break;
   1369     case Token::NE:
   1370     case Token::NE_STRICT:
   1371       cond = ne;
   1372       break;
   1373     case Token::LT:
   1374       cond = is_unsigned ? lo : lt;
   1375       break;
   1376     case Token::GT:
   1377       cond = is_unsigned ? hi : gt;
   1378       break;
   1379     case Token::LTE:
   1380       cond = is_unsigned ? ls : le;
   1381       break;
   1382     case Token::GTE:
   1383       cond = is_unsigned ? hs : ge;
   1384       break;
   1385     case Token::IN:
   1386     case Token::INSTANCEOF:
   1387     default:
   1388       UNREACHABLE();
   1389   }
   1390   return cond;
   1391 }
   1392 
   1393 
   1394 template<class InstrType>
   1395 void LCodeGen::EmitBranchGeneric(InstrType instr,
   1396                                  const BranchGenerator& branch) {
   1397   int left_block = instr->TrueDestination(chunk_);
   1398   int right_block = instr->FalseDestination(chunk_);
   1399 
   1400   int next_block = GetNextEmittedBlock();
   1401 
   1402   if (right_block == left_block) {
   1403     EmitGoto(left_block);
   1404   } else if (left_block == next_block) {
   1405     branch.EmitInverted(chunk_->GetAssemblyLabel(right_block));
   1406   } else if (right_block == next_block) {
   1407     branch.Emit(chunk_->GetAssemblyLabel(left_block));
   1408   } else {
   1409     branch.Emit(chunk_->GetAssemblyLabel(left_block));
   1410     __ B(chunk_->GetAssemblyLabel(right_block));
   1411   }
   1412 }
   1413 
   1414 
   1415 template<class InstrType>
   1416 void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
   1417   ASSERT((condition != al) && (condition != nv));
   1418   BranchOnCondition branch(this, condition);
   1419   EmitBranchGeneric(instr, branch);
   1420 }
   1421 
   1422 
   1423 template<class InstrType>
   1424 void LCodeGen::EmitCompareAndBranch(InstrType instr,
   1425                                     Condition condition,
   1426                                     const Register& lhs,
   1427                                     const Operand& rhs) {
   1428   ASSERT((condition != al) && (condition != nv));
   1429   CompareAndBranch branch(this, condition, lhs, rhs);
   1430   EmitBranchGeneric(instr, branch);
   1431 }
   1432 
   1433 
   1434 template<class InstrType>
   1435 void LCodeGen::EmitTestAndBranch(InstrType instr,
   1436                                  Condition condition,
   1437                                  const Register& value,
   1438                                  uint64_t mask) {
   1439   ASSERT((condition != al) && (condition != nv));
   1440   TestAndBranch branch(this, condition, value, mask);
   1441   EmitBranchGeneric(instr, branch);
   1442 }
   1443 
   1444 
   1445 template<class InstrType>
   1446 void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr,
   1447                                          const FPRegister& value,
   1448                                          const FPRegister& scratch) {
   1449   BranchIfNonZeroNumber branch(this, value, scratch);
   1450   EmitBranchGeneric(instr, branch);
   1451 }
   1452 
   1453 
   1454 template<class InstrType>
   1455 void LCodeGen::EmitBranchIfHeapNumber(InstrType instr,
   1456                                       const Register& value) {
   1457   BranchIfHeapNumber branch(this, value);
   1458   EmitBranchGeneric(instr, branch);
   1459 }
   1460 
   1461 
   1462 template<class InstrType>
   1463 void LCodeGen::EmitBranchIfRoot(InstrType instr,
   1464                                 const Register& value,
   1465                                 Heap::RootListIndex index) {
   1466   BranchIfRoot branch(this, value, index);
   1467   EmitBranchGeneric(instr, branch);
   1468 }
   1469 
   1470 
   1471 void LCodeGen::DoGap(LGap* gap) {
   1472   for (int i = LGap::FIRST_INNER_POSITION;
   1473        i <= LGap::LAST_INNER_POSITION;
   1474        i++) {
   1475     LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
   1476     LParallelMove* move = gap->GetParallelMove(inner_pos);
   1477     if (move != NULL) {
   1478       resolver_.Resolve(move);
   1479     }
   1480   }
   1481 }
   1482 
   1483 
   1484 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
   1485   Register arguments = ToRegister(instr->arguments());
   1486   Register result = ToRegister(instr->result());
   1487 
   1488   // The pointer to the arguments array come from DoArgumentsElements.
   1489   // It does not point directly to the arguments and there is an offest of
   1490   // two words that we must take into account when accessing an argument.
   1491   // Subtracting the index from length accounts for one, so we add one more.
   1492 
   1493   if (instr->length()->IsConstantOperand() &&
   1494       instr->index()->IsConstantOperand()) {
   1495     int index = ToInteger32(LConstantOperand::cast(instr->index()));
   1496     int length = ToInteger32(LConstantOperand::cast(instr->length()));
   1497     int offset = ((length - index) + 1) * kPointerSize;
   1498     __ Ldr(result, MemOperand(arguments, offset));
   1499   } else if (instr->index()->IsConstantOperand()) {
   1500     Register length = ToRegister32(instr->length());
   1501     int index = ToInteger32(LConstantOperand::cast(instr->index()));
   1502     int loc = index - 1;
   1503     if (loc != 0) {
   1504       __ Sub(result.W(), length, loc);
   1505       __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
   1506     } else {
   1507       __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2));
   1508     }
   1509   } else {
   1510     Register length = ToRegister32(instr->length());
   1511     Operand index = ToOperand32I(instr->index());
   1512     __ Sub(result.W(), length, index);
   1513     __ Add(result.W(), result.W(), 1);
   1514     __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
   1515   }
   1516 }
   1517 
   1518 
   1519 void LCodeGen::DoAddE(LAddE* instr) {
   1520   Register result = ToRegister(instr->result());
   1521   Register left = ToRegister(instr->left());
   1522   Operand right = (instr->right()->IsConstantOperand())
   1523       ? ToInteger32(LConstantOperand::cast(instr->right()))
   1524       : Operand(ToRegister32(instr->right()), SXTW);
   1525 
   1526   ASSERT(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow));
   1527   __ Add(result, left, right);
   1528 }
   1529 
   1530 
   1531 void LCodeGen::DoAddI(LAddI* instr) {
   1532   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   1533   Register result = ToRegister32(instr->result());
   1534   Register left = ToRegister32(instr->left());
   1535   Operand right = ToShiftedRightOperand32I(instr->right(), instr);
   1536 
   1537   if (can_overflow) {
   1538     __ Adds(result, left, right);
   1539     DeoptimizeIf(vs, instr->environment());
   1540   } else {
   1541     __ Add(result, left, right);
   1542   }
   1543 }
   1544 
   1545 
   1546 void LCodeGen::DoAddS(LAddS* instr) {
   1547   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   1548   Register result = ToRegister(instr->result());
   1549   Register left = ToRegister(instr->left());
   1550   Operand right = ToOperand(instr->right());
   1551   if (can_overflow) {
   1552     __ Adds(result, left, right);
   1553     DeoptimizeIf(vs, instr->environment());
   1554   } else {
   1555     __ Add(result, left, right);
   1556   }
   1557 }
   1558 
   1559 
   1560 void LCodeGen::DoAllocate(LAllocate* instr) {
   1561   class DeferredAllocate: public LDeferredCode {
   1562    public:
   1563     DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
   1564         : LDeferredCode(codegen), instr_(instr) { }
   1565     virtual void Generate() { codegen()->DoDeferredAllocate(instr_); }
   1566     virtual LInstruction* instr() { return instr_; }
   1567    private:
   1568     LAllocate* instr_;
   1569   };
   1570 
   1571   DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr);
   1572 
   1573   Register result = ToRegister(instr->result());
   1574   Register temp1 = ToRegister(instr->temp1());
   1575   Register temp2 = ToRegister(instr->temp2());
   1576 
   1577   // Allocate memory for the object.
   1578   AllocationFlags flags = TAG_OBJECT;
   1579   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
   1580     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
   1581   }
   1582 
   1583   if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
   1584     ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
   1585     ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
   1586     flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE);
   1587   } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
   1588     ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
   1589     flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE);
   1590   }
   1591 
   1592   if (instr->size()->IsConstantOperand()) {
   1593     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   1594     if (size <= Page::kMaxRegularHeapObjectSize) {
   1595       __ Allocate(size, result, temp1, temp2, deferred->entry(), flags);
   1596     } else {
   1597       __ B(deferred->entry());
   1598     }
   1599   } else {
   1600     Register size = ToRegister32(instr->size());
   1601     __ Sxtw(size.X(), size);
   1602     __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags);
   1603   }
   1604 
   1605   __ Bind(deferred->exit());
   1606 
   1607   if (instr->hydrogen()->MustPrefillWithFiller()) {
   1608     Register filler_count = temp1;
   1609     Register filler = temp2;
   1610     Register untagged_result = ToRegister(instr->temp3());
   1611 
   1612     if (instr->size()->IsConstantOperand()) {
   1613       int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   1614       __ Mov(filler_count, size / kPointerSize);
   1615     } else {
   1616       __ Lsr(filler_count.W(), ToRegister32(instr->size()), kPointerSizeLog2);
   1617     }
   1618 
   1619     __ Sub(untagged_result, result, kHeapObjectTag);
   1620     __ Mov(filler, Operand(isolate()->factory()->one_pointer_filler_map()));
   1621     __ FillFields(untagged_result, filler_count, filler);
   1622   } else {
   1623     ASSERT(instr->temp3() == NULL);
   1624   }
   1625 }
   1626 
   1627 
   1628 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
   1629   // TODO(3095996): Get rid of this. For now, we need to make the
   1630   // result register contain a valid pointer because it is already
   1631   // contained in the register pointer map.
   1632   __ Mov(ToRegister(instr->result()), Smi::FromInt(0));
   1633 
   1634   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
   1635   // We're in a SafepointRegistersScope so we can use any scratch registers.
   1636   Register size = x0;
   1637   if (instr->size()->IsConstantOperand()) {
   1638     __ Mov(size, ToSmi(LConstantOperand::cast(instr->size())));
   1639   } else {
   1640     __ SmiTag(size, ToRegister32(instr->size()).X());
   1641   }
   1642   int flags = AllocateDoubleAlignFlag::encode(
   1643       instr->hydrogen()->MustAllocateDoubleAligned());
   1644   if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
   1645     ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
   1646     ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
   1647     flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE);
   1648   } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
   1649     ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
   1650     flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE);
   1651   } else {
   1652     flags = AllocateTargetSpace::update(flags, NEW_SPACE);
   1653   }
   1654   __ Mov(x10, Smi::FromInt(flags));
   1655   __ Push(size, x10);
   1656 
   1657   CallRuntimeFromDeferred(
   1658       Runtime::kHiddenAllocateInTargetSpace, 2, instr, instr->context());
   1659   __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result()));
   1660 }
   1661 
   1662 
   1663 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
   1664   Register receiver = ToRegister(instr->receiver());
   1665   Register function = ToRegister(instr->function());
   1666   Register length = ToRegister32(instr->length());
   1667 
   1668   Register elements = ToRegister(instr->elements());
   1669   Register scratch = x5;
   1670   ASSERT(receiver.Is(x0));  // Used for parameter count.
   1671   ASSERT(function.Is(x1));  // Required by InvokeFunction.
   1672   ASSERT(ToRegister(instr->result()).Is(x0));
   1673   ASSERT(instr->IsMarkedAsCall());
   1674 
   1675   // Copy the arguments to this function possibly from the
   1676   // adaptor frame below it.
   1677   const uint32_t kArgumentsLimit = 1 * KB;
   1678   __ Cmp(length, kArgumentsLimit);
   1679   DeoptimizeIf(hi, instr->environment());
   1680 
   1681   // Push the receiver and use the register to keep the original
   1682   // number of arguments.
   1683   __ Push(receiver);
   1684   Register argc = receiver;
   1685   receiver = NoReg;
   1686   __ Sxtw(argc, length);
   1687   // The arguments are at a one pointer size offset from elements.
   1688   __ Add(elements, elements, 1 * kPointerSize);
   1689 
   1690   // Loop through the arguments pushing them onto the execution
   1691   // stack.
   1692   Label invoke, loop;
   1693   // length is a small non-negative integer, due to the test above.
   1694   __ Cbz(length, &invoke);
   1695   __ Bind(&loop);
   1696   __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2));
   1697   __ Push(scratch);
   1698   __ Subs(length, length, 1);
   1699   __ B(ne, &loop);
   1700 
   1701   __ Bind(&invoke);
   1702   ASSERT(instr->HasPointerMap());
   1703   LPointerMap* pointers = instr->pointer_map();
   1704   SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
   1705   // The number of arguments is stored in argc (receiver) which is x0, as
   1706   // expected by InvokeFunction.
   1707   ParameterCount actual(argc);
   1708   __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
   1709 }
   1710 
   1711 
   1712 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
   1713   // We push some arguments and they will be pop in an other block. We can't
   1714   // trust that jssp references the end of the stack slots until the end of
   1715   // the function.
   1716   inlined_arguments_ = true;
   1717   Register result = ToRegister(instr->result());
   1718 
   1719   if (instr->hydrogen()->from_inlined()) {
   1720     // When we are inside an inlined function, the arguments are the last things
   1721     // that have been pushed on the stack. Therefore the arguments array can be
   1722     // accessed directly from jssp.
   1723     // However in the normal case, it is accessed via fp but there are two words
   1724     // on the stack between fp and the arguments (the saved lr and fp) and the
   1725     // LAccessArgumentsAt implementation take that into account.
   1726     // In the inlined case we need to subtract the size of 2 words to jssp to
   1727     // get a pointer which will work well with LAccessArgumentsAt.
   1728     ASSERT(masm()->StackPointer().Is(jssp));
   1729     __ Sub(result, jssp, 2 * kPointerSize);
   1730   } else {
   1731     ASSERT(instr->temp() != NULL);
   1732     Register previous_fp = ToRegister(instr->temp());
   1733 
   1734     __ Ldr(previous_fp,
   1735            MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1736     __ Ldr(result,
   1737            MemOperand(previous_fp, StandardFrameConstants::kContextOffset));
   1738     __ Cmp(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
   1739     __ Csel(result, fp, previous_fp, ne);
   1740   }
   1741 }
   1742 
   1743 
   1744 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
   1745   Register elements = ToRegister(instr->elements());
   1746   Register result = ToRegister32(instr->result());
   1747   Label done;
   1748 
   1749   // If no arguments adaptor frame the number of arguments is fixed.
   1750   __ Cmp(fp, elements);
   1751   __ Mov(result, scope()->num_parameters());
   1752   __ B(eq, &done);
   1753 
   1754   // Arguments adaptor frame present. Get argument length from there.
   1755   __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1756   __ Ldr(result,
   1757          UntagSmiMemOperand(result.X(),
   1758                             ArgumentsAdaptorFrameConstants::kLengthOffset));
   1759 
   1760   // Argument length is in result register.
   1761   __ Bind(&done);
   1762 }
   1763 
   1764 
   1765 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
   1766   DoubleRegister left = ToDoubleRegister(instr->left());
   1767   DoubleRegister right = ToDoubleRegister(instr->right());
   1768   DoubleRegister result = ToDoubleRegister(instr->result());
   1769 
   1770   switch (instr->op()) {
   1771     case Token::ADD: __ Fadd(result, left, right); break;
   1772     case Token::SUB: __ Fsub(result, left, right); break;
   1773     case Token::MUL: __ Fmul(result, left, right); break;
   1774     case Token::DIV: __ Fdiv(result, left, right); break;
   1775     case Token::MOD: {
   1776       // The ECMA-262 remainder operator is the remainder from a truncating
   1777       // (round-towards-zero) division. Note that this differs from IEEE-754.
   1778       //
   1779       // TODO(jbramley): See if it's possible to do this inline, rather than by
   1780       // calling a helper function. With frintz (to produce the intermediate
   1781       // quotient) and fmsub (to calculate the remainder without loss of
   1782       // precision), it should be possible. However, we would need support for
   1783       // fdiv in round-towards-zero mode, and the ARM64 simulator doesn't
   1784       // support that yet.
   1785       ASSERT(left.Is(d0));
   1786       ASSERT(right.Is(d1));
   1787       __ CallCFunction(
   1788           ExternalReference::mod_two_doubles_operation(isolate()),
   1789           0, 2);
   1790       ASSERT(result.Is(d0));
   1791       break;
   1792     }
   1793     default:
   1794       UNREACHABLE();
   1795       break;
   1796   }
   1797 }
   1798 
   1799 
   1800 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
   1801   ASSERT(ToRegister(instr->context()).is(cp));
   1802   ASSERT(ToRegister(instr->left()).is(x1));
   1803   ASSERT(ToRegister(instr->right()).is(x0));
   1804   ASSERT(ToRegister(instr->result()).is(x0));
   1805 
   1806   BinaryOpICStub stub(isolate(), instr->op(), NO_OVERWRITE);
   1807   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   1808 }
   1809 
   1810 
   1811 void LCodeGen::DoBitI(LBitI* instr) {
   1812   Register result = ToRegister32(instr->result());
   1813   Register left = ToRegister32(instr->left());
   1814   Operand right = ToShiftedRightOperand32U(instr->right(), instr);
   1815 
   1816   switch (instr->op()) {
   1817     case Token::BIT_AND: __ And(result, left, right); break;
   1818     case Token::BIT_OR:  __ Orr(result, left, right); break;
   1819     case Token::BIT_XOR: __ Eor(result, left, right); break;
   1820     default:
   1821       UNREACHABLE();
   1822       break;
   1823   }
   1824 }
   1825 
   1826 
   1827 void LCodeGen::DoBitS(LBitS* instr) {
   1828   Register result = ToRegister(instr->result());
   1829   Register left = ToRegister(instr->left());
   1830   Operand right = ToOperand(instr->right());
   1831 
   1832   switch (instr->op()) {
   1833     case Token::BIT_AND: __ And(result, left, right); break;
   1834     case Token::BIT_OR:  __ Orr(result, left, right); break;
   1835     case Token::BIT_XOR: __ Eor(result, left, right); break;
   1836     default:
   1837       UNREACHABLE();
   1838       break;
   1839   }
   1840 }
   1841 
   1842 
   1843 void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) {
   1844   Condition cond = instr->hydrogen()->allow_equality() ? hi : hs;
   1845   ASSERT(instr->hydrogen()->index()->representation().IsInteger32());
   1846   ASSERT(instr->hydrogen()->length()->representation().IsInteger32());
   1847   if (instr->index()->IsConstantOperand()) {
   1848     Operand index = ToOperand32I(instr->index());
   1849     Register length = ToRegister32(instr->length());
   1850     __ Cmp(length, index);
   1851     cond = CommuteCondition(cond);
   1852   } else {
   1853     Register index = ToRegister32(instr->index());
   1854     Operand length = ToOperand32I(instr->length());
   1855     __ Cmp(index, length);
   1856   }
   1857   if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
   1858     __ Assert(NegateCondition(cond), kEliminatedBoundsCheckFailed);
   1859   } else {
   1860     DeoptimizeIf(cond, instr->environment());
   1861   }
   1862 }
   1863 
   1864 
   1865 void LCodeGen::DoBranch(LBranch* instr) {
   1866   Representation r = instr->hydrogen()->value()->representation();
   1867   Label* true_label = instr->TrueLabel(chunk_);
   1868   Label* false_label = instr->FalseLabel(chunk_);
   1869 
   1870   if (r.IsInteger32()) {
   1871     ASSERT(!info()->IsStub());
   1872     EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0);
   1873   } else if (r.IsSmi()) {
   1874     ASSERT(!info()->IsStub());
   1875     STATIC_ASSERT(kSmiTag == 0);
   1876     EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0);
   1877   } else if (r.IsDouble()) {
   1878     DoubleRegister value = ToDoubleRegister(instr->value());
   1879     // Test the double value. Zero and NaN are false.
   1880     EmitBranchIfNonZeroNumber(instr, value, double_scratch());
   1881   } else {
   1882     ASSERT(r.IsTagged());
   1883     Register value = ToRegister(instr->value());
   1884     HType type = instr->hydrogen()->value()->type();
   1885 
   1886     if (type.IsBoolean()) {
   1887       ASSERT(!info()->IsStub());
   1888       __ CompareRoot(value, Heap::kTrueValueRootIndex);
   1889       EmitBranch(instr, eq);
   1890     } else if (type.IsSmi()) {
   1891       ASSERT(!info()->IsStub());
   1892       EmitCompareAndBranch(instr, ne, value, Smi::FromInt(0));
   1893     } else if (type.IsJSArray()) {
   1894       ASSERT(!info()->IsStub());
   1895       EmitGoto(instr->TrueDestination(chunk()));
   1896     } else if (type.IsHeapNumber()) {
   1897       ASSERT(!info()->IsStub());
   1898       __ Ldr(double_scratch(), FieldMemOperand(value,
   1899                                                HeapNumber::kValueOffset));
   1900       // Test the double value. Zero and NaN are false.
   1901       EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch());
   1902     } else if (type.IsString()) {
   1903       ASSERT(!info()->IsStub());
   1904       Register temp = ToRegister(instr->temp1());
   1905       __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset));
   1906       EmitCompareAndBranch(instr, ne, temp, 0);
   1907     } else {
   1908       ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
   1909       // Avoid deopts in the case where we've never executed this path before.
   1910       if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
   1911 
   1912       if (expected.Contains(ToBooleanStub::UNDEFINED)) {
   1913         // undefined -> false.
   1914         __ JumpIfRoot(
   1915             value, Heap::kUndefinedValueRootIndex, false_label);
   1916       }
   1917 
   1918       if (expected.Contains(ToBooleanStub::BOOLEAN)) {
   1919         // Boolean -> its value.
   1920         __ JumpIfRoot(
   1921             value, Heap::kTrueValueRootIndex, true_label);
   1922         __ JumpIfRoot(
   1923             value, Heap::kFalseValueRootIndex, false_label);
   1924       }
   1925 
   1926       if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
   1927         // 'null' -> false.
   1928         __ JumpIfRoot(
   1929             value, Heap::kNullValueRootIndex, false_label);
   1930       }
   1931 
   1932       if (expected.Contains(ToBooleanStub::SMI)) {
   1933         // Smis: 0 -> false, all other -> true.
   1934         ASSERT(Smi::FromInt(0) == 0);
   1935         __ Cbz(value, false_label);
   1936         __ JumpIfSmi(value, true_label);
   1937       } else if (expected.NeedsMap()) {
   1938         // If we need a map later and have a smi, deopt.
   1939         DeoptimizeIfSmi(value, instr->environment());
   1940       }
   1941 
   1942       Register map = NoReg;
   1943       Register scratch = NoReg;
   1944 
   1945       if (expected.NeedsMap()) {
   1946         ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
   1947         map = ToRegister(instr->temp1());
   1948         scratch = ToRegister(instr->temp2());
   1949 
   1950         __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
   1951 
   1952         if (expected.CanBeUndetectable()) {
   1953           // Undetectable -> false.
   1954           __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
   1955           __ TestAndBranchIfAnySet(
   1956               scratch, 1 << Map::kIsUndetectable, false_label);
   1957         }
   1958       }
   1959 
   1960       if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
   1961         // spec object -> true.
   1962         __ CompareInstanceType(map, scratch, FIRST_SPEC_OBJECT_TYPE);
   1963         __ B(ge, true_label);
   1964       }
   1965 
   1966       if (expected.Contains(ToBooleanStub::STRING)) {
   1967         // String value -> false iff empty.
   1968         Label not_string;
   1969         __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE);
   1970         __ B(ge, &not_string);
   1971         __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset));
   1972         __ Cbz(scratch, false_label);
   1973         __ B(true_label);
   1974         __ Bind(&not_string);
   1975       }
   1976 
   1977       if (expected.Contains(ToBooleanStub::SYMBOL)) {
   1978         // Symbol value -> true.
   1979         __ CompareInstanceType(map, scratch, SYMBOL_TYPE);
   1980         __ B(eq, true_label);
   1981       }
   1982 
   1983       if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
   1984         Label not_heap_number;
   1985         __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, &not_heap_number);
   1986 
   1987         __ Ldr(double_scratch(),
   1988                FieldMemOperand(value, HeapNumber::kValueOffset));
   1989         __ Fcmp(double_scratch(), 0.0);
   1990         // If we got a NaN (overflow bit is set), jump to the false branch.
   1991         __ B(vs, false_label);
   1992         __ B(eq, false_label);
   1993         __ B(true_label);
   1994         __ Bind(&not_heap_number);
   1995       }
   1996 
   1997       if (!expected.IsGeneric()) {
   1998         // We've seen something for the first time -> deopt.
   1999         // This can only happen if we are not generic already.
   2000         Deoptimize(instr->environment());
   2001       }
   2002     }
   2003   }
   2004 }
   2005 
   2006 
   2007 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
   2008                                  int formal_parameter_count,
   2009                                  int arity,
   2010                                  LInstruction* instr,
   2011                                  Register function_reg) {
   2012   bool dont_adapt_arguments =
   2013       formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
   2014   bool can_invoke_directly =
   2015       dont_adapt_arguments || formal_parameter_count == arity;
   2016 
   2017   // The function interface relies on the following register assignments.
   2018   ASSERT(function_reg.Is(x1) || function_reg.IsNone());
   2019   Register arity_reg = x0;
   2020 
   2021   LPointerMap* pointers = instr->pointer_map();
   2022 
   2023   // If necessary, load the function object.
   2024   if (function_reg.IsNone()) {
   2025     function_reg = x1;
   2026     __ LoadObject(function_reg, function);
   2027   }
   2028 
   2029   if (FLAG_debug_code) {
   2030     Label is_not_smi;
   2031     // Try to confirm that function_reg (x1) is a tagged pointer.
   2032     __ JumpIfNotSmi(function_reg, &is_not_smi);
   2033     __ Abort(kExpectedFunctionObject);
   2034     __ Bind(&is_not_smi);
   2035   }
   2036 
   2037   if (can_invoke_directly) {
   2038     // Change context.
   2039     __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
   2040 
   2041     // Set the arguments count if adaption is not needed. Assumes that x0 is
   2042     // available to write to at this point.
   2043     if (dont_adapt_arguments) {
   2044       __ Mov(arity_reg, arity);
   2045     }
   2046 
   2047     // Invoke function.
   2048     __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
   2049     __ Call(x10);
   2050 
   2051     // Set up deoptimization.
   2052     RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
   2053   } else {
   2054     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
   2055     ParameterCount count(arity);
   2056     ParameterCount expected(formal_parameter_count);
   2057     __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator);
   2058   }
   2059 }
   2060 
   2061 
   2062 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
   2063   ASSERT(instr->IsMarkedAsCall());
   2064   ASSERT(ToRegister(instr->result()).Is(x0));
   2065 
   2066   LPointerMap* pointers = instr->pointer_map();
   2067   SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
   2068 
   2069   if (instr->target()->IsConstantOperand()) {
   2070     LConstantOperand* target = LConstantOperand::cast(instr->target());
   2071     Handle<Code> code = Handle<Code>::cast(ToHandle(target));
   2072     generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
   2073     // TODO(all): on ARM we use a call descriptor to specify a storage mode
   2074     // but on ARM64 we only have one storage mode so it isn't necessary. Check
   2075     // this understanding is correct.
   2076     __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None());
   2077   } else {
   2078     ASSERT(instr->target()->IsRegister());
   2079     Register target = ToRegister(instr->target());
   2080     generator.BeforeCall(__ CallSize(target));
   2081     __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
   2082     __ Call(target);
   2083   }
   2084   generator.AfterCall();
   2085   after_push_argument_ = false;
   2086 }
   2087 
   2088 
   2089 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
   2090   ASSERT(instr->IsMarkedAsCall());
   2091   ASSERT(ToRegister(instr->function()).is(x1));
   2092 
   2093   if (instr->hydrogen()->pass_argument_count()) {
   2094     __ Mov(x0, Operand(instr->arity()));
   2095   }
   2096 
   2097   // Change context.
   2098   __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
   2099 
   2100   // Load the code entry address
   2101   __ Ldr(x10, FieldMemOperand(x1, JSFunction::kCodeEntryOffset));
   2102   __ Call(x10);
   2103 
   2104   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
   2105   after_push_argument_ = false;
   2106 }
   2107 
   2108 
   2109 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
   2110   CallRuntime(instr->function(), instr->arity(), instr);
   2111   after_push_argument_ = false;
   2112 }
   2113 
   2114 
   2115 void LCodeGen::DoCallStub(LCallStub* instr) {
   2116   ASSERT(ToRegister(instr->context()).is(cp));
   2117   ASSERT(ToRegister(instr->result()).is(x0));
   2118   switch (instr->hydrogen()->major_key()) {
   2119     case CodeStub::RegExpExec: {
   2120       RegExpExecStub stub(isolate());
   2121       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   2122       break;
   2123     }
   2124     case CodeStub::SubString: {
   2125       SubStringStub stub(isolate());
   2126       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   2127       break;
   2128     }
   2129     case CodeStub::StringCompare: {
   2130       StringCompareStub stub(isolate());
   2131       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   2132       break;
   2133     }
   2134     default:
   2135       UNREACHABLE();
   2136   }
   2137   after_push_argument_ = false;
   2138 }
   2139 
   2140 
   2141 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
   2142   GenerateOsrPrologue();
   2143 }
   2144 
   2145 
   2146 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
   2147   Register temp = ToRegister(instr->temp());
   2148   {
   2149     PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
   2150     __ Push(object);
   2151     __ Mov(cp, 0);
   2152     __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
   2153     RecordSafepointWithRegisters(
   2154         instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
   2155     __ StoreToSafepointRegisterSlot(x0, temp);
   2156   }
   2157   DeoptimizeIfSmi(temp, instr->environment());
   2158 }
   2159 
   2160 
   2161 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
   2162   class DeferredCheckMaps: public LDeferredCode {
   2163    public:
   2164     DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
   2165         : LDeferredCode(codegen), instr_(instr), object_(object) {
   2166       SetExit(check_maps());
   2167     }
   2168     virtual void Generate() {
   2169       codegen()->DoDeferredInstanceMigration(instr_, object_);
   2170     }
   2171     Label* check_maps() { return &check_maps_; }
   2172     virtual LInstruction* instr() { return instr_; }
   2173    private:
   2174     LCheckMaps* instr_;
   2175     Label check_maps_;
   2176     Register object_;
   2177   };
   2178 
   2179   if (instr->hydrogen()->IsStabilityCheck()) {
   2180     const UniqueSet<Map>* maps = instr->hydrogen()->maps();
   2181     for (int i = 0; i < maps->size(); ++i) {
   2182       AddStabilityDependency(maps->at(i).handle());
   2183     }
   2184     return;
   2185   }
   2186 
   2187   Register object = ToRegister(instr->value());
   2188   Register map_reg = ToRegister(instr->temp());
   2189 
   2190   __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset));
   2191 
   2192   DeferredCheckMaps* deferred = NULL;
   2193   if (instr->hydrogen()->HasMigrationTarget()) {
   2194     deferred = new(zone()) DeferredCheckMaps(this, instr, object);
   2195     __ Bind(deferred->check_maps());
   2196   }
   2197 
   2198   const UniqueSet<Map>* maps = instr->hydrogen()->maps();
   2199   Label success;
   2200   for (int i = 0; i < maps->size() - 1; i++) {
   2201     Handle<Map> map = maps->at(i).handle();
   2202     __ CompareMap(map_reg, map);
   2203     __ B(eq, &success);
   2204   }
   2205   Handle<Map> map = maps->at(maps->size() - 1).handle();
   2206   __ CompareMap(map_reg, map);
   2207 
   2208   // We didn't match a map.
   2209   if (instr->hydrogen()->HasMigrationTarget()) {
   2210     __ B(ne, deferred->entry());
   2211   } else {
   2212     DeoptimizeIf(ne, instr->environment());
   2213   }
   2214 
   2215   __ Bind(&success);
   2216 }
   2217 
   2218 
   2219 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
   2220   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   2221     DeoptimizeIfSmi(ToRegister(instr->value()), instr->environment());
   2222   }
   2223 }
   2224 
   2225 
   2226 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
   2227   Register value = ToRegister(instr->value());
   2228   ASSERT(!instr->result() || ToRegister(instr->result()).Is(value));
   2229   DeoptimizeIfNotSmi(value, instr->environment());
   2230 }
   2231 
   2232 
   2233 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
   2234   Register input = ToRegister(instr->value());
   2235   Register scratch = ToRegister(instr->temp());
   2236 
   2237   __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
   2238   __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
   2239 
   2240   if (instr->hydrogen()->is_interval_check()) {
   2241     InstanceType first, last;
   2242     instr->hydrogen()->GetCheckInterval(&first, &last);
   2243 
   2244     __ Cmp(scratch, first);
   2245     if (first == last) {
   2246       // If there is only one type in the interval check for equality.
   2247       DeoptimizeIf(ne, instr->environment());
   2248     } else if (last == LAST_TYPE) {
   2249       // We don't need to compare with the higher bound of the interval.
   2250       DeoptimizeIf(lo, instr->environment());
   2251     } else {
   2252       // If we are below the lower bound, set the C flag and clear the Z flag
   2253       // to force a deopt.
   2254       __ Ccmp(scratch, last, CFlag, hs);
   2255       DeoptimizeIf(hi, instr->environment());
   2256     }
   2257   } else {
   2258     uint8_t mask;
   2259     uint8_t tag;
   2260     instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
   2261 
   2262     if (IsPowerOf2(mask)) {
   2263       ASSERT((tag == 0) || (tag == mask));
   2264       if (tag == 0) {
   2265         DeoptimizeIfBitSet(scratch, MaskToBit(mask), instr->environment());
   2266       } else {
   2267         DeoptimizeIfBitClear(scratch, MaskToBit(mask), instr->environment());
   2268       }
   2269     } else {
   2270       if (tag == 0) {
   2271         __ Tst(scratch, mask);
   2272       } else {
   2273         __ And(scratch, scratch, mask);
   2274         __ Cmp(scratch, tag);
   2275       }
   2276       DeoptimizeIf(ne, instr->environment());
   2277     }
   2278   }
   2279 }
   2280 
   2281 
   2282 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
   2283   DoubleRegister input = ToDoubleRegister(instr->unclamped());
   2284   Register result = ToRegister32(instr->result());
   2285   __ ClampDoubleToUint8(result, input, double_scratch());
   2286 }
   2287 
   2288 
   2289 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
   2290   Register input = ToRegister32(instr->unclamped());
   2291   Register result = ToRegister32(instr->result());
   2292   __ ClampInt32ToUint8(result, input);
   2293 }
   2294 
   2295 
   2296 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
   2297   Register input = ToRegister(instr->unclamped());
   2298   Register result = ToRegister32(instr->result());
   2299   Register scratch = ToRegister(instr->temp1());
   2300   Label done;
   2301 
   2302   // Both smi and heap number cases are handled.
   2303   Label is_not_smi;
   2304   __ JumpIfNotSmi(input, &is_not_smi);
   2305   __ SmiUntag(result.X(), input);
   2306   __ ClampInt32ToUint8(result);
   2307   __ B(&done);
   2308 
   2309   __ Bind(&is_not_smi);
   2310 
   2311   // Check for heap number.
   2312   Label is_heap_number;
   2313   __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
   2314   __ JumpIfRoot(scratch, Heap::kHeapNumberMapRootIndex, &is_heap_number);
   2315 
   2316   // Check for undefined. Undefined is coverted to zero for clamping conversion.
   2317   DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex,
   2318                          instr->environment());
   2319   __ Mov(result, 0);
   2320   __ B(&done);
   2321 
   2322   // Heap number case.
   2323   __ Bind(&is_heap_number);
   2324   DoubleRegister dbl_scratch = double_scratch();
   2325   DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp2());
   2326   __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset));
   2327   __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2);
   2328 
   2329   __ Bind(&done);
   2330 }
   2331 
   2332 
   2333 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
   2334   DoubleRegister value_reg = ToDoubleRegister(instr->value());
   2335   Register result_reg = ToRegister(instr->result());
   2336   if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
   2337     __ Fmov(result_reg, value_reg);
   2338     __ Lsr(result_reg, result_reg, 32);
   2339   } else {
   2340     __ Fmov(result_reg.W(), value_reg.S());
   2341   }
   2342 }
   2343 
   2344 
   2345 void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
   2346   Register hi_reg = ToRegister(instr->hi());
   2347   Register lo_reg = ToRegister(instr->lo());
   2348   DoubleRegister result_reg = ToDoubleRegister(instr->result());
   2349 
   2350   // Insert the least significant 32 bits of hi_reg into the most significant
   2351   // 32 bits of lo_reg, and move to a floating point register.
   2352   __ Bfi(lo_reg, hi_reg, 32, 32);
   2353   __ Fmov(result_reg, lo_reg);
   2354 }
   2355 
   2356 
   2357 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
   2358   Handle<String> class_name = instr->hydrogen()->class_name();
   2359   Label* true_label = instr->TrueLabel(chunk_);
   2360   Label* false_label = instr->FalseLabel(chunk_);
   2361   Register input = ToRegister(instr->value());
   2362   Register scratch1 = ToRegister(instr->temp1());
   2363   Register scratch2 = ToRegister(instr->temp2());
   2364 
   2365   __ JumpIfSmi(input, false_label);
   2366 
   2367   Register map = scratch2;
   2368   if (class_name->IsUtf8EqualTo(CStrVector("Function"))) {
   2369     // Assuming the following assertions, we can use the same compares to test
   2370     // for both being a function type and being in the object type range.
   2371     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
   2372     STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
   2373                   FIRST_SPEC_OBJECT_TYPE + 1);
   2374     STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
   2375                   LAST_SPEC_OBJECT_TYPE - 1);
   2376     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
   2377 
   2378     // We expect CompareObjectType to load the object instance type in scratch1.
   2379     __ CompareObjectType(input, map, scratch1, FIRST_SPEC_OBJECT_TYPE);
   2380     __ B(lt, false_label);
   2381     __ B(eq, true_label);
   2382     __ Cmp(scratch1, LAST_SPEC_OBJECT_TYPE);
   2383     __ B(eq, true_label);
   2384   } else {
   2385     __ IsObjectJSObjectType(input, map, scratch1, false_label);
   2386   }
   2387 
   2388   // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
   2389   // Check if the constructor in the map is a function.
   2390   __ Ldr(scratch1, FieldMemOperand(map, Map::kConstructorOffset));
   2391 
   2392   // Objects with a non-function constructor have class 'Object'.
   2393   if (class_name->IsUtf8EqualTo(CStrVector("Object"))) {
   2394     __ JumpIfNotObjectType(
   2395         scratch1, scratch2, scratch2, JS_FUNCTION_TYPE, true_label);
   2396   } else {
   2397     __ JumpIfNotObjectType(
   2398         scratch1, scratch2, scratch2, JS_FUNCTION_TYPE, false_label);
   2399   }
   2400 
   2401   // The constructor function is in scratch1. Get its instance class name.
   2402   __ Ldr(scratch1,
   2403          FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
   2404   __ Ldr(scratch1,
   2405          FieldMemOperand(scratch1,
   2406                          SharedFunctionInfo::kInstanceClassNameOffset));
   2407 
   2408   // The class name we are testing against is internalized since it's a literal.
   2409   // The name in the constructor is internalized because of the way the context
   2410   // is booted. This routine isn't expected to work for random API-created
   2411   // classes and it doesn't have to because you can't access it with natives
   2412   // syntax. Since both sides are internalized it is sufficient to use an
   2413   // identity comparison.
   2414   EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name));
   2415 }
   2416 
   2417 
   2418 void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) {
   2419   ASSERT(instr->hydrogen()->representation().IsDouble());
   2420   FPRegister object = ToDoubleRegister(instr->object());
   2421   Register temp = ToRegister(instr->temp());
   2422 
   2423   // If we don't have a NaN, we don't have the hole, so branch now to avoid the
   2424   // (relatively expensive) hole-NaN check.
   2425   __ Fcmp(object, object);
   2426   __ B(vc, instr->FalseLabel(chunk_));
   2427 
   2428   // We have a NaN, but is it the hole?
   2429   __ Fmov(temp, object);
   2430   EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64);
   2431 }
   2432 
   2433 
   2434 void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) {
   2435   ASSERT(instr->hydrogen()->representation().IsTagged());
   2436   Register object = ToRegister(instr->object());
   2437 
   2438   EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex);
   2439 }
   2440 
   2441 
   2442 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
   2443   Register value = ToRegister(instr->value());
   2444   Register map = ToRegister(instr->temp());
   2445 
   2446   __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
   2447   EmitCompareAndBranch(instr, eq, map, Operand(instr->map()));
   2448 }
   2449 
   2450 
   2451 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
   2452   Representation rep = instr->hydrogen()->value()->representation();
   2453   ASSERT(!rep.IsInteger32());
   2454   Register scratch = ToRegister(instr->temp());
   2455 
   2456   if (rep.IsDouble()) {
   2457     __ JumpIfMinusZero(ToDoubleRegister(instr->value()),
   2458                        instr->TrueLabel(chunk()));
   2459   } else {
   2460     Register value = ToRegister(instr->value());
   2461     __ CheckMap(value, scratch, Heap::kHeapNumberMapRootIndex,
   2462                 instr->FalseLabel(chunk()), DO_SMI_CHECK);
   2463     __ Ldr(scratch, FieldMemOperand(value, HeapNumber::kValueOffset));
   2464     __ JumpIfMinusZero(scratch, instr->TrueLabel(chunk()));
   2465   }
   2466   EmitGoto(instr->FalseDestination(chunk()));
   2467 }
   2468 
   2469 
   2470 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
   2471   LOperand* left = instr->left();
   2472   LOperand* right = instr->right();
   2473   bool is_unsigned =
   2474       instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
   2475       instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
   2476   Condition cond = TokenToCondition(instr->op(), is_unsigned);
   2477 
   2478   if (left->IsConstantOperand() && right->IsConstantOperand()) {
   2479     // We can statically evaluate the comparison.
   2480     double left_val = ToDouble(LConstantOperand::cast(left));
   2481     double right_val = ToDouble(LConstantOperand::cast(right));
   2482     int next_block = EvalComparison(instr->op(), left_val, right_val) ?
   2483         instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
   2484     EmitGoto(next_block);
   2485   } else {
   2486     if (instr->is_double()) {
   2487       if (right->IsConstantOperand()) {
   2488         __ Fcmp(ToDoubleRegister(left),
   2489                 ToDouble(LConstantOperand::cast(right)));
   2490       } else if (left->IsConstantOperand()) {
   2491         // Commute the operands and the condition.
   2492         __ Fcmp(ToDoubleRegister(right),
   2493                 ToDouble(LConstantOperand::cast(left)));
   2494         cond = CommuteCondition(cond);
   2495       } else {
   2496         __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right));
   2497       }
   2498 
   2499       // If a NaN is involved, i.e. the result is unordered (V set),
   2500       // jump to false block label.
   2501       __ B(vs, instr->FalseLabel(chunk_));
   2502       EmitBranch(instr, cond);
   2503     } else {
   2504       if (instr->hydrogen_value()->representation().IsInteger32()) {
   2505         if (right->IsConstantOperand()) {
   2506           EmitCompareAndBranch(instr,
   2507                                cond,
   2508                                ToRegister32(left),
   2509                                ToOperand32I(right));
   2510         } else {
   2511           // Commute the operands and the condition.
   2512           EmitCompareAndBranch(instr,
   2513                                CommuteCondition(cond),
   2514                                ToRegister32(right),
   2515                                ToOperand32I(left));
   2516         }
   2517       } else {
   2518         ASSERT(instr->hydrogen_value()->representation().IsSmi());
   2519         if (right->IsConstantOperand()) {
   2520           int32_t value = ToInteger32(LConstantOperand::cast(right));
   2521           EmitCompareAndBranch(instr,
   2522                                cond,
   2523                                ToRegister(left),
   2524                                Operand(Smi::FromInt(value)));
   2525         } else if (left->IsConstantOperand()) {
   2526           // Commute the operands and the condition.
   2527           int32_t value = ToInteger32(LConstantOperand::cast(left));
   2528           EmitCompareAndBranch(instr,
   2529                                CommuteCondition(cond),
   2530                                ToRegister(right),
   2531                                Operand(Smi::FromInt(value)));
   2532         } else {
   2533           EmitCompareAndBranch(instr,
   2534                                cond,
   2535                                ToRegister(left),
   2536                                ToRegister(right));
   2537         }
   2538       }
   2539     }
   2540   }
   2541 }
   2542 
   2543 
   2544 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
   2545   Register left = ToRegister(instr->left());
   2546   Register right = ToRegister(instr->right());
   2547   EmitCompareAndBranch(instr, eq, left, right);
   2548 }
   2549 
   2550 
   2551 void LCodeGen::DoCmpT(LCmpT* instr) {
   2552   ASSERT(ToRegister(instr->context()).is(cp));
   2553   Token::Value op = instr->op();
   2554   Condition cond = TokenToCondition(op, false);
   2555 
   2556   ASSERT(ToRegister(instr->left()).Is(x1));
   2557   ASSERT(ToRegister(instr->right()).Is(x0));
   2558   Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
   2559   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   2560   // Signal that we don't inline smi code before this stub.
   2561   InlineSmiCheckInfo::EmitNotInlined(masm());
   2562 
   2563   // Return true or false depending on CompareIC result.
   2564   // This instruction is marked as call. We can clobber any register.
   2565   ASSERT(instr->IsMarkedAsCall());
   2566   __ LoadTrueFalseRoots(x1, x2);
   2567   __ Cmp(x0, 0);
   2568   __ Csel(ToRegister(instr->result()), x1, x2, cond);
   2569 }
   2570 
   2571 
   2572 void LCodeGen::DoConstantD(LConstantD* instr) {
   2573   ASSERT(instr->result()->IsDoubleRegister());
   2574   DoubleRegister result = ToDoubleRegister(instr->result());
   2575   if (instr->value() == 0) {
   2576     if (copysign(1.0, instr->value()) == 1.0) {
   2577       __ Fmov(result, fp_zero);
   2578     } else {
   2579       __ Fneg(result, fp_zero);
   2580     }
   2581   } else {
   2582     __ Fmov(result, instr->value());
   2583   }
   2584 }
   2585 
   2586 
   2587 void LCodeGen::DoConstantE(LConstantE* instr) {
   2588   __ Mov(ToRegister(instr->result()), Operand(instr->value()));
   2589 }
   2590 
   2591 
   2592 void LCodeGen::DoConstantI(LConstantI* instr) {
   2593   ASSERT(is_int32(instr->value()));
   2594   // Cast the value here to ensure that the value isn't sign extended by the
   2595   // implicit Operand constructor.
   2596   __ Mov(ToRegister32(instr->result()), static_cast<uint32_t>(instr->value()));
   2597 }
   2598 
   2599 
   2600 void LCodeGen::DoConstantS(LConstantS* instr) {
   2601   __ Mov(ToRegister(instr->result()), Operand(instr->value()));
   2602 }
   2603 
   2604 
   2605 void LCodeGen::DoConstantT(LConstantT* instr) {
   2606   Handle<Object> object = instr->value(isolate());
   2607   AllowDeferredHandleDereference smi_check;
   2608   __ LoadObject(ToRegister(instr->result()), object);
   2609 }
   2610 
   2611 
   2612 void LCodeGen::DoContext(LContext* instr) {
   2613   // If there is a non-return use, the context must be moved to a register.
   2614   Register result = ToRegister(instr->result());
   2615   if (info()->IsOptimizing()) {
   2616     __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
   2617   } else {
   2618     // If there is no frame, the context must be in cp.
   2619     ASSERT(result.is(cp));
   2620   }
   2621 }
   2622 
   2623 
   2624 void LCodeGen::DoCheckValue(LCheckValue* instr) {
   2625   Register reg = ToRegister(instr->value());
   2626   Handle<HeapObject> object = instr->hydrogen()->object().handle();
   2627   AllowDeferredHandleDereference smi_check;
   2628   if (isolate()->heap()->InNewSpace(*object)) {
   2629     UseScratchRegisterScope temps(masm());
   2630     Register temp = temps.AcquireX();
   2631     Handle<Cell> cell = isolate()->factory()->NewCell(object);
   2632     __ Mov(temp, Operand(Handle<Object>(cell)));
   2633     __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset));
   2634     __ Cmp(reg, temp);
   2635   } else {
   2636     __ Cmp(reg, Operand(object));
   2637   }
   2638   DeoptimizeIf(ne, instr->environment());
   2639 }
   2640 
   2641 
   2642 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
   2643   last_lazy_deopt_pc_ = masm()->pc_offset();
   2644   ASSERT(instr->HasEnvironment());
   2645   LEnvironment* env = instr->environment();
   2646   RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
   2647   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   2648 }
   2649 
   2650 
   2651 void LCodeGen::DoDateField(LDateField* instr) {
   2652   Register object = ToRegister(instr->date());
   2653   Register result = ToRegister(instr->result());
   2654   Register temp1 = x10;
   2655   Register temp2 = x11;
   2656   Smi* index = instr->index();
   2657   Label runtime, done;
   2658 
   2659   ASSERT(object.is(result) && object.Is(x0));
   2660   ASSERT(instr->IsMarkedAsCall());
   2661 
   2662   DeoptimizeIfSmi(object, instr->environment());
   2663   __ CompareObjectType(object, temp1, temp1, JS_DATE_TYPE);
   2664   DeoptimizeIf(ne, instr->environment());
   2665 
   2666   if (index->value() == 0) {
   2667     __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset));
   2668   } else {
   2669     if (index->value() < JSDate::kFirstUncachedField) {
   2670       ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
   2671       __ Mov(temp1, Operand(stamp));
   2672       __ Ldr(temp1, MemOperand(temp1));
   2673       __ Ldr(temp2, FieldMemOperand(object, JSDate::kCacheStampOffset));
   2674       __ Cmp(temp1, temp2);
   2675       __ B(ne, &runtime);
   2676       __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset +
   2677                                              kPointerSize * index->value()));
   2678       __ B(&done);
   2679     }
   2680 
   2681     __ Bind(&runtime);
   2682     __ Mov(x1, Operand(index));
   2683     __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
   2684   }
   2685 
   2686   __ Bind(&done);
   2687 }
   2688 
   2689 
   2690 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
   2691   Deoptimizer::BailoutType type = instr->hydrogen()->type();
   2692   // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
   2693   // needed return address), even though the implementation of LAZY and EAGER is
   2694   // now identical. When LAZY is eventually completely folded into EAGER, remove
   2695   // the special case below.
   2696   if (info()->IsStub() && (type == Deoptimizer::EAGER)) {
   2697     type = Deoptimizer::LAZY;
   2698   }
   2699 
   2700   Comment(";;; deoptimize: %s", instr->hydrogen()->reason());
   2701   Deoptimize(instr->environment(), &type);
   2702 }
   2703 
   2704 
   2705 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
   2706   Register dividend = ToRegister32(instr->dividend());
   2707   int32_t divisor = instr->divisor();
   2708   Register result = ToRegister32(instr->result());
   2709   ASSERT(divisor == kMinInt || IsPowerOf2(Abs(divisor)));
   2710   ASSERT(!result.is(dividend));
   2711 
   2712   // Check for (0 / -x) that will produce negative zero.
   2713   HDiv* hdiv = instr->hydrogen();
   2714   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   2715     DeoptimizeIfZero(dividend, instr->environment());
   2716   }
   2717   // Check for (kMinInt / -1).
   2718   if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
   2719     // Test dividend for kMinInt by subtracting one (cmp) and checking for
   2720     // overflow.
   2721     __ Cmp(dividend, 1);
   2722     DeoptimizeIf(vs, instr->environment());
   2723   }
   2724   // Deoptimize if remainder will not be 0.
   2725   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
   2726       divisor != 1 && divisor != -1) {
   2727     int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
   2728     __ Tst(dividend, mask);
   2729     DeoptimizeIf(ne, instr->environment());
   2730   }
   2731 
   2732   if (divisor == -1) {  // Nice shortcut, not needed for correctness.
   2733     __ Neg(result, dividend);
   2734     return;
   2735   }
   2736   int32_t shift = WhichPowerOf2Abs(divisor);
   2737   if (shift == 0) {
   2738     __ Mov(result, dividend);
   2739   } else if (shift == 1) {
   2740     __ Add(result, dividend, Operand(dividend, LSR, 31));
   2741   } else {
   2742     __ Mov(result, Operand(dividend, ASR, 31));
   2743     __ Add(result, dividend, Operand(result, LSR, 32 - shift));
   2744   }
   2745   if (shift > 0) __ Mov(result, Operand(result, ASR, shift));
   2746   if (divisor < 0) __ Neg(result, result);
   2747 }
   2748 
   2749 
   2750 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
   2751   Register dividend = ToRegister32(instr->dividend());
   2752   int32_t divisor = instr->divisor();
   2753   Register result = ToRegister32(instr->result());
   2754   ASSERT(!AreAliased(dividend, result));
   2755 
   2756   if (divisor == 0) {
   2757     Deoptimize(instr->environment());
   2758     return;
   2759   }
   2760 
   2761   // Check for (0 / -x) that will produce negative zero.
   2762   HDiv* hdiv = instr->hydrogen();
   2763   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   2764     DeoptimizeIfZero(dividend, instr->environment());
   2765   }
   2766 
   2767   __ TruncatingDiv(result, dividend, Abs(divisor));
   2768   if (divisor < 0) __ Neg(result, result);
   2769 
   2770   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
   2771     Register temp = ToRegister32(instr->temp());
   2772     ASSERT(!AreAliased(dividend, result, temp));
   2773     __ Sxtw(dividend.X(), dividend);
   2774     __ Mov(temp, divisor);
   2775     __ Smsubl(temp.X(), result, temp, dividend.X());
   2776     DeoptimizeIfNotZero(temp, instr->environment());
   2777   }
   2778 }
   2779 
   2780 
   2781 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
   2782 void LCodeGen::DoDivI(LDivI* instr) {
   2783   HBinaryOperation* hdiv = instr->hydrogen();
   2784   Register dividend = ToRegister32(instr->dividend());
   2785   Register divisor = ToRegister32(instr->divisor());
   2786   Register result = ToRegister32(instr->result());
   2787 
   2788   // Issue the division first, and then check for any deopt cases whilst the
   2789   // result is computed.
   2790   __ Sdiv(result, dividend, divisor);
   2791 
   2792   if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
   2793     ASSERT_EQ(NULL, instr->temp());
   2794     return;
   2795   }
   2796 
   2797   // Check for x / 0.
   2798   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
   2799     DeoptimizeIfZero(divisor, instr->environment());
   2800   }
   2801 
   2802   // Check for (0 / -x) as that will produce negative zero.
   2803   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
   2804     __ Cmp(divisor, 0);
   2805 
   2806     // If the divisor < 0 (mi), compare the dividend, and deopt if it is
   2807     // zero, ie. zero dividend with negative divisor deopts.
   2808     // If the divisor >= 0 (pl, the opposite of mi) set the flags to
   2809     // condition ne, so we don't deopt, ie. positive divisor doesn't deopt.
   2810     __ Ccmp(dividend, 0, NoFlag, mi);
   2811     DeoptimizeIf(eq, instr->environment());
   2812   }
   2813 
   2814   // Check for (kMinInt / -1).
   2815   if (hdiv->CheckFlag(HValue::kCanOverflow)) {
   2816     // Test dividend for kMinInt by subtracting one (cmp) and checking for
   2817     // overflow.
   2818     __ Cmp(dividend, 1);
   2819     // If overflow is set, ie. dividend = kMinInt, compare the divisor with
   2820     // -1. If overflow is clear, set the flags for condition ne, as the
   2821     // dividend isn't -1, and thus we shouldn't deopt.
   2822     __ Ccmp(divisor, -1, NoFlag, vs);
   2823     DeoptimizeIf(eq, instr->environment());
   2824   }
   2825 
   2826   // Compute remainder and deopt if it's not zero.
   2827   Register remainder = ToRegister32(instr->temp());
   2828   __ Msub(remainder, result, divisor, dividend);
   2829   DeoptimizeIfNotZero(remainder, instr->environment());
   2830 }
   2831 
   2832 
   2833 void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) {
   2834   DoubleRegister input = ToDoubleRegister(instr->value());
   2835   Register result = ToRegister32(instr->result());
   2836 
   2837   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   2838     DeoptimizeIfMinusZero(input, instr->environment());
   2839   }
   2840 
   2841   __ TryRepresentDoubleAsInt32(result, input, double_scratch());
   2842   DeoptimizeIf(ne, instr->environment());
   2843 
   2844   if (instr->tag_result()) {
   2845     __ SmiTag(result.X());
   2846   }
   2847 }
   2848 
   2849 
   2850 void LCodeGen::DoDrop(LDrop* instr) {
   2851   __ Drop(instr->count());
   2852 }
   2853 
   2854 
   2855 void LCodeGen::DoDummy(LDummy* instr) {
   2856   // Nothing to see here, move on!
   2857 }
   2858 
   2859 
   2860 void LCodeGen::DoDummyUse(LDummyUse* instr) {
   2861   // Nothing to see here, move on!
   2862 }
   2863 
   2864 
   2865 void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
   2866   ASSERT(ToRegister(instr->context()).is(cp));
   2867   // FunctionLiteral instruction is marked as call, we can trash any register.
   2868   ASSERT(instr->IsMarkedAsCall());
   2869 
   2870   // Use the fast case closure allocation code that allocates in new
   2871   // space for nested functions that don't need literals cloning.
   2872   bool pretenure = instr->hydrogen()->pretenure();
   2873   if (!pretenure && instr->hydrogen()->has_no_literals()) {
   2874     FastNewClosureStub stub(isolate(),
   2875                             instr->hydrogen()->strict_mode(),
   2876                             instr->hydrogen()->is_generator());
   2877     __ Mov(x2, Operand(instr->hydrogen()->shared_info()));
   2878     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   2879   } else {
   2880     __ Mov(x2, Operand(instr->hydrogen()->shared_info()));
   2881     __ Mov(x1, Operand(pretenure ? factory()->true_value()
   2882                                  : factory()->false_value()));
   2883     __ Push(cp, x2, x1);
   2884     CallRuntime(Runtime::kHiddenNewClosure, 3, instr);
   2885   }
   2886 }
   2887 
   2888 
   2889 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
   2890   Register map = ToRegister(instr->map());
   2891   Register result = ToRegister(instr->result());
   2892   Label load_cache, done;
   2893 
   2894   __ EnumLengthUntagged(result, map);
   2895   __ Cbnz(result, &load_cache);
   2896 
   2897   __ Mov(result, Operand(isolate()->factory()->empty_fixed_array()));
   2898   __ B(&done);
   2899 
   2900   __ Bind(&load_cache);
   2901   __ LoadInstanceDescriptors(map, result);
   2902   __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
   2903   __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
   2904   DeoptimizeIfZero(result, instr->environment());
   2905 
   2906   __ Bind(&done);
   2907 }
   2908 
   2909 
   2910 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
   2911   Register object = ToRegister(instr->object());
   2912   Register null_value = x5;
   2913 
   2914   ASSERT(instr->IsMarkedAsCall());
   2915   ASSERT(object.Is(x0));
   2916 
   2917   DeoptimizeIfRoot(object, Heap::kUndefinedValueRootIndex,
   2918                    instr->environment());
   2919 
   2920   __ LoadRoot(null_value, Heap::kNullValueRootIndex);
   2921   __ Cmp(object, null_value);
   2922   DeoptimizeIf(eq, instr->environment());
   2923 
   2924   DeoptimizeIfSmi(object, instr->environment());
   2925 
   2926   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
   2927   __ CompareObjectType(object, x1, x1, LAST_JS_PROXY_TYPE);
   2928   DeoptimizeIf(le, instr->environment());
   2929 
   2930   Label use_cache, call_runtime;
   2931   __ CheckEnumCache(object, null_value, x1, x2, x3, x4, &call_runtime);
   2932 
   2933   __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
   2934   __ B(&use_cache);
   2935 
   2936   // Get the set of properties to enumerate.
   2937   __ Bind(&call_runtime);
   2938   __ Push(object);
   2939   CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
   2940 
   2941   __ Ldr(x1, FieldMemOperand(object, HeapObject::kMapOffset));
   2942   DeoptimizeIfNotRoot(x1, Heap::kMetaMapRootIndex, instr->environment());
   2943 
   2944   __ Bind(&use_cache);
   2945 }
   2946 
   2947 
   2948 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
   2949   Register input = ToRegister(instr->value());
   2950   Register result = ToRegister(instr->result());
   2951 
   2952   __ AssertString(input);
   2953 
   2954   // Assert that we can use a W register load to get the hash.
   2955   ASSERT((String::kHashShift + String::kArrayIndexValueBits) < kWRegSizeInBits);
   2956   __ Ldr(result.W(), FieldMemOperand(input, String::kHashFieldOffset));
   2957   __ IndexFromHash(result, result);
   2958 }
   2959 
   2960 
   2961 void LCodeGen::EmitGoto(int block) {
   2962   // Do not emit jump if we are emitting a goto to the next block.
   2963   if (!IsNextEmittedBlock(block)) {
   2964     __ B(chunk_->GetAssemblyLabel(LookupDestination(block)));
   2965   }
   2966 }
   2967 
   2968 
   2969 void LCodeGen::DoGoto(LGoto* instr) {
   2970   EmitGoto(instr->block_id());
   2971 }
   2972 
   2973 
   2974 void LCodeGen::DoHasCachedArrayIndexAndBranch(
   2975     LHasCachedArrayIndexAndBranch* instr) {
   2976   Register input = ToRegister(instr->value());
   2977   Register temp = ToRegister32(instr->temp());
   2978 
   2979   // Assert that the cache status bits fit in a W register.
   2980   ASSERT(is_uint32(String::kContainsCachedArrayIndexMask));
   2981   __ Ldr(temp, FieldMemOperand(input, String::kHashFieldOffset));
   2982   __ Tst(temp, String::kContainsCachedArrayIndexMask);
   2983   EmitBranch(instr, eq);
   2984 }
   2985 
   2986 
   2987 // HHasInstanceTypeAndBranch instruction is built with an interval of type
   2988 // to test but is only used in very restricted ways. The only possible kinds
   2989 // of intervals are:
   2990 //  - [ FIRST_TYPE, instr->to() ]
   2991 //  - [ instr->form(), LAST_TYPE ]
   2992 //  - instr->from() == instr->to()
   2993 //
   2994 // These kinds of intervals can be check with only one compare instruction
   2995 // providing the correct value and test condition are used.
   2996 //
   2997 // TestType() will return the value to use in the compare instruction and
   2998 // BranchCondition() will return the condition to use depending on the kind
   2999 // of interval actually specified in the instruction.
   3000 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
   3001   InstanceType from = instr->from();
   3002   InstanceType to = instr->to();
   3003   if (from == FIRST_TYPE) return to;
   3004   ASSERT((from == to) || (to == LAST_TYPE));
   3005   return from;
   3006 }
   3007 
   3008 
   3009 // See comment above TestType function for what this function does.
   3010 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
   3011   InstanceType from = instr->from();
   3012   InstanceType to = instr->to();
   3013   if (from == to) return eq;
   3014   if (to == LAST_TYPE) return hs;
   3015   if (from == FIRST_TYPE) return ls;
   3016   UNREACHABLE();
   3017   return eq;
   3018 }
   3019 
   3020 
   3021 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
   3022   Register input = ToRegister(instr->value());
   3023   Register scratch = ToRegister(instr->temp());
   3024 
   3025   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   3026     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
   3027   }
   3028   __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
   3029   EmitBranch(instr, BranchCondition(instr->hydrogen()));
   3030 }
   3031 
   3032 
   3033 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
   3034   Register result = ToRegister(instr->result());
   3035   Register base = ToRegister(instr->base_object());
   3036   if (instr->offset()->IsConstantOperand()) {
   3037     __ Add(result, base, ToOperand32I(instr->offset()));
   3038   } else {
   3039     __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW));
   3040   }
   3041 }
   3042 
   3043 
   3044 void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
   3045   ASSERT(ToRegister(instr->context()).is(cp));
   3046   // Assert that the arguments are in the registers expected by InstanceofStub.
   3047   ASSERT(ToRegister(instr->left()).Is(InstanceofStub::left()));
   3048   ASSERT(ToRegister(instr->right()).Is(InstanceofStub::right()));
   3049 
   3050   InstanceofStub stub(isolate(), InstanceofStub::kArgsInRegisters);
   3051   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   3052 
   3053   // InstanceofStub returns a result in x0:
   3054   //   0     => not an instance
   3055   //   smi 1 => instance.
   3056   __ Cmp(x0, 0);
   3057   __ LoadTrueFalseRoots(x0, x1);
   3058   __ Csel(x0, x0, x1, eq);
   3059 }
   3060 
   3061 
   3062 void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
   3063   class DeferredInstanceOfKnownGlobal: public LDeferredCode {
   3064    public:
   3065     DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
   3066                                   LInstanceOfKnownGlobal* instr)
   3067         : LDeferredCode(codegen), instr_(instr) { }
   3068     virtual void Generate() {
   3069       codegen()->DoDeferredInstanceOfKnownGlobal(instr_);
   3070     }
   3071     virtual LInstruction* instr() { return instr_; }
   3072    private:
   3073     LInstanceOfKnownGlobal* instr_;
   3074   };
   3075 
   3076   DeferredInstanceOfKnownGlobal* deferred =
   3077       new(zone()) DeferredInstanceOfKnownGlobal(this, instr);
   3078 
   3079   Label map_check, return_false, cache_miss, done;
   3080   Register object = ToRegister(instr->value());
   3081   Register result = ToRegister(instr->result());
   3082   // x4 is expected in the associated deferred code and stub.
   3083   Register map_check_site = x4;
   3084   Register map = x5;
   3085 
   3086   // This instruction is marked as call. We can clobber any register.
   3087   ASSERT(instr->IsMarkedAsCall());
   3088 
   3089   // We must take into account that object is in x11.
   3090   ASSERT(object.Is(x11));
   3091   Register scratch = x10;
   3092 
   3093   // A Smi is not instance of anything.
   3094   __ JumpIfSmi(object, &return_false);
   3095 
   3096   // This is the inlined call site instanceof cache. The two occurences of the
   3097   // hole value will be patched to the last map/result pair generated by the
   3098   // instanceof stub.
   3099   __ Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
   3100   {
   3101     // Below we use Factory::the_hole_value() on purpose instead of loading from
   3102     // the root array to force relocation and later be able to patch with a
   3103     // custom value.
   3104     InstructionAccurateScope scope(masm(), 5);
   3105     __ bind(&map_check);
   3106     // Will be patched with the cached map.
   3107     Handle<Cell> cell = factory()->NewCell(factory()->the_hole_value());
   3108     __ ldr(scratch, Immediate(Handle<Object>(cell)));
   3109     __ ldr(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset));
   3110     __ cmp(map, scratch);
   3111     __ b(&cache_miss, ne);
   3112     // The address of this instruction is computed relative to the map check
   3113     // above, so check the size of the code generated.
   3114     ASSERT(masm()->InstructionsGeneratedSince(&map_check) == 4);
   3115     // Will be patched with the cached result.
   3116     __ ldr(result, Immediate(factory()->the_hole_value()));
   3117   }
   3118   __ B(&done);
   3119 
   3120   // The inlined call site cache did not match.
   3121   // Check null and string before calling the deferred code.
   3122   __ Bind(&cache_miss);
   3123   // Compute the address of the map check. It must not be clobbered until the
   3124   // InstanceOfStub has used it.
   3125   __ Adr(map_check_site, &map_check);
   3126   // Null is not instance of anything.
   3127   __ JumpIfRoot(object, Heap::kNullValueRootIndex, &return_false);
   3128 
   3129   // String values are not instances of anything.
   3130   // Return false if the object is a string. Otherwise, jump to the deferred
   3131   // code.
   3132   // Note that we can't jump directly to deferred code from
   3133   // IsObjectJSStringType, because it uses tbz for the jump and the deferred
   3134   // code can be out of range.
   3135   __ IsObjectJSStringType(object, scratch, NULL, &return_false);
   3136   __ B(deferred->entry());
   3137 
   3138   __ Bind(&return_false);
   3139   __ LoadRoot(result, Heap::kFalseValueRootIndex);
   3140 
   3141   // Here result is either true or false.
   3142   __ Bind(deferred->exit());
   3143   __ Bind(&done);
   3144 }
   3145 
   3146 
   3147 void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
   3148   Register result = ToRegister(instr->result());
   3149   ASSERT(result.Is(x0));  // InstanceofStub returns its result in x0.
   3150   InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
   3151   flags = static_cast<InstanceofStub::Flags>(
   3152       flags | InstanceofStub::kArgsInRegisters);
   3153   flags = static_cast<InstanceofStub::Flags>(
   3154       flags | InstanceofStub::kReturnTrueFalseObject);
   3155   flags = static_cast<InstanceofStub::Flags>(
   3156       flags | InstanceofStub::kCallSiteInlineCheck);
   3157 
   3158   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
   3159   LoadContextFromDeferred(instr->context());
   3160 
   3161   // Prepare InstanceofStub arguments.
   3162   ASSERT(ToRegister(instr->value()).Is(InstanceofStub::left()));
   3163   __ LoadObject(InstanceofStub::right(), instr->function());
   3164 
   3165   InstanceofStub stub(isolate(), flags);
   3166   CallCodeGeneric(stub.GetCode(),
   3167                   RelocInfo::CODE_TARGET,
   3168                   instr,
   3169                   RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
   3170   LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment();
   3171   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   3172 
   3173   // Put the result value into the result register slot.
   3174   __ StoreToSafepointRegisterSlot(result, result);
   3175 }
   3176 
   3177 
   3178 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
   3179   DoGap(instr);
   3180 }
   3181 
   3182 
   3183 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
   3184   Register value = ToRegister32(instr->value());
   3185   DoubleRegister result = ToDoubleRegister(instr->result());
   3186   __ Scvtf(result, value);
   3187 }
   3188 
   3189 
   3190 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
   3191   ASSERT(ToRegister(instr->context()).is(cp));
   3192   // The function is required to be in x1.
   3193   ASSERT(ToRegister(instr->function()).is(x1));
   3194   ASSERT(instr->HasPointerMap());
   3195 
   3196   Handle<JSFunction> known_function = instr->hydrogen()->known_function();
   3197   if (known_function.is_null()) {
   3198     LPointerMap* pointers = instr->pointer_map();
   3199     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
   3200     ParameterCount count(instr->arity());
   3201     __ InvokeFunction(x1, count, CALL_FUNCTION, generator);
   3202   } else {
   3203     CallKnownFunction(known_function,
   3204                       instr->hydrogen()->formal_parameter_count(),
   3205                       instr->arity(),
   3206                       instr,
   3207                       x1);
   3208   }
   3209   after_push_argument_ = false;
   3210 }
   3211 
   3212 
   3213 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
   3214   Register temp1 = ToRegister(instr->temp1());
   3215   Register temp2 = ToRegister(instr->temp2());
   3216 
   3217   // Get the frame pointer for the calling frame.
   3218   __ Ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   3219 
   3220   // Skip the arguments adaptor frame if it exists.
   3221   Label check_frame_marker;
   3222   __ Ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
   3223   __ Cmp(temp2, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
   3224   __ B(ne, &check_frame_marker);
   3225   __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
   3226 
   3227   // Check the marker in the calling frame.
   3228   __ Bind(&check_frame_marker);
   3229   __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
   3230 
   3231   EmitCompareAndBranch(
   3232       instr, eq, temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
   3233 }
   3234 
   3235 
   3236 void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
   3237   Label* is_object = instr->TrueLabel(chunk_);
   3238   Label* is_not_object = instr->FalseLabel(chunk_);
   3239   Register value = ToRegister(instr->value());
   3240   Register map = ToRegister(instr->temp1());
   3241   Register scratch = ToRegister(instr->temp2());
   3242 
   3243   __ JumpIfSmi(value, is_not_object);
   3244   __ JumpIfRoot(value, Heap::kNullValueRootIndex, is_object);
   3245 
   3246   __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
   3247 
   3248   // Check for undetectable objects.
   3249   __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
   3250   __ TestAndBranchIfAnySet(scratch, 1 << Map::kIsUndetectable, is_not_object);
   3251 
   3252   // Check that instance type is in object type range.
   3253   __ IsInstanceJSObjectType(map, scratch, NULL);
   3254   // Flags have been updated by IsInstanceJSObjectType. We can now test the
   3255   // flags for "le" condition to check if the object's type is a valid
   3256   // JS object type.
   3257   EmitBranch(instr, le);
   3258 }
   3259 
   3260 
   3261 Condition LCodeGen::EmitIsString(Register input,
   3262                                  Register temp1,
   3263                                  Label* is_not_string,
   3264                                  SmiCheck check_needed = INLINE_SMI_CHECK) {
   3265   if (check_needed == INLINE_SMI_CHECK) {
   3266     __ JumpIfSmi(input, is_not_string);
   3267   }
   3268   __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
   3269 
   3270   return lt;
   3271 }
   3272 
   3273 
   3274 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
   3275   Register val = ToRegister(instr->value());
   3276   Register scratch = ToRegister(instr->temp());
   3277 
   3278   SmiCheck check_needed =
   3279       instr->hydrogen()->value()->type().IsHeapObject()
   3280           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   3281   Condition true_cond =
   3282       EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed);
   3283 
   3284   EmitBranch(instr, true_cond);
   3285 }
   3286 
   3287 
   3288 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
   3289   Register value = ToRegister(instr->value());
   3290   STATIC_ASSERT(kSmiTag == 0);
   3291   EmitTestAndBranch(instr, eq, value, kSmiTagMask);
   3292 }
   3293 
   3294 
   3295 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
   3296   Register input = ToRegister(instr->value());
   3297   Register temp = ToRegister(instr->temp());
   3298 
   3299   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   3300     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
   3301   }
   3302   __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
   3303   __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
   3304 
   3305   EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable);
   3306 }
   3307 
   3308 
   3309 static const char* LabelType(LLabel* label) {
   3310   if (label->is_loop_header()) return " (loop header)";
   3311   if (label->is_osr_entry()) return " (OSR entry)";
   3312   return "";
   3313 }
   3314 
   3315 
   3316 void LCodeGen::DoLabel(LLabel* label) {
   3317   Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
   3318           current_instruction_,
   3319           label->hydrogen_value()->id(),
   3320           label->block_id(),
   3321           LabelType(label));
   3322 
   3323   __ Bind(label->label());
   3324   current_block_ = label->block_id();
   3325   DoGap(label);
   3326 }
   3327 
   3328 
   3329 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
   3330   Register context = ToRegister(instr->context());
   3331   Register result = ToRegister(instr->result());
   3332   __ Ldr(result, ContextMemOperand(context, instr->slot_index()));
   3333   if (instr->hydrogen()->RequiresHoleCheck()) {
   3334     if (instr->hydrogen()->DeoptimizesOnHole()) {
   3335       DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex,
   3336                        instr->environment());
   3337     } else {
   3338       Label not_the_hole;
   3339       __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, &not_the_hole);
   3340       __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
   3341       __ Bind(&not_the_hole);
   3342     }
   3343   }
   3344 }
   3345 
   3346 
   3347 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
   3348   Register function = ToRegister(instr->function());
   3349   Register result = ToRegister(instr->result());
   3350   Register temp = ToRegister(instr->temp());
   3351 
   3352   // Check that the function really is a function. Leaves map in the result
   3353   // register.
   3354   __ CompareObjectType(function, result, temp, JS_FUNCTION_TYPE);
   3355   DeoptimizeIf(ne, instr->environment());
   3356 
   3357   // Make sure that the function has an instance prototype.
   3358   Label non_instance;
   3359   __ Ldrb(temp, FieldMemOperand(result, Map::kBitFieldOffset));
   3360   __ Tbnz(temp, Map::kHasNonInstancePrototype, &non_instance);
   3361 
   3362   // Get the prototype or initial map from the function.
   3363   __ Ldr(result, FieldMemOperand(function,
   3364                                  JSFunction::kPrototypeOrInitialMapOffset));
   3365 
   3366   // Check that the function has a prototype or an initial map.
   3367   DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex,
   3368                    instr->environment());
   3369 
   3370   // If the function does not have an initial map, we're done.
   3371   Label done;
   3372   __ CompareObjectType(result, temp, temp, MAP_TYPE);
   3373   __ B(ne, &done);
   3374 
   3375   // Get the prototype from the initial map.
   3376   __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
   3377   __ B(&done);
   3378 
   3379   // Non-instance prototype: fetch prototype from constructor field in initial
   3380   // map.
   3381   __ Bind(&non_instance);
   3382   __ Ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
   3383 
   3384   // All done.
   3385   __ Bind(&done);
   3386 }
   3387 
   3388 
   3389 void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
   3390   Register result = ToRegister(instr->result());
   3391   __ Mov(result, Operand(Handle<Object>(instr->hydrogen()->cell().handle())));
   3392   __ Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
   3393   if (instr->hydrogen()->RequiresHoleCheck()) {
   3394     DeoptimizeIfRoot(
   3395         result, Heap::kTheHoleValueRootIndex, instr->environment());
   3396   }
   3397 }
   3398 
   3399 
   3400 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
   3401   ASSERT(ToRegister(instr->context()).is(cp));
   3402   ASSERT(ToRegister(instr->global_object()).Is(x0));
   3403   ASSERT(ToRegister(instr->result()).Is(x0));
   3404   __ Mov(x2, Operand(instr->name()));
   3405   ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL;
   3406   Handle<Code> ic = LoadIC::initialize_stub(isolate(), mode);
   3407   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   3408 }
   3409 
   3410 
   3411 MemOperand LCodeGen::PrepareKeyedExternalArrayOperand(
   3412     Register key,
   3413     Register base,
   3414     Register scratch,
   3415     bool key_is_smi,
   3416     bool key_is_constant,
   3417     int constant_key,
   3418     ElementsKind elements_kind,
   3419     int base_offset) {
   3420   int element_size_shift = ElementsKindToShiftSize(elements_kind);
   3421 
   3422   if (key_is_constant) {
   3423     int key_offset = constant_key << element_size_shift;
   3424     return MemOperand(base, key_offset + base_offset);
   3425   }
   3426 
   3427   if (key_is_smi) {
   3428     __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift));
   3429     return MemOperand(scratch, base_offset);
   3430   }
   3431 
   3432   if (base_offset == 0) {
   3433     return MemOperand(base, key, SXTW, element_size_shift);
   3434   }
   3435 
   3436   ASSERT(!AreAliased(scratch, key));
   3437   __ Add(scratch, base, base_offset);
   3438   return MemOperand(scratch, key, SXTW, element_size_shift);
   3439 }
   3440 
   3441 
   3442 void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) {
   3443   Register ext_ptr = ToRegister(instr->elements());
   3444   Register scratch;
   3445   ElementsKind elements_kind = instr->elements_kind();
   3446 
   3447   bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
   3448   bool key_is_constant = instr->key()->IsConstantOperand();
   3449   Register key = no_reg;
   3450   int constant_key = 0;
   3451   if (key_is_constant) {
   3452     ASSERT(instr->temp() == NULL);
   3453     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
   3454     if (constant_key & 0xf0000000) {
   3455       Abort(kArrayIndexConstantValueTooBig);
   3456     }
   3457   } else {
   3458     scratch = ToRegister(instr->temp());
   3459     key = ToRegister(instr->key());
   3460   }
   3461 
   3462   MemOperand mem_op =
   3463       PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
   3464                                        key_is_constant, constant_key,
   3465                                        elements_kind,
   3466                                        instr->base_offset());
   3467 
   3468   if ((elements_kind == EXTERNAL_FLOAT32_ELEMENTS) ||
   3469       (elements_kind == FLOAT32_ELEMENTS)) {
   3470     DoubleRegister result = ToDoubleRegister(instr->result());
   3471     __ Ldr(result.S(), mem_op);
   3472     __ Fcvt(result, result.S());
   3473   } else if ((elements_kind == EXTERNAL_FLOAT64_ELEMENTS) ||
   3474              (elements_kind == FLOAT64_ELEMENTS)) {
   3475     DoubleRegister result = ToDoubleRegister(instr->result());
   3476     __ Ldr(result, mem_op);
   3477   } else {
   3478     Register result = ToRegister(instr->result());
   3479 
   3480     switch (elements_kind) {
   3481       case EXTERNAL_INT8_ELEMENTS:
   3482       case INT8_ELEMENTS:
   3483         __ Ldrsb(result, mem_op);
   3484         break;
   3485       case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
   3486       case EXTERNAL_UINT8_ELEMENTS:
   3487       case UINT8_ELEMENTS:
   3488       case UINT8_CLAMPED_ELEMENTS:
   3489         __ Ldrb(result, mem_op);
   3490         break;
   3491       case EXTERNAL_INT16_ELEMENTS:
   3492       case INT16_ELEMENTS:
   3493         __ Ldrsh(result, mem_op);
   3494         break;
   3495       case EXTERNAL_UINT16_ELEMENTS:
   3496       case UINT16_ELEMENTS:
   3497         __ Ldrh(result, mem_op);
   3498         break;
   3499       case EXTERNAL_INT32_ELEMENTS:
   3500       case INT32_ELEMENTS:
   3501         __ Ldrsw(result, mem_op);
   3502         break;
   3503       case EXTERNAL_UINT32_ELEMENTS:
   3504       case UINT32_ELEMENTS:
   3505         __ Ldr(result.W(), mem_op);
   3506         if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
   3507           // Deopt if value > 0x80000000.
   3508           __ Tst(result, 0xFFFFFFFF80000000);
   3509           DeoptimizeIf(ne, instr->environment());
   3510         }
   3511         break;
   3512       case FLOAT32_ELEMENTS:
   3513       case FLOAT64_ELEMENTS:
   3514       case EXTERNAL_FLOAT32_ELEMENTS:
   3515       case EXTERNAL_FLOAT64_ELEMENTS:
   3516       case FAST_HOLEY_DOUBLE_ELEMENTS:
   3517       case FAST_HOLEY_ELEMENTS:
   3518       case FAST_HOLEY_SMI_ELEMENTS:
   3519       case FAST_DOUBLE_ELEMENTS:
   3520       case FAST_ELEMENTS:
   3521       case FAST_SMI_ELEMENTS:
   3522       case DICTIONARY_ELEMENTS:
   3523       case SLOPPY_ARGUMENTS_ELEMENTS:
   3524         UNREACHABLE();
   3525         break;
   3526     }
   3527   }
   3528 }
   3529 
   3530 
   3531 MemOperand LCodeGen::PrepareKeyedArrayOperand(Register base,
   3532                                               Register elements,
   3533                                               Register key,
   3534                                               bool key_is_tagged,
   3535                                               ElementsKind elements_kind,
   3536                                               Representation representation,
   3537                                               int base_offset) {
   3538   STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0));
   3539   int element_size_shift = ElementsKindToShiftSize(elements_kind);
   3540 
   3541   // Even though the HLoad/StoreKeyed instructions force the input
   3542   // representation for the key to be an integer, the input gets replaced during
   3543   // bounds check elimination with the index argument to the bounds check, which
   3544   // can be tagged, so that case must be handled here, too.
   3545   if (key_is_tagged) {
   3546     __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift));
   3547     if (representation.IsInteger32()) {
   3548       ASSERT(elements_kind == FAST_SMI_ELEMENTS);
   3549       // Read or write only the most-significant 32 bits in the case of fast smi
   3550       // arrays.
   3551       return UntagSmiMemOperand(base, base_offset);
   3552     } else {
   3553       return MemOperand(base, base_offset);
   3554     }
   3555   } else {
   3556     // Sign extend key because it could be a 32-bit negative value or contain
   3557     // garbage in the top 32-bits. The address computation happens in 64-bit.
   3558     ASSERT((element_size_shift >= 0) && (element_size_shift <= 4));
   3559     if (representation.IsInteger32()) {
   3560       ASSERT(elements_kind == FAST_SMI_ELEMENTS);
   3561       // Read or write only the most-significant 32 bits in the case of fast smi
   3562       // arrays.
   3563       __ Add(base, elements, Operand(key, SXTW, element_size_shift));
   3564       return UntagSmiMemOperand(base, base_offset);
   3565     } else {
   3566       __ Add(base, elements, base_offset);
   3567       return MemOperand(base, key, SXTW, element_size_shift);
   3568     }
   3569   }
   3570 }
   3571 
   3572 
   3573 void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) {
   3574   Register elements = ToRegister(instr->elements());
   3575   DoubleRegister result = ToDoubleRegister(instr->result());
   3576   MemOperand mem_op;
   3577 
   3578   if (instr->key()->IsConstantOperand()) {
   3579     ASSERT(instr->hydrogen()->RequiresHoleCheck() ||
   3580            (instr->temp() == NULL));
   3581 
   3582     int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
   3583     if (constant_key & 0xf0000000) {
   3584       Abort(kArrayIndexConstantValueTooBig);
   3585     }
   3586     int offset = instr->base_offset() + constant_key * kDoubleSize;
   3587     mem_op = MemOperand(elements, offset);
   3588   } else {
   3589     Register load_base = ToRegister(instr->temp());
   3590     Register key = ToRegister(instr->key());
   3591     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
   3592     mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
   3593                                       instr->hydrogen()->elements_kind(),
   3594                                       instr->hydrogen()->representation(),
   3595                                       instr->base_offset());
   3596   }
   3597 
   3598   __ Ldr(result, mem_op);
   3599 
   3600   if (instr->hydrogen()->RequiresHoleCheck()) {
   3601     Register scratch = ToRegister(instr->temp());
   3602     // Detect the hole NaN by adding one to the integer representation of the
   3603     // result, and checking for overflow.
   3604     STATIC_ASSERT(kHoleNanInt64 == 0x7fffffffffffffff);
   3605     __ Ldr(scratch, mem_op);
   3606     __ Cmn(scratch, 1);
   3607     DeoptimizeIf(vs, instr->environment());
   3608   }
   3609 }
   3610 
   3611 
   3612 void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) {
   3613   Register elements = ToRegister(instr->elements());
   3614   Register result = ToRegister(instr->result());
   3615   MemOperand mem_op;
   3616 
   3617   Representation representation = instr->hydrogen()->representation();
   3618   if (instr->key()->IsConstantOperand()) {
   3619     ASSERT(instr->temp() == NULL);
   3620     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
   3621     int offset = instr->base_offset() +
   3622         ToInteger32(const_operand) * kPointerSize;
   3623     if (representation.IsInteger32()) {
   3624       ASSERT(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
   3625       STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) &&
   3626                     (kSmiTag == 0));
   3627       mem_op = UntagSmiMemOperand(elements, offset);
   3628     } else {
   3629       mem_op = MemOperand(elements, offset);
   3630     }
   3631   } else {
   3632     Register load_base = ToRegister(instr->temp());
   3633     Register key = ToRegister(instr->key());
   3634     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
   3635 
   3636     mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
   3637                                       instr->hydrogen()->elements_kind(),
   3638                                       representation, instr->base_offset());
   3639   }
   3640 
   3641   __ Load(result, mem_op, representation);
   3642 
   3643   if (instr->hydrogen()->RequiresHoleCheck()) {
   3644     if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
   3645       DeoptimizeIfNotSmi(result, instr->environment());
   3646     } else {
   3647       DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex,
   3648                        instr->environment());
   3649     }
   3650   }
   3651 }
   3652 
   3653 
   3654 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
   3655   ASSERT(ToRegister(instr->context()).is(cp));
   3656   ASSERT(ToRegister(instr->object()).Is(x1));
   3657   ASSERT(ToRegister(instr->key()).Is(x0));
   3658 
   3659   Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
   3660   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   3661 
   3662   ASSERT(ToRegister(instr->result()).Is(x0));
   3663 }
   3664 
   3665 
   3666 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
   3667   HObjectAccess access = instr->hydrogen()->access();
   3668   int offset = access.offset();
   3669   Register object = ToRegister(instr->object());
   3670 
   3671   if (access.IsExternalMemory()) {
   3672     Register result = ToRegister(instr->result());
   3673     __ Load(result, MemOperand(object, offset), access.representation());
   3674     return;
   3675   }
   3676 
   3677   if (instr->hydrogen()->representation().IsDouble()) {
   3678     FPRegister result = ToDoubleRegister(instr->result());
   3679     __ Ldr(result, FieldMemOperand(object, offset));
   3680     return;
   3681   }
   3682 
   3683   Register result = ToRegister(instr->result());
   3684   Register source;
   3685   if (access.IsInobject()) {
   3686     source = object;
   3687   } else {
   3688     // Load the properties array, using result as a scratch register.
   3689     __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
   3690     source = result;
   3691   }
   3692 
   3693   if (access.representation().IsSmi() &&
   3694       instr->hydrogen()->representation().IsInteger32()) {
   3695     // Read int value directly from upper half of the smi.
   3696     STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0);
   3697     __ Load(result, UntagSmiFieldMemOperand(source, offset),
   3698             Representation::Integer32());
   3699   } else {
   3700     __ Load(result, FieldMemOperand(source, offset), access.representation());
   3701   }
   3702 }
   3703 
   3704 
   3705 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
   3706   ASSERT(ToRegister(instr->context()).is(cp));
   3707   // LoadIC expects x2 to hold the name, and x0 to hold the receiver.
   3708   ASSERT(ToRegister(instr->object()).is(x0));
   3709   __ Mov(x2, Operand(instr->name()));
   3710 
   3711   Handle<Code> ic = LoadIC::initialize_stub(isolate(), NOT_CONTEXTUAL);
   3712   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   3713 
   3714   ASSERT(ToRegister(instr->result()).is(x0));
   3715 }
   3716 
   3717 
   3718 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
   3719   Register result = ToRegister(instr->result());
   3720   __ LoadRoot(result, instr->index());
   3721 }
   3722 
   3723 
   3724 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
   3725   Register result = ToRegister(instr->result());
   3726   Register map = ToRegister(instr->value());
   3727   __ EnumLengthSmi(result, map);
   3728 }
   3729 
   3730 
   3731 void LCodeGen::DoMathAbs(LMathAbs* instr) {
   3732   Representation r = instr->hydrogen()->value()->representation();
   3733   if (r.IsDouble()) {
   3734     DoubleRegister input = ToDoubleRegister(instr->value());
   3735     DoubleRegister result = ToDoubleRegister(instr->result());
   3736     __ Fabs(result, input);
   3737   } else if (r.IsSmi() || r.IsInteger32()) {
   3738     Register input = r.IsSmi() ? ToRegister(instr->value())
   3739                                : ToRegister32(instr->value());
   3740     Register result = r.IsSmi() ? ToRegister(instr->result())
   3741                                 : ToRegister32(instr->result());
   3742     __ Abs(result, input);
   3743     DeoptimizeIf(vs, instr->environment());
   3744   }
   3745 }
   3746 
   3747 
   3748 void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr,
   3749                                        Label* exit,
   3750                                        Label* allocation_entry) {
   3751   // Handle the tricky cases of MathAbsTagged:
   3752   //  - HeapNumber inputs.
   3753   //    - Negative inputs produce a positive result, so a new HeapNumber is
   3754   //      allocated to hold it.
   3755   //    - Positive inputs are returned as-is, since there is no need to allocate
   3756   //      a new HeapNumber for the result.
   3757   //  - The (smi) input -0x80000000, produces +0x80000000, which does not fit
   3758   //    a smi. In this case, the inline code sets the result and jumps directly
   3759   //    to the allocation_entry label.
   3760   ASSERT(instr->context() != NULL);
   3761   ASSERT(ToRegister(instr->context()).is(cp));
   3762   Register input = ToRegister(instr->value());
   3763   Register temp1 = ToRegister(instr->temp1());
   3764   Register temp2 = ToRegister(instr->temp2());
   3765   Register result_bits = ToRegister(instr->temp3());
   3766   Register result = ToRegister(instr->result());
   3767 
   3768   Label runtime_allocation;
   3769 
   3770   // Deoptimize if the input is not a HeapNumber.
   3771   __ Ldr(temp1, FieldMemOperand(input, HeapObject::kMapOffset));
   3772   DeoptimizeIfNotRoot(temp1, Heap::kHeapNumberMapRootIndex,
   3773                       instr->environment());
   3774 
   3775   // If the argument is positive, we can return it as-is, without any need to
   3776   // allocate a new HeapNumber for the result. We have to do this in integer
   3777   // registers (rather than with fabs) because we need to be able to distinguish
   3778   // the two zeroes.
   3779   __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset));
   3780   __ Mov(result, input);
   3781   __ Tbz(result_bits, kXSignBit, exit);
   3782 
   3783   // Calculate abs(input) by clearing the sign bit.
   3784   __ Bic(result_bits, result_bits, kXSignMask);
   3785 
   3786   // Allocate a new HeapNumber to hold the result.
   3787   //  result_bits   The bit representation of the (double) result.
   3788   __ Bind(allocation_entry);
   3789   __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2);
   3790   // The inline (non-deferred) code will store result_bits into result.
   3791   __ B(exit);
   3792 
   3793   __ Bind(&runtime_allocation);
   3794   if (FLAG_debug_code) {
   3795     // Because result is in the pointer map, we need to make sure it has a valid
   3796     // tagged value before we call the runtime. We speculatively set it to the
   3797     // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already
   3798     // be valid.
   3799     Label result_ok;
   3800     Register input = ToRegister(instr->value());
   3801     __ JumpIfSmi(result, &result_ok);
   3802     __ Cmp(input, result);
   3803     __ Assert(eq, kUnexpectedValue);
   3804     __ Bind(&result_ok);
   3805   }
   3806 
   3807   { PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
   3808     CallRuntimeFromDeferred(Runtime::kHiddenAllocateHeapNumber, 0, instr,
   3809                             instr->context());
   3810     __ StoreToSafepointRegisterSlot(x0, result);
   3811   }
   3812   // The inline (non-deferred) code will store result_bits into result.
   3813 }
   3814 
   3815 
   3816 void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) {
   3817   // Class for deferred case.
   3818   class DeferredMathAbsTagged: public LDeferredCode {
   3819    public:
   3820     DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr)
   3821         : LDeferredCode(codegen), instr_(instr) { }
   3822     virtual void Generate() {
   3823       codegen()->DoDeferredMathAbsTagged(instr_, exit(),
   3824                                          allocation_entry());
   3825     }
   3826     virtual LInstruction* instr() { return instr_; }
   3827     Label* allocation_entry() { return &allocation; }
   3828    private:
   3829     LMathAbsTagged* instr_;
   3830     Label allocation;
   3831   };
   3832 
   3833   // TODO(jbramley): The early-exit mechanism would skip the new frame handling
   3834   // in GenerateDeferredCode. Tidy this up.
   3835   ASSERT(!NeedsDeferredFrame());
   3836 
   3837   DeferredMathAbsTagged* deferred =
   3838       new(zone()) DeferredMathAbsTagged(this, instr);
   3839 
   3840   ASSERT(instr->hydrogen()->value()->representation().IsTagged() ||
   3841          instr->hydrogen()->value()->representation().IsSmi());
   3842   Register input = ToRegister(instr->value());
   3843   Register result_bits = ToRegister(instr->temp3());
   3844   Register result = ToRegister(instr->result());
   3845   Label done;
   3846 
   3847   // Handle smis inline.
   3848   // We can treat smis as 64-bit integers, since the (low-order) tag bits will
   3849   // never get set by the negation. This is therefore the same as the Integer32
   3850   // case in DoMathAbs, except that it operates on 64-bit values.
   3851   STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0));
   3852 
   3853   __ JumpIfNotSmi(input, deferred->entry());
   3854 
   3855   __ Abs(result, input, NULL, &done);
   3856 
   3857   // The result is the magnitude (abs) of the smallest value a smi can
   3858   // represent, encoded as a double.
   3859   __ Mov(result_bits, double_to_rawbits(0x80000000));
   3860   __ B(deferred->allocation_entry());
   3861 
   3862   __ Bind(deferred->exit());
   3863   __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset));
   3864 
   3865   __ Bind(&done);
   3866 }
   3867 
   3868 
   3869 void LCodeGen::DoMathExp(LMathExp* instr) {
   3870   DoubleRegister input = ToDoubleRegister(instr->value());
   3871   DoubleRegister result = ToDoubleRegister(instr->result());
   3872   DoubleRegister double_temp1 = ToDoubleRegister(instr->double_temp1());
   3873   DoubleRegister double_temp2 = double_scratch();
   3874   Register temp1 = ToRegister(instr->temp1());
   3875   Register temp2 = ToRegister(instr->temp2());
   3876   Register temp3 = ToRegister(instr->temp3());
   3877 
   3878   MathExpGenerator::EmitMathExp(masm(), input, result,
   3879                                 double_temp1, double_temp2,
   3880                                 temp1, temp2, temp3);
   3881 }
   3882 
   3883 
   3884 void LCodeGen::DoMathFloorD(LMathFloorD* instr) {
   3885   DoubleRegister input = ToDoubleRegister(instr->value());
   3886   DoubleRegister result = ToDoubleRegister(instr->result());
   3887 
   3888   __ Frintm(result, input);
   3889 }
   3890 
   3891 
   3892 void LCodeGen::DoMathFloorI(LMathFloorI* instr) {
   3893   DoubleRegister input = ToDoubleRegister(instr->value());
   3894   Register result = ToRegister(instr->result());
   3895 
   3896   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3897     DeoptimizeIfMinusZero(input, instr->environment());
   3898   }
   3899 
   3900   __ Fcvtms(result, input);
   3901 
   3902   // Check that the result fits into a 32-bit integer.
   3903   //  - The result did not overflow.
   3904   __ Cmp(result, Operand(result, SXTW));
   3905   //  - The input was not NaN.
   3906   __ Fccmp(input, input, NoFlag, eq);
   3907   DeoptimizeIf(ne, instr->environment());
   3908 }
   3909 
   3910 
   3911 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
   3912   Register dividend = ToRegister32(instr->dividend());
   3913   Register result = ToRegister32(instr->result());
   3914   int32_t divisor = instr->divisor();
   3915 
   3916   // If the divisor is 1, return the dividend.
   3917   if (divisor == 1) {
   3918     __ Mov(result, dividend, kDiscardForSameWReg);
   3919     return;
   3920   }
   3921 
   3922   // If the divisor is positive, things are easy: There can be no deopts and we
   3923   // can simply do an arithmetic right shift.
   3924   int32_t shift = WhichPowerOf2Abs(divisor);
   3925   if (divisor > 1) {
   3926     __ Mov(result, Operand(dividend, ASR, shift));
   3927     return;
   3928   }
   3929 
   3930   // If the divisor is negative, we have to negate and handle edge cases.
   3931   __ Negs(result, dividend);
   3932   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3933     DeoptimizeIf(eq, instr->environment());
   3934   }
   3935 
   3936   // Dividing by -1 is basically negation, unless we overflow.
   3937   if (divisor == -1) {
   3938     if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
   3939       DeoptimizeIf(vs, instr->environment());
   3940     }
   3941     return;
   3942   }
   3943 
   3944   // If the negation could not overflow, simply shifting is OK.
   3945   if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
   3946     __ Mov(result, Operand(dividend, ASR, shift));
   3947     return;
   3948   }
   3949 
   3950   __ Asr(result, result, shift);
   3951   __ Csel(result, result, kMinInt / divisor, vc);
   3952 }
   3953 
   3954 
   3955 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
   3956   Register dividend = ToRegister32(instr->dividend());
   3957   int32_t divisor = instr->divisor();
   3958   Register result = ToRegister32(instr->result());
   3959   ASSERT(!AreAliased(dividend, result));
   3960 
   3961   if (divisor == 0) {
   3962     Deoptimize(instr->environment());
   3963     return;
   3964   }
   3965 
   3966   // Check for (0 / -x) that will produce negative zero.
   3967   HMathFloorOfDiv* hdiv = instr->hydrogen();
   3968   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   3969     DeoptimizeIfZero(dividend, instr->environment());
   3970   }
   3971 
   3972   // Easy case: We need no dynamic check for the dividend and the flooring
   3973   // division is the same as the truncating division.
   3974   if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
   3975       (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
   3976     __ TruncatingDiv(result, dividend, Abs(divisor));
   3977     if (divisor < 0) __ Neg(result, result);
   3978     return;
   3979   }
   3980 
   3981   // In the general case we may need to adjust before and after the truncating
   3982   // division to get a flooring division.
   3983   Register temp = ToRegister32(instr->temp());
   3984   ASSERT(!AreAliased(temp, dividend, result));
   3985   Label needs_adjustment, done;
   3986   __ Cmp(dividend, 0);
   3987   __ B(divisor > 0 ? lt : gt, &needs_adjustment);
   3988   __ TruncatingDiv(result, dividend, Abs(divisor));
   3989   if (divisor < 0) __ Neg(result, result);
   3990   __ B(&done);
   3991   __ Bind(&needs_adjustment);
   3992   __ Add(temp, dividend, Operand(divisor > 0 ? 1 : -1));
   3993   __ TruncatingDiv(result, temp, Abs(divisor));
   3994   if (divisor < 0) __ Neg(result, result);
   3995   __ Sub(result, result, Operand(1));
   3996   __ Bind(&done);
   3997 }
   3998 
   3999 
   4000 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
   4001 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
   4002   Register dividend = ToRegister32(instr->dividend());
   4003   Register divisor = ToRegister32(instr->divisor());
   4004   Register remainder = ToRegister32(instr->temp());
   4005   Register result = ToRegister32(instr->result());
   4006 
   4007   // This can't cause an exception on ARM, so we can speculatively
   4008   // execute it already now.
   4009   __ Sdiv(result, dividend, divisor);
   4010 
   4011   // Check for x / 0.
   4012   DeoptimizeIfZero(divisor, instr->environment());
   4013 
   4014   // Check for (kMinInt / -1).
   4015   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
   4016     // The V flag will be set iff dividend == kMinInt.
   4017     __ Cmp(dividend, 1);
   4018     __ Ccmp(divisor, -1, NoFlag, vs);
   4019     DeoptimizeIf(eq, instr->environment());
   4020   }
   4021 
   4022   // Check for (0 / -x) that will produce negative zero.
   4023   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   4024     __ Cmp(divisor, 0);
   4025     __ Ccmp(dividend, 0, ZFlag, mi);
   4026     // "divisor" can't be null because the code would have already been
   4027     // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0).
   4028     // In this case we need to deoptimize to produce a -0.
   4029     DeoptimizeIf(eq, instr->environment());
   4030   }
   4031 
   4032   Label done;
   4033   // If both operands have the same sign then we are done.
   4034   __ Eor(remainder, dividend, divisor);
   4035   __ Tbz(remainder, kWSignBit, &done);
   4036 
   4037   // Check if the result needs to be corrected.
   4038   __ Msub(remainder, result, divisor, dividend);
   4039   __ Cbz(remainder, &done);
   4040   __ Sub(result, result, 1);
   4041 
   4042   __ Bind(&done);
   4043 }
   4044 
   4045 
   4046 void LCodeGen::DoMathLog(LMathLog* instr) {
   4047   ASSERT(instr->IsMarkedAsCall());
   4048   ASSERT(ToDoubleRegister(instr->value()).is(d0));
   4049   __ CallCFunction(ExternalReference::math_log_double_function(isolate()),
   4050                    0, 1);
   4051   ASSERT(ToDoubleRegister(instr->result()).Is(d0));
   4052 }
   4053 
   4054 
   4055 void LCodeGen::DoMathClz32(LMathClz32* instr) {
   4056   Register input = ToRegister32(instr->value());
   4057   Register result = ToRegister32(instr->result());
   4058   __ Clz(result, input);
   4059 }
   4060 
   4061 
   4062 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
   4063   DoubleRegister input = ToDoubleRegister(instr->value());
   4064   DoubleRegister result = ToDoubleRegister(instr->result());
   4065   Label done;
   4066 
   4067   // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases:
   4068   //  Math.pow(-Infinity, 0.5) == +Infinity
   4069   //  Math.pow(-0.0, 0.5) == +0.0
   4070 
   4071   // Catch -infinity inputs first.
   4072   // TODO(jbramley): A constant infinity register would be helpful here.
   4073   __ Fmov(double_scratch(), kFP64NegativeInfinity);
   4074   __ Fcmp(double_scratch(), input);
   4075   __ Fabs(result, input);
   4076   __ B(&done, eq);
   4077 
   4078   // Add +0.0 to convert -0.0 to +0.0.
   4079   __ Fadd(double_scratch(), input, fp_zero);
   4080   __ Fsqrt(result, double_scratch());
   4081 
   4082   __ Bind(&done);
   4083 }
   4084 
   4085 
   4086 void LCodeGen::DoPower(LPower* instr) {
   4087   Representation exponent_type = instr->hydrogen()->right()->representation();
   4088   // Having marked this as a call, we can use any registers.
   4089   // Just make sure that the input/output registers are the expected ones.
   4090   ASSERT(!instr->right()->IsDoubleRegister() ||
   4091          ToDoubleRegister(instr->right()).is(d1));
   4092   ASSERT(exponent_type.IsInteger32() || !instr->right()->IsRegister() ||
   4093          ToRegister(instr->right()).is(x11));
   4094   ASSERT(!exponent_type.IsInteger32() || ToRegister(instr->right()).is(x12));
   4095   ASSERT(ToDoubleRegister(instr->left()).is(d0));
   4096   ASSERT(ToDoubleRegister(instr->result()).is(d0));
   4097 
   4098   if (exponent_type.IsSmi()) {
   4099     MathPowStub stub(isolate(), MathPowStub::TAGGED);
   4100     __ CallStub(&stub);
   4101   } else if (exponent_type.IsTagged()) {
   4102     Label no_deopt;
   4103     __ JumpIfSmi(x11, &no_deopt);
   4104     __ Ldr(x0, FieldMemOperand(x11, HeapObject::kMapOffset));
   4105     DeoptimizeIfNotRoot(x0, Heap::kHeapNumberMapRootIndex,
   4106                         instr->environment());
   4107     __ Bind(&no_deopt);
   4108     MathPowStub stub(isolate(), MathPowStub::TAGGED);
   4109     __ CallStub(&stub);
   4110   } else if (exponent_type.IsInteger32()) {
   4111     // Ensure integer exponent has no garbage in top 32-bits, as MathPowStub
   4112     // supports large integer exponents.
   4113     Register exponent = ToRegister(instr->right());
   4114     __ Sxtw(exponent, exponent);
   4115     MathPowStub stub(isolate(), MathPowStub::INTEGER);
   4116     __ CallStub(&stub);
   4117   } else {
   4118     ASSERT(exponent_type.IsDouble());
   4119     MathPowStub stub(isolate(), MathPowStub::DOUBLE);
   4120     __ CallStub(&stub);
   4121   }
   4122 }
   4123 
   4124 
   4125 void LCodeGen::DoMathRoundD(LMathRoundD* instr) {
   4126   DoubleRegister input = ToDoubleRegister(instr->value());
   4127   DoubleRegister result = ToDoubleRegister(instr->result());
   4128   DoubleRegister scratch_d = double_scratch();
   4129 
   4130   ASSERT(!AreAliased(input, result, scratch_d));
   4131 
   4132   Label done;
   4133 
   4134   __ Frinta(result, input);
   4135   __ Fcmp(input, 0.0);
   4136   __ Fccmp(result, input, ZFlag, lt);
   4137   // The result is correct if the input was in [-0, +infinity], or was a
   4138   // negative integral value.
   4139   __ B(eq, &done);
   4140 
   4141   // Here the input is negative, non integral, with an exponent lower than 52.
   4142   // We do not have to worry about the 0.49999999999999994 (0x3fdfffffffffffff)
   4143   // case. So we can safely add 0.5.
   4144   __ Fmov(scratch_d, 0.5);
   4145   __ Fadd(result, input, scratch_d);
   4146   __ Frintm(result, result);
   4147   // The range [-0.5, -0.0[ yielded +0.0. Force the sign to negative.
   4148   __ Fabs(result, result);
   4149   __ Fneg(result, result);
   4150 
   4151   __ Bind(&done);
   4152 }
   4153 
   4154 
   4155 void LCodeGen::DoMathRoundI(LMathRoundI* instr) {
   4156   DoubleRegister input = ToDoubleRegister(instr->value());
   4157   DoubleRegister temp = ToDoubleRegister(instr->temp1());
   4158   DoubleRegister dot_five = double_scratch();
   4159   Register result = ToRegister(instr->result());
   4160   Label done;
   4161 
   4162   // Math.round() rounds to the nearest integer, with ties going towards
   4163   // +infinity. This does not match any IEEE-754 rounding mode.
   4164   //  - Infinities and NaNs are propagated unchanged, but cause deopts because
   4165   //    they can't be represented as integers.
   4166   //  - The sign of the result is the same as the sign of the input. This means
   4167   //    that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a
   4168   //    result of -0.0.
   4169 
   4170   // Add 0.5 and round towards -infinity.
   4171   __ Fmov(dot_five, 0.5);
   4172   __ Fadd(temp, input, dot_five);
   4173   __ Fcvtms(result, temp);
   4174 
   4175   // The result is correct if:
   4176   //  result is not 0, as the input could be NaN or [-0.5, -0.0].
   4177   //  result is not 1, as 0.499...94 will wrongly map to 1.
   4178   //  result fits in 32 bits.
   4179   __ Cmp(result, Operand(result.W(), SXTW));
   4180   __ Ccmp(result, 1, ZFlag, eq);
   4181   __ B(hi, &done);
   4182 
   4183   // At this point, we have to handle possible inputs of NaN or numbers in the
   4184   // range [-0.5, 1.5[, or numbers larger than 32 bits.
   4185 
   4186   // Deoptimize if the result > 1, as it must be larger than 32 bits.
   4187   __ Cmp(result, 1);
   4188   DeoptimizeIf(hi, instr->environment());
   4189 
   4190   // Deoptimize for negative inputs, which at this point are only numbers in
   4191   // the range [-0.5, -0.0]
   4192   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   4193     __ Fmov(result, input);
   4194     DeoptimizeIfNegative(result, instr->environment());
   4195   }
   4196 
   4197   // Deoptimize if the input was NaN.
   4198   __ Fcmp(input, dot_five);
   4199   DeoptimizeIf(vs, instr->environment());
   4200 
   4201   // Now, the only unhandled inputs are in the range [0.0, 1.5[ (or [-0.5, 1.5[
   4202   // if we didn't generate a -0.0 bailout). If input >= 0.5 then return 1,
   4203   // else 0; we avoid dealing with 0.499...94 directly.
   4204   __ Cset(result, ge);
   4205   __ Bind(&done);
   4206 }
   4207 
   4208 
   4209 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
   4210   DoubleRegister input = ToDoubleRegister(instr->value());
   4211   DoubleRegister result = ToDoubleRegister(instr->result());
   4212   __ Fsqrt(result, input);
   4213 }
   4214 
   4215 
   4216 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
   4217   HMathMinMax::Operation op = instr->hydrogen()->operation();
   4218   if (instr->hydrogen()->representation().IsInteger32()) {
   4219     Register result = ToRegister32(instr->result());
   4220     Register left = ToRegister32(instr->left());
   4221     Operand right = ToOperand32I(instr->right());
   4222 
   4223     __ Cmp(left, right);
   4224     __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
   4225   } else if (instr->hydrogen()->representation().IsSmi()) {
   4226     Register result = ToRegister(instr->result());
   4227     Register left = ToRegister(instr->left());
   4228     Operand right = ToOperand(instr->right());
   4229 
   4230     __ Cmp(left, right);
   4231     __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
   4232   } else {
   4233     ASSERT(instr->hydrogen()->representation().IsDouble());
   4234     DoubleRegister result = ToDoubleRegister(instr->result());
   4235     DoubleRegister left = ToDoubleRegister(instr->left());
   4236     DoubleRegister right = ToDoubleRegister(instr->right());
   4237 
   4238     if (op == HMathMinMax::kMathMax) {
   4239       __ Fmax(result, left, right);
   4240     } else {
   4241       ASSERT(op == HMathMinMax::kMathMin);
   4242       __ Fmin(result, left, right);
   4243     }
   4244   }
   4245 }
   4246 
   4247 
   4248 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
   4249   Register dividend = ToRegister32(instr->dividend());
   4250   int32_t divisor = instr->divisor();
   4251   ASSERT(dividend.is(ToRegister32(instr->result())));
   4252 
   4253   // Theoretically, a variation of the branch-free code for integer division by
   4254   // a power of 2 (calculating the remainder via an additional multiplication
   4255   // (which gets simplified to an 'and') and subtraction) should be faster, and
   4256   // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
   4257   // indicate that positive dividends are heavily favored, so the branching
   4258   // version performs better.
   4259   HMod* hmod = instr->hydrogen();
   4260   int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
   4261   Label dividend_is_not_negative, done;
   4262   if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
   4263     __ Tbz(dividend, kWSignBit, &dividend_is_not_negative);
   4264     // Note that this is correct even for kMinInt operands.
   4265     __ Neg(dividend, dividend);
   4266     __ And(dividend, dividend, mask);
   4267     __ Negs(dividend, dividend);
   4268     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   4269       DeoptimizeIf(eq, instr->environment());
   4270     }
   4271     __ B(&done);
   4272   }
   4273 
   4274   __ bind(&dividend_is_not_negative);
   4275   __ And(dividend, dividend, mask);
   4276   __ bind(&done);
   4277 }
   4278 
   4279 
   4280 void LCodeGen::DoModByConstI(LModByConstI* instr) {
   4281   Register dividend = ToRegister32(instr->dividend());
   4282   int32_t divisor = instr->divisor();
   4283   Register result = ToRegister32(instr->result());
   4284   Register temp = ToRegister32(instr->temp());
   4285   ASSERT(!AreAliased(dividend, result, temp));
   4286 
   4287   if (divisor == 0) {
   4288     Deoptimize(instr->environment());
   4289     return;
   4290   }
   4291 
   4292   __ TruncatingDiv(result, dividend, Abs(divisor));
   4293   __ Sxtw(dividend.X(), dividend);
   4294   __ Mov(temp, Abs(divisor));
   4295   __ Smsubl(result.X(), result, temp, dividend.X());
   4296 
   4297   // Check for negative zero.
   4298   HMod* hmod = instr->hydrogen();
   4299   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   4300     Label remainder_not_zero;
   4301     __ Cbnz(result, &remainder_not_zero);
   4302     DeoptimizeIfNegative(dividend, instr->environment());
   4303     __ bind(&remainder_not_zero);
   4304   }
   4305 }
   4306 
   4307 
   4308 void LCodeGen::DoModI(LModI* instr) {
   4309   Register dividend = ToRegister32(instr->left());
   4310   Register divisor = ToRegister32(instr->right());
   4311   Register result = ToRegister32(instr->result());
   4312 
   4313   Label done;
   4314   // modulo = dividend - quotient * divisor
   4315   __ Sdiv(result, dividend, divisor);
   4316   if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
   4317     DeoptimizeIfZero(divisor, instr->environment());
   4318   }
   4319   __ Msub(result, result, divisor, dividend);
   4320   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   4321     __ Cbnz(result, &done);
   4322     DeoptimizeIfNegative(dividend, instr->environment());
   4323   }
   4324   __ Bind(&done);
   4325 }
   4326 
   4327 
   4328 void LCodeGen::DoMulConstIS(LMulConstIS* instr) {
   4329   ASSERT(instr->hydrogen()->representation().IsSmiOrInteger32());
   4330   bool is_smi = instr->hydrogen()->representation().IsSmi();
   4331   Register result =
   4332       is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result());
   4333   Register left =
   4334       is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left()) ;
   4335   int32_t right = ToInteger32(instr->right());
   4336   ASSERT((right > -kMaxInt) || (right < kMaxInt));
   4337 
   4338   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   4339   bool bailout_on_minus_zero =
   4340     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
   4341 
   4342   if (bailout_on_minus_zero) {
   4343     if (right < 0) {
   4344       // The result is -0 if right is negative and left is zero.
   4345       DeoptimizeIfZero(left, instr->environment());
   4346     } else if (right == 0) {
   4347       // The result is -0 if the right is zero and the left is negative.
   4348       DeoptimizeIfNegative(left, instr->environment());
   4349     }
   4350   }
   4351 
   4352   switch (right) {
   4353     // Cases which can detect overflow.
   4354     case -1:
   4355       if (can_overflow) {
   4356         // Only 0x80000000 can overflow here.
   4357         __ Negs(result, left);
   4358         DeoptimizeIf(vs, instr->environment());
   4359       } else {
   4360         __ Neg(result, left);
   4361       }
   4362       break;
   4363     case 0:
   4364       // This case can never overflow.
   4365       __ Mov(result, 0);
   4366       break;
   4367     case 1:
   4368       // This case can never overflow.
   4369       __ Mov(result, left, kDiscardForSameWReg);
   4370       break;
   4371     case 2:
   4372       if (can_overflow) {
   4373         __ Adds(result, left, left);
   4374         DeoptimizeIf(vs, instr->environment());
   4375       } else {
   4376         __ Add(result, left, left);
   4377       }
   4378       break;
   4379 
   4380     default:
   4381       // Multiplication by constant powers of two (and some related values)
   4382       // can be done efficiently with shifted operands.
   4383       int32_t right_abs = Abs(right);
   4384 
   4385       if (IsPowerOf2(right_abs)) {
   4386         int right_log2 = WhichPowerOf2(right_abs);
   4387 
   4388         if (can_overflow) {
   4389           Register scratch = result;
   4390           ASSERT(!AreAliased(scratch, left));
   4391           __ Cls(scratch, left);
   4392           __ Cmp(scratch, right_log2);
   4393           DeoptimizeIf(lt, instr->environment());
   4394         }
   4395 
   4396         if (right >= 0) {
   4397           // result = left << log2(right)
   4398           __ Lsl(result, left, right_log2);
   4399         } else {
   4400           // result = -left << log2(-right)
   4401           if (can_overflow) {
   4402             __ Negs(result, Operand(left, LSL, right_log2));
   4403             DeoptimizeIf(vs, instr->environment());
   4404           } else {
   4405             __ Neg(result, Operand(left, LSL, right_log2));
   4406           }
   4407         }
   4408         return;
   4409       }
   4410 
   4411 
   4412       // For the following cases, we could perform a conservative overflow check
   4413       // with CLS as above. However the few cycles saved are likely not worth
   4414       // the risk of deoptimizing more often than required.
   4415       ASSERT(!can_overflow);
   4416 
   4417       if (right >= 0) {
   4418         if (IsPowerOf2(right - 1)) {
   4419           // result = left + left << log2(right - 1)
   4420           __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1)));
   4421         } else if (IsPowerOf2(right + 1)) {
   4422           // result = -left + left << log2(right + 1)
   4423           __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1)));
   4424           __ Neg(result, result);
   4425         } else {
   4426           UNREACHABLE();
   4427         }
   4428       } else {
   4429         if (IsPowerOf2(-right + 1)) {
   4430           // result = left - left << log2(-right + 1)
   4431           __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1)));
   4432         } else if (IsPowerOf2(-right - 1)) {
   4433           // result = -left - left << log2(-right - 1)
   4434           __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1)));
   4435           __ Neg(result, result);
   4436         } else {
   4437           UNREACHABLE();
   4438         }
   4439       }
   4440   }
   4441 }
   4442 
   4443 
   4444 void LCodeGen::DoMulI(LMulI* instr) {
   4445   Register result = ToRegister32(instr->result());
   4446   Register left = ToRegister32(instr->left());
   4447   Register right = ToRegister32(instr->right());
   4448 
   4449   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   4450   bool bailout_on_minus_zero =
   4451     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
   4452 
   4453   if (bailout_on_minus_zero && !left.Is(right)) {
   4454     // If one operand is zero and the other is negative, the result is -0.
   4455     //  - Set Z (eq) if either left or right, or both, are 0.
   4456     __ Cmp(left, 0);
   4457     __ Ccmp(right, 0, ZFlag, ne);
   4458     //  - If so (eq), set N (mi) if left + right is negative.
   4459     //  - Otherwise, clear N.
   4460     __ Ccmn(left, right, NoFlag, eq);
   4461     DeoptimizeIf(mi, instr->environment());
   4462   }
   4463 
   4464   if (can_overflow) {
   4465     __ Smull(result.X(), left, right);
   4466     __ Cmp(result.X(), Operand(result, SXTW));
   4467     DeoptimizeIf(ne, instr->environment());
   4468   } else {
   4469     __ Mul(result, left, right);
   4470   }
   4471 }
   4472 
   4473 
   4474 void LCodeGen::DoMulS(LMulS* instr) {
   4475   Register result = ToRegister(instr->result());
   4476   Register left = ToRegister(instr->left());
   4477   Register right = ToRegister(instr->right());
   4478 
   4479   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   4480   bool bailout_on_minus_zero =
   4481     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
   4482 
   4483   if (bailout_on_minus_zero && !left.Is(right)) {
   4484     // If one operand is zero and the other is negative, the result is -0.
   4485     //  - Set Z (eq) if either left or right, or both, are 0.
   4486     __ Cmp(left, 0);
   4487     __ Ccmp(right, 0, ZFlag, ne);
   4488     //  - If so (eq), set N (mi) if left + right is negative.
   4489     //  - Otherwise, clear N.
   4490     __ Ccmn(left, right, NoFlag, eq);
   4491     DeoptimizeIf(mi, instr->environment());
   4492   }
   4493 
   4494   STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0));
   4495   if (can_overflow) {
   4496     __ Smulh(result, left, right);
   4497     __ Cmp(result, Operand(result.W(), SXTW));
   4498     __ SmiTag(result);
   4499     DeoptimizeIf(ne, instr->environment());
   4500   } else {
   4501     if (AreAliased(result, left, right)) {
   4502       // All three registers are the same: half untag the input and then
   4503       // multiply, giving a tagged result.
   4504       STATIC_ASSERT((kSmiShift % 2) == 0);
   4505       __ Asr(result, left, kSmiShift / 2);
   4506       __ Mul(result, result, result);
   4507     } else if (result.Is(left) && !left.Is(right)) {
   4508       // Registers result and left alias, right is distinct: untag left into
   4509       // result, and then multiply by right, giving a tagged result.
   4510       __ SmiUntag(result, left);
   4511       __ Mul(result, result, right);
   4512     } else {
   4513       ASSERT(!left.Is(result));
   4514       // Registers result and right alias, left is distinct, or all registers
   4515       // are distinct: untag right into result, and then multiply by left,
   4516       // giving a tagged result.
   4517       __ SmiUntag(result, right);
   4518       __ Mul(result, left, result);
   4519     }
   4520   }
   4521 }
   4522 
   4523 
   4524 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
   4525   // TODO(3095996): Get rid of this. For now, we need to make the
   4526   // result register contain a valid pointer because it is already
   4527   // contained in the register pointer map.
   4528   Register result = ToRegister(instr->result());
   4529   __ Mov(result, 0);
   4530 
   4531   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
   4532   // NumberTagU and NumberTagD use the context from the frame, rather than
   4533   // the environment's HContext or HInlinedContext value.
   4534   // They only call Runtime::kHiddenAllocateHeapNumber.
   4535   // The corresponding HChange instructions are added in a phase that does
   4536   // not have easy access to the local context.
   4537   __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   4538   __ CallRuntimeSaveDoubles(Runtime::kHiddenAllocateHeapNumber);
   4539   RecordSafepointWithRegisters(
   4540       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
   4541   __ StoreToSafepointRegisterSlot(x0, result);
   4542 }
   4543 
   4544 
   4545 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
   4546   class DeferredNumberTagD: public LDeferredCode {
   4547    public:
   4548     DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
   4549         : LDeferredCode(codegen), instr_(instr) { }
   4550     virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
   4551     virtual LInstruction* instr() { return instr_; }
   4552    private:
   4553     LNumberTagD* instr_;
   4554   };
   4555 
   4556   DoubleRegister input = ToDoubleRegister(instr->value());
   4557   Register result = ToRegister(instr->result());
   4558   Register temp1 = ToRegister(instr->temp1());
   4559   Register temp2 = ToRegister(instr->temp2());
   4560 
   4561   DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
   4562   if (FLAG_inline_new) {
   4563     __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2);
   4564   } else {
   4565     __ B(deferred->entry());
   4566   }
   4567 
   4568   __ Bind(deferred->exit());
   4569   __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset));
   4570 }
   4571 
   4572 
   4573 void LCodeGen::DoDeferredNumberTagU(LInstruction* instr,
   4574                                     LOperand* value,
   4575                                     LOperand* temp1,
   4576                                     LOperand* temp2) {
   4577   Label slow, convert_and_store;
   4578   Register src = ToRegister32(value);
   4579   Register dst = ToRegister(instr->result());
   4580   Register scratch1 = ToRegister(temp1);
   4581 
   4582   if (FLAG_inline_new) {
   4583     Register scratch2 = ToRegister(temp2);
   4584     __ AllocateHeapNumber(dst, &slow, scratch1, scratch2);
   4585     __ B(&convert_and_store);
   4586   }
   4587 
   4588   // Slow case: call the runtime system to do the number allocation.
   4589   __ Bind(&slow);
   4590   // TODO(3095996): Put a valid pointer value in the stack slot where the result
   4591   // register is stored, as this register is in the pointer map, but contains an
   4592   // integer value.
   4593   __ Mov(dst, 0);
   4594   {
   4595     // Preserve the value of all registers.
   4596     PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
   4597 
   4598     // NumberTagU and NumberTagD use the context from the frame, rather than
   4599     // the environment's HContext or HInlinedContext value.
   4600     // They only call Runtime::kHiddenAllocateHeapNumber.
   4601     // The corresponding HChange instructions are added in a phase that does
   4602     // not have easy access to the local context.
   4603     __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   4604     __ CallRuntimeSaveDoubles(Runtime::kHiddenAllocateHeapNumber);
   4605     RecordSafepointWithRegisters(
   4606       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
   4607     __ StoreToSafepointRegisterSlot(x0, dst);
   4608   }
   4609 
   4610   // Convert number to floating point and store in the newly allocated heap
   4611   // number.
   4612   __ Bind(&convert_and_store);
   4613   DoubleRegister dbl_scratch = double_scratch();
   4614   __ Ucvtf(dbl_scratch, src);
   4615   __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
   4616 }
   4617 
   4618 
   4619 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
   4620   class DeferredNumberTagU: public LDeferredCode {
   4621    public:
   4622     DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
   4623         : LDeferredCode(codegen), instr_(instr) { }
   4624     virtual void Generate() {
   4625       codegen()->DoDeferredNumberTagU(instr_,
   4626                                       instr_->value(),
   4627                                       instr_->temp1(),
   4628                                       instr_->temp2());
   4629     }
   4630     virtual LInstruction* instr() { return instr_; }
   4631    private:
   4632     LNumberTagU* instr_;
   4633   };
   4634 
   4635   Register value = ToRegister32(instr->value());
   4636   Register result = ToRegister(instr->result());
   4637 
   4638   DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
   4639   __ Cmp(value, Smi::kMaxValue);
   4640   __ B(hi, deferred->entry());
   4641   __ SmiTag(result, value.X());
   4642   __ Bind(deferred->exit());
   4643 }
   4644 
   4645 
   4646 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
   4647   Register input = ToRegister(instr->value());
   4648   Register scratch = ToRegister(instr->temp());
   4649   DoubleRegister result = ToDoubleRegister(instr->result());
   4650   bool can_convert_undefined_to_nan =
   4651       instr->hydrogen()->can_convert_undefined_to_nan();
   4652 
   4653   Label done, load_smi;
   4654 
   4655   // Work out what untag mode we're working with.
   4656   HValue* value = instr->hydrogen()->value();
   4657   NumberUntagDMode mode = value->representation().IsSmi()
   4658       ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
   4659 
   4660   if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
   4661     __ JumpIfSmi(input, &load_smi);
   4662 
   4663     Label convert_undefined;
   4664 
   4665     // Heap number map check.
   4666     __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
   4667     if (can_convert_undefined_to_nan) {
   4668       __ JumpIfNotRoot(scratch, Heap::kHeapNumberMapRootIndex,
   4669                        &convert_undefined);
   4670     } else {
   4671       DeoptimizeIfNotRoot(scratch, Heap::kHeapNumberMapRootIndex,
   4672                           instr->environment());
   4673     }
   4674 
   4675     // Load heap number.
   4676     __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset));
   4677     if (instr->hydrogen()->deoptimize_on_minus_zero()) {
   4678       DeoptimizeIfMinusZero(result, instr->environment());
   4679     }
   4680     __ B(&done);
   4681 
   4682     if (can_convert_undefined_to_nan) {
   4683       __ Bind(&convert_undefined);
   4684       DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex,
   4685                           instr->environment());
   4686 
   4687       __ LoadRoot(scratch, Heap::kNanValueRootIndex);
   4688       __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset));
   4689       __ B(&done);
   4690     }
   4691 
   4692   } else {
   4693     ASSERT(mode == NUMBER_CANDIDATE_IS_SMI);
   4694     // Fall through to load_smi.
   4695   }
   4696 
   4697   // Smi to double register conversion.
   4698   __ Bind(&load_smi);
   4699   __ SmiUntagToDouble(result, input);
   4700 
   4701   __ Bind(&done);
   4702 }
   4703 
   4704 
   4705 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
   4706   // This is a pseudo-instruction that ensures that the environment here is
   4707   // properly registered for deoptimization and records the assembler's PC
   4708   // offset.
   4709   LEnvironment* environment = instr->environment();
   4710 
   4711   // If the environment were already registered, we would have no way of
   4712   // backpatching it with the spill slot operands.
   4713   ASSERT(!environment->HasBeenRegistered());
   4714   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
   4715 
   4716   GenerateOsrPrologue();
   4717 }
   4718 
   4719 
   4720 void LCodeGen::DoParameter(LParameter* instr) {
   4721   // Nothing to do.
   4722 }
   4723 
   4724 
   4725 void LCodeGen::DoPreparePushArguments(LPreparePushArguments* instr) {
   4726   __ PushPreamble(instr->argc(), kPointerSize);
   4727 }
   4728 
   4729 
   4730 void LCodeGen::DoPushArguments(LPushArguments* instr) {
   4731   MacroAssembler::PushPopQueue args(masm());
   4732 
   4733   for (int i = 0; i < instr->ArgumentCount(); ++i) {
   4734     LOperand* arg = instr->argument(i);
   4735     if (arg->IsDoubleRegister() || arg->IsDoubleStackSlot()) {
   4736       Abort(kDoPushArgumentNotImplementedForDoubleType);
   4737       return;
   4738     }
   4739     args.Queue(ToRegister(arg));
   4740   }
   4741 
   4742   // The preamble was done by LPreparePushArguments.
   4743   args.PushQueued(MacroAssembler::PushPopQueue::SKIP_PREAMBLE);
   4744 
   4745   after_push_argument_ = true;
   4746 }
   4747 
   4748 
   4749 void LCodeGen::DoReturn(LReturn* instr) {
   4750   if (FLAG_trace && info()->IsOptimizing()) {
   4751     // Push the return value on the stack as the parameter.
   4752     // Runtime::TraceExit returns its parameter in x0.  We're leaving the code
   4753     // managed by the register allocator and tearing down the frame, it's
   4754     // safe to write to the context register.
   4755     __ Push(x0);
   4756     __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   4757     __ CallRuntime(Runtime::kTraceExit, 1);
   4758   }
   4759 
   4760   if (info()->saves_caller_doubles()) {
   4761     RestoreCallerDoubles();
   4762   }
   4763 
   4764   int no_frame_start = -1;
   4765   if (NeedsEagerFrame()) {
   4766     Register stack_pointer = masm()->StackPointer();
   4767     __ Mov(stack_pointer, fp);
   4768     no_frame_start = masm_->pc_offset();
   4769     __ Pop(fp, lr);
   4770   }
   4771 
   4772   if (instr->has_constant_parameter_count()) {
   4773     int parameter_count = ToInteger32(instr->constant_parameter_count());
   4774     __ Drop(parameter_count + 1);
   4775   } else {
   4776     Register parameter_count = ToRegister(instr->parameter_count());
   4777     __ DropBySMI(parameter_count);
   4778   }
   4779   __ Ret();
   4780 
   4781   if (no_frame_start != -1) {
   4782     info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
   4783   }
   4784 }
   4785 
   4786 
   4787 MemOperand LCodeGen::BuildSeqStringOperand(Register string,
   4788                                            Register temp,
   4789                                            LOperand* index,
   4790                                            String::Encoding encoding) {
   4791   if (index->IsConstantOperand()) {
   4792     int offset = ToInteger32(LConstantOperand::cast(index));
   4793     if (encoding == String::TWO_BYTE_ENCODING) {
   4794       offset *= kUC16Size;
   4795     }
   4796     STATIC_ASSERT(kCharSize == 1);
   4797     return FieldMemOperand(string, SeqString::kHeaderSize + offset);
   4798   }
   4799 
   4800   __ Add(temp, string, SeqString::kHeaderSize - kHeapObjectTag);
   4801   if (encoding == String::ONE_BYTE_ENCODING) {
   4802     return MemOperand(temp, ToRegister32(index), SXTW);
   4803   } else {
   4804     STATIC_ASSERT(kUC16Size == 2);
   4805     return MemOperand(temp, ToRegister32(index), SXTW, 1);
   4806   }
   4807 }
   4808 
   4809 
   4810 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
   4811   String::Encoding encoding = instr->hydrogen()->encoding();
   4812   Register string = ToRegister(instr->string());
   4813   Register result = ToRegister(instr->result());
   4814   Register temp = ToRegister(instr->temp());
   4815 
   4816   if (FLAG_debug_code) {
   4817     // Even though this lithium instruction comes with a temp register, we
   4818     // can't use it here because we want to use "AtStart" constraints on the
   4819     // inputs and the debug code here needs a scratch register.
   4820     UseScratchRegisterScope temps(masm());
   4821     Register dbg_temp = temps.AcquireX();
   4822 
   4823     __ Ldr(dbg_temp, FieldMemOperand(string, HeapObject::kMapOffset));
   4824     __ Ldrb(dbg_temp, FieldMemOperand(dbg_temp, Map::kInstanceTypeOffset));
   4825 
   4826     __ And(dbg_temp, dbg_temp,
   4827            Operand(kStringRepresentationMask | kStringEncodingMask));
   4828     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
   4829     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
   4830     __ Cmp(dbg_temp, Operand(encoding == String::ONE_BYTE_ENCODING
   4831                              ? one_byte_seq_type : two_byte_seq_type));
   4832     __ Check(eq, kUnexpectedStringType);
   4833   }
   4834 
   4835   MemOperand operand =
   4836       BuildSeqStringOperand(string, temp, instr->index(), encoding);
   4837   if (encoding == String::ONE_BYTE_ENCODING) {
   4838     __ Ldrb(result, operand);
   4839   } else {
   4840     __ Ldrh(result, operand);
   4841   }
   4842 }
   4843 
   4844 
   4845 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
   4846   String::Encoding encoding = instr->hydrogen()->encoding();
   4847   Register string = ToRegister(instr->string());
   4848   Register value = ToRegister(instr->value());
   4849   Register temp = ToRegister(instr->temp());
   4850 
   4851   if (FLAG_debug_code) {
   4852     ASSERT(ToRegister(instr->context()).is(cp));
   4853     Register index = ToRegister(instr->index());
   4854     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
   4855     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
   4856     int encoding_mask =
   4857         instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
   4858         ? one_byte_seq_type : two_byte_seq_type;
   4859     __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp,
   4860                                  encoding_mask);
   4861   }
   4862   MemOperand operand =
   4863       BuildSeqStringOperand(string, temp, instr->index(), encoding);
   4864   if (encoding == String::ONE_BYTE_ENCODING) {
   4865     __ Strb(value, operand);
   4866   } else {
   4867     __ Strh(value, operand);
   4868   }
   4869 }
   4870 
   4871 
   4872 void LCodeGen::DoSmiTag(LSmiTag* instr) {
   4873   HChange* hchange = instr->hydrogen();
   4874   Register input = ToRegister(instr->value());
   4875   Register output = ToRegister(instr->result());
   4876   if (hchange->CheckFlag(HValue::kCanOverflow) &&
   4877       hchange->value()->CheckFlag(HValue::kUint32)) {
   4878     DeoptimizeIfNegative(input.W(), instr->environment());
   4879   }
   4880   __ SmiTag(output, input);
   4881 }
   4882 
   4883 
   4884 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
   4885   Register input = ToRegister(instr->value());
   4886   Register result = ToRegister(instr->result());
   4887   Label done, untag;
   4888 
   4889   if (instr->needs_check()) {
   4890     DeoptimizeIfNotSmi(input, instr->environment());
   4891   }
   4892 
   4893   __ Bind(&untag);
   4894   __ SmiUntag(result, input);
   4895   __ Bind(&done);
   4896 }
   4897 
   4898 
   4899 void LCodeGen::DoShiftI(LShiftI* instr) {
   4900   LOperand* right_op = instr->right();
   4901   Register left = ToRegister32(instr->left());
   4902   Register result = ToRegister32(instr->result());
   4903 
   4904   if (right_op->IsRegister()) {
   4905     Register right = ToRegister32(instr->right());
   4906     switch (instr->op()) {
   4907       case Token::ROR: __ Ror(result, left, right); break;
   4908       case Token::SAR: __ Asr(result, left, right); break;
   4909       case Token::SHL: __ Lsl(result, left, right); break;
   4910       case Token::SHR:
   4911         if (instr->can_deopt()) {
   4912           Label right_not_zero;
   4913           __ Cbnz(right, &right_not_zero);
   4914           DeoptimizeIfNegative(left, instr->environment());
   4915           __ Bind(&right_not_zero);
   4916         }
   4917         __ Lsr(result, left, right);
   4918         break;
   4919       default: UNREACHABLE();
   4920     }
   4921   } else {
   4922     ASSERT(right_op->IsConstantOperand());
   4923     int shift_count = JSShiftAmountFromLConstant(right_op);
   4924     if (shift_count == 0) {
   4925       if ((instr->op() == Token::SHR) && instr->can_deopt()) {
   4926         DeoptimizeIfNegative(left, instr->environment());
   4927       }
   4928       __ Mov(result, left, kDiscardForSameWReg);
   4929     } else {
   4930       switch (instr->op()) {
   4931         case Token::ROR: __ Ror(result, left, shift_count); break;
   4932         case Token::SAR: __ Asr(result, left, shift_count); break;
   4933         case Token::SHL: __ Lsl(result, left, shift_count); break;
   4934         case Token::SHR: __ Lsr(result, left, shift_count); break;
   4935         default: UNREACHABLE();
   4936       }
   4937     }
   4938   }
   4939 }
   4940 
   4941 
   4942 void LCodeGen::DoShiftS(LShiftS* instr) {
   4943   LOperand* right_op = instr->right();
   4944   Register left = ToRegister(instr->left());
   4945   Register result = ToRegister(instr->result());
   4946 
   4947   // Only ROR by register needs a temp.
   4948   ASSERT(((instr->op() == Token::ROR) && right_op->IsRegister()) ||
   4949          (instr->temp() == NULL));
   4950 
   4951   if (right_op->IsRegister()) {
   4952     Register right = ToRegister(instr->right());
   4953     switch (instr->op()) {
   4954       case Token::ROR: {
   4955         Register temp = ToRegister(instr->temp());
   4956         __ Ubfx(temp, right, kSmiShift, 5);
   4957         __ SmiUntag(result, left);
   4958         __ Ror(result.W(), result.W(), temp.W());
   4959         __ SmiTag(result);
   4960         break;
   4961       }
   4962       case Token::SAR:
   4963         __ Ubfx(result, right, kSmiShift, 5);
   4964         __ Asr(result, left, result);
   4965         __ Bic(result, result, kSmiShiftMask);
   4966         break;
   4967       case Token::SHL:
   4968         __ Ubfx(result, right, kSmiShift, 5);
   4969         __ Lsl(result, left, result);
   4970         break;
   4971       case Token::SHR:
   4972         if (instr->can_deopt()) {
   4973           Label right_not_zero;
   4974           __ Cbnz(right, &right_not_zero);
   4975           DeoptimizeIfNegative(left, instr->environment());
   4976           __ Bind(&right_not_zero);
   4977         }
   4978         __ Ubfx(result, right, kSmiShift, 5);
   4979         __ Lsr(result, left, result);
   4980         __ Bic(result, result, kSmiShiftMask);
   4981         break;
   4982       default: UNREACHABLE();
   4983     }
   4984   } else {
   4985     ASSERT(right_op->IsConstantOperand());
   4986     int shift_count = JSShiftAmountFromLConstant(right_op);
   4987     if (shift_count == 0) {
   4988       if ((instr->op() == Token::SHR) && instr->can_deopt()) {
   4989         DeoptimizeIfNegative(left, instr->environment());
   4990       }
   4991       __ Mov(result, left);
   4992     } else {
   4993       switch (instr->op()) {
   4994         case Token::ROR:
   4995           __ SmiUntag(result, left);
   4996           __ Ror(result.W(), result.W(), shift_count);
   4997           __ SmiTag(result);
   4998           break;
   4999         case Token::SAR:
   5000           __ Asr(result, left, shift_count);
   5001           __ Bic(result, result, kSmiShiftMask);
   5002           break;
   5003         case Token::SHL:
   5004           __ Lsl(result, left, shift_count);
   5005           break;
   5006         case Token::SHR:
   5007           __ Lsr(result, left, shift_count);
   5008           __ Bic(result, result, kSmiShiftMask);
   5009           break;
   5010         default: UNREACHABLE();
   5011       }
   5012     }
   5013   }
   5014 }
   5015 
   5016 
   5017 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
   5018   __ Debug("LDebugBreak", 0, BREAK);
   5019 }
   5020 
   5021 
   5022 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
   5023   ASSERT(ToRegister(instr->context()).is(cp));
   5024   Register scratch1 = x5;
   5025   Register scratch2 = x6;
   5026   ASSERT(instr->IsMarkedAsCall());
   5027 
   5028   ASM_UNIMPLEMENTED_BREAK("DoDeclareGlobals");
   5029   // TODO(all): if Mov could handle object in new space then it could be used
   5030   // here.
   5031   __ LoadHeapObject(scratch1, instr->hydrogen()->pairs());
   5032   __ Mov(scratch2, Smi::FromInt(instr->hydrogen()->flags()));
   5033   __ Push(cp, scratch1, scratch2);  // The context is the first argument.
   5034   CallRuntime(Runtime::kHiddenDeclareGlobals, 3, instr);
   5035 }
   5036 
   5037 
   5038 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
   5039   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
   5040   LoadContextFromDeferred(instr->context());
   5041   __ CallRuntimeSaveDoubles(Runtime::kHiddenStackGuard);
   5042   RecordSafepointWithLazyDeopt(
   5043       instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
   5044   ASSERT(instr->HasEnvironment());
   5045   LEnvironment* env = instr->environment();
   5046   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   5047 }
   5048 
   5049 
   5050 void LCodeGen::DoStackCheck(LStackCheck* instr) {
   5051   class DeferredStackCheck: public LDeferredCode {
   5052    public:
   5053     DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
   5054         : LDeferredCode(codegen), instr_(instr) { }
   5055     virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
   5056     virtual LInstruction* instr() { return instr_; }
   5057    private:
   5058     LStackCheck* instr_;
   5059   };
   5060 
   5061   ASSERT(instr->HasEnvironment());
   5062   LEnvironment* env = instr->environment();
   5063   // There is no LLazyBailout instruction for stack-checks. We have to
   5064   // prepare for lazy deoptimization explicitly here.
   5065   if (instr->hydrogen()->is_function_entry()) {
   5066     // Perform stack overflow check.
   5067     Label done;
   5068     __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
   5069     __ B(hs, &done);
   5070 
   5071     PredictableCodeSizeScope predictable(masm_,
   5072                                          Assembler::kCallSizeWithRelocation);
   5073     ASSERT(instr->context()->IsRegister());
   5074     ASSERT(ToRegister(instr->context()).is(cp));
   5075     CallCode(isolate()->builtins()->StackCheck(),
   5076              RelocInfo::CODE_TARGET,
   5077              instr);
   5078     __ Bind(&done);
   5079   } else {
   5080     ASSERT(instr->hydrogen()->is_backwards_branch());
   5081     // Perform stack overflow check if this goto needs it before jumping.
   5082     DeferredStackCheck* deferred_stack_check =
   5083         new(zone()) DeferredStackCheck(this, instr);
   5084     __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
   5085     __ B(lo, deferred_stack_check->entry());
   5086 
   5087     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
   5088     __ Bind(instr->done_label());
   5089     deferred_stack_check->SetExit(instr->done_label());
   5090     RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
   5091     // Don't record a deoptimization index for the safepoint here.
   5092     // This will be done explicitly when emitting call and the safepoint in
   5093     // the deferred code.
   5094   }
   5095 }
   5096 
   5097 
   5098 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
   5099   Register function = ToRegister(instr->function());
   5100   Register code_object = ToRegister(instr->code_object());
   5101   Register temp = ToRegister(instr->temp());
   5102   __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag);
   5103   __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
   5104 }
   5105 
   5106 
   5107 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
   5108   Register context = ToRegister(instr->context());
   5109   Register value = ToRegister(instr->value());
   5110   Register scratch = ToRegister(instr->temp());
   5111   MemOperand target = ContextMemOperand(context, instr->slot_index());
   5112 
   5113   Label skip_assignment;
   5114 
   5115   if (instr->hydrogen()->RequiresHoleCheck()) {
   5116     __ Ldr(scratch, target);
   5117     if (instr->hydrogen()->DeoptimizesOnHole()) {
   5118       DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex,
   5119                        instr->environment());
   5120     } else {
   5121       __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment);
   5122     }
   5123   }
   5124 
   5125   __ Str(value, target);
   5126   if (instr->hydrogen()->NeedsWriteBarrier()) {
   5127     SmiCheck check_needed =
   5128         instr->hydrogen()->value()->type().IsHeapObject()
   5129             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   5130     __ RecordWriteContextSlot(context,
   5131                               target.offset(),
   5132                               value,
   5133                               scratch,
   5134                               GetLinkRegisterState(),
   5135                               kSaveFPRegs,
   5136                               EMIT_REMEMBERED_SET,
   5137                               check_needed);
   5138   }
   5139   __ Bind(&skip_assignment);
   5140 }
   5141 
   5142 
   5143 void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
   5144   Register value = ToRegister(instr->value());
   5145   Register cell = ToRegister(instr->temp1());
   5146 
   5147   // Load the cell.
   5148   __ Mov(cell, Operand(instr->hydrogen()->cell().handle()));
   5149 
   5150   // If the cell we are storing to contains the hole it could have
   5151   // been deleted from the property dictionary. In that case, we need
   5152   // to update the property details in the property dictionary to mark
   5153   // it as no longer deleted. We deoptimize in that case.
   5154   if (instr->hydrogen()->RequiresHoleCheck()) {
   5155     Register payload = ToRegister(instr->temp2());
   5156     __ Ldr(payload, FieldMemOperand(cell, Cell::kValueOffset));
   5157     DeoptimizeIfRoot(
   5158         payload, Heap::kTheHoleValueRootIndex, instr->environment());
   5159   }
   5160 
   5161   // Store the value.
   5162   __ Str(value, FieldMemOperand(cell, Cell::kValueOffset));
   5163   // Cells are always rescanned, so no write barrier here.
   5164 }
   5165 
   5166 
   5167 void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) {
   5168   Register ext_ptr = ToRegister(instr->elements());
   5169   Register key = no_reg;
   5170   Register scratch;
   5171   ElementsKind elements_kind = instr->elements_kind();
   5172 
   5173   bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
   5174   bool key_is_constant = instr->key()->IsConstantOperand();
   5175   int constant_key = 0;
   5176   if (key_is_constant) {
   5177     ASSERT(instr->temp() == NULL);
   5178     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
   5179     if (constant_key & 0xf0000000) {
   5180       Abort(kArrayIndexConstantValueTooBig);
   5181     }
   5182   } else {
   5183     key = ToRegister(instr->key());
   5184     scratch = ToRegister(instr->temp());
   5185   }
   5186 
   5187   MemOperand dst =
   5188     PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
   5189                                      key_is_constant, constant_key,
   5190                                      elements_kind,
   5191                                      instr->base_offset());
   5192 
   5193   if ((elements_kind == EXTERNAL_FLOAT32_ELEMENTS) ||
   5194       (elements_kind == FLOAT32_ELEMENTS)) {
   5195     DoubleRegister value = ToDoubleRegister(instr->value());
   5196     DoubleRegister dbl_scratch = double_scratch();
   5197     __ Fcvt(dbl_scratch.S(), value);
   5198     __ Str(dbl_scratch.S(), dst);
   5199   } else if ((elements_kind == EXTERNAL_FLOAT64_ELEMENTS) ||
   5200              (elements_kind == FLOAT64_ELEMENTS)) {
   5201     DoubleRegister value = ToDoubleRegister(instr->value());
   5202     __ Str(value, dst);
   5203   } else {
   5204     Register value = ToRegister(instr->value());
   5205 
   5206     switch (elements_kind) {
   5207       case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
   5208       case EXTERNAL_INT8_ELEMENTS:
   5209       case EXTERNAL_UINT8_ELEMENTS:
   5210       case UINT8_ELEMENTS:
   5211       case UINT8_CLAMPED_ELEMENTS:
   5212       case INT8_ELEMENTS:
   5213         __ Strb(value, dst);
   5214         break;
   5215       case EXTERNAL_INT16_ELEMENTS:
   5216       case EXTERNAL_UINT16_ELEMENTS:
   5217       case INT16_ELEMENTS:
   5218       case UINT16_ELEMENTS:
   5219         __ Strh(value, dst);
   5220         break;
   5221       case EXTERNAL_INT32_ELEMENTS:
   5222       case EXTERNAL_UINT32_ELEMENTS:
   5223       case INT32_ELEMENTS:
   5224       case UINT32_ELEMENTS:
   5225         __ Str(value.W(), dst);
   5226         break;
   5227       case FLOAT32_ELEMENTS:
   5228       case FLOAT64_ELEMENTS:
   5229       case EXTERNAL_FLOAT32_ELEMENTS:
   5230       case EXTERNAL_FLOAT64_ELEMENTS:
   5231       case FAST_DOUBLE_ELEMENTS:
   5232       case FAST_ELEMENTS:
   5233       case FAST_SMI_ELEMENTS:
   5234       case FAST_HOLEY_DOUBLE_ELEMENTS:
   5235       case FAST_HOLEY_ELEMENTS:
   5236       case FAST_HOLEY_SMI_ELEMENTS:
   5237       case DICTIONARY_ELEMENTS:
   5238       case SLOPPY_ARGUMENTS_ELEMENTS:
   5239         UNREACHABLE();
   5240         break;
   5241     }
   5242   }
   5243 }
   5244 
   5245 
   5246 void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) {
   5247   Register elements = ToRegister(instr->elements());
   5248   DoubleRegister value = ToDoubleRegister(instr->value());
   5249   MemOperand mem_op;
   5250 
   5251   if (instr->key()->IsConstantOperand()) {
   5252     int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
   5253     if (constant_key & 0xf0000000) {
   5254       Abort(kArrayIndexConstantValueTooBig);
   5255     }
   5256     int offset = instr->base_offset() + constant_key * kDoubleSize;
   5257     mem_op = MemOperand(elements, offset);
   5258   } else {
   5259     Register store_base = ToRegister(instr->temp());
   5260     Register key = ToRegister(instr->key());
   5261     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
   5262     mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
   5263                                       instr->hydrogen()->elements_kind(),
   5264                                       instr->hydrogen()->representation(),
   5265                                       instr->base_offset());
   5266   }
   5267 
   5268   if (instr->NeedsCanonicalization()) {
   5269     __ CanonicalizeNaN(double_scratch(), value);
   5270     __ Str(double_scratch(), mem_op);
   5271   } else {
   5272     __ Str(value, mem_op);
   5273   }
   5274 }
   5275 
   5276 
   5277 void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) {
   5278   Register value = ToRegister(instr->value());
   5279   Register elements = ToRegister(instr->elements());
   5280   Register scratch = no_reg;
   5281   Register store_base = no_reg;
   5282   Register key = no_reg;
   5283   MemOperand mem_op;
   5284 
   5285   if (!instr->key()->IsConstantOperand() ||
   5286       instr->hydrogen()->NeedsWriteBarrier()) {
   5287     scratch = ToRegister(instr->temp());
   5288   }
   5289 
   5290   Representation representation = instr->hydrogen()->value()->representation();
   5291   if (instr->key()->IsConstantOperand()) {
   5292     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
   5293     int offset = instr->base_offset() +
   5294         ToInteger32(const_operand) * kPointerSize;
   5295     store_base = elements;
   5296     if (representation.IsInteger32()) {
   5297       ASSERT(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
   5298       ASSERT(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
   5299       STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) &&
   5300                     (kSmiTag == 0));
   5301       mem_op = UntagSmiMemOperand(store_base, offset);
   5302     } else {
   5303       mem_op = MemOperand(store_base, offset);
   5304     }
   5305   } else {
   5306     store_base = scratch;
   5307     key = ToRegister(instr->key());
   5308     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
   5309 
   5310     mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
   5311                                       instr->hydrogen()->elements_kind(),
   5312                                       representation, instr->base_offset());
   5313   }
   5314 
   5315   __ Store(value, mem_op, representation);
   5316 
   5317   if (instr->hydrogen()->NeedsWriteBarrier()) {
   5318     ASSERT(representation.IsTagged());
   5319     // This assignment may cause element_addr to alias store_base.
   5320     Register element_addr = scratch;
   5321     SmiCheck check_needed =
   5322         instr->hydrogen()->value()->type().IsHeapObject()
   5323             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   5324     // Compute address of modified element and store it into key register.
   5325     __ Add(element_addr, mem_op.base(), mem_op.OffsetAsOperand());
   5326     __ RecordWrite(elements, element_addr, value, GetLinkRegisterState(),
   5327                    kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed,
   5328                    instr->hydrogen()->PointersToHereCheckForValue());
   5329   }
   5330 }
   5331 
   5332 
   5333 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
   5334   ASSERT(ToRegister(instr->context()).is(cp));
   5335   ASSERT(ToRegister(instr->object()).Is(x2));
   5336   ASSERT(ToRegister(instr->key()).Is(x1));
   5337   ASSERT(ToRegister(instr->value()).Is(x0));
   5338 
   5339   Handle<Code> ic = instr->strict_mode() == STRICT
   5340       ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
   5341       : isolate()->builtins()->KeyedStoreIC_Initialize();
   5342   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   5343 }
   5344 
   5345 
   5346 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
   5347   Representation representation = instr->representation();
   5348 
   5349   Register object = ToRegister(instr->object());
   5350   HObjectAccess access = instr->hydrogen()->access();
   5351   int offset = access.offset();
   5352 
   5353   if (access.IsExternalMemory()) {
   5354     ASSERT(!instr->hydrogen()->has_transition());
   5355     ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
   5356     Register value = ToRegister(instr->value());
   5357     __ Store(value, MemOperand(object, offset), representation);
   5358     return;
   5359   }
   5360 
   5361   __ AssertNotSmi(object);
   5362 
   5363   if (representation.IsDouble()) {
   5364     ASSERT(access.IsInobject());
   5365     ASSERT(!instr->hydrogen()->has_transition());
   5366     ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
   5367     FPRegister value = ToDoubleRegister(instr->value());
   5368     __ Str(value, FieldMemOperand(object, offset));
   5369     return;
   5370   }
   5371 
   5372   Register value = ToRegister(instr->value());
   5373 
   5374   ASSERT(!representation.IsSmi() ||
   5375          !instr->value()->IsConstantOperand() ||
   5376          IsInteger32Constant(LConstantOperand::cast(instr->value())));
   5377 
   5378   if (instr->hydrogen()->has_transition()) {
   5379     Handle<Map> transition = instr->hydrogen()->transition_map();
   5380     AddDeprecationDependency(transition);
   5381     // Store the new map value.
   5382     Register new_map_value = ToRegister(instr->temp0());
   5383     __ Mov(new_map_value, Operand(transition));
   5384     __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset));
   5385     if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
   5386       // Update the write barrier for the map field.
   5387       __ RecordWriteForMap(object,
   5388                            new_map_value,
   5389                            ToRegister(instr->temp1()),
   5390                            GetLinkRegisterState(),
   5391                            kSaveFPRegs);
   5392     }
   5393   }
   5394 
   5395   // Do the store.
   5396   Register destination;
   5397   if (access.IsInobject()) {
   5398     destination = object;
   5399   } else {
   5400     Register temp0 = ToRegister(instr->temp0());
   5401     __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset));
   5402     destination = temp0;
   5403   }
   5404 
   5405   if (representation.IsSmi() &&
   5406      instr->hydrogen()->value()->representation().IsInteger32()) {
   5407     ASSERT(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
   5408 #ifdef DEBUG
   5409     Register temp0 = ToRegister(instr->temp0());
   5410     __ Ldr(temp0, FieldMemOperand(destination, offset));
   5411     __ AssertSmi(temp0);
   5412     // If destination aliased temp0, restore it to the address calculated
   5413     // earlier.
   5414     if (destination.Is(temp0)) {
   5415       ASSERT(!access.IsInobject());
   5416       __ Ldr(destination, FieldMemOperand(object, JSObject::kPropertiesOffset));
   5417     }
   5418 #endif
   5419     STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0);
   5420     __ Store(value, UntagSmiFieldMemOperand(destination, offset),
   5421              Representation::Integer32());
   5422   } else {
   5423     __ Store(value, FieldMemOperand(destination, offset), representation);
   5424   }
   5425   if (instr->hydrogen()->NeedsWriteBarrier()) {
   5426     __ RecordWriteField(destination,
   5427                         offset,
   5428                         value,                        // Clobbered.
   5429                         ToRegister(instr->temp1()),   // Clobbered.
   5430                         GetLinkRegisterState(),
   5431                         kSaveFPRegs,
   5432                         EMIT_REMEMBERED_SET,
   5433                         instr->hydrogen()->SmiCheckForWriteBarrier(),
   5434                         instr->hydrogen()->PointersToHereCheckForValue());
   5435   }
   5436 }
   5437 
   5438 
   5439 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
   5440   ASSERT(ToRegister(instr->context()).is(cp));
   5441   ASSERT(ToRegister(instr->value()).is(x0));
   5442   ASSERT(ToRegister(instr->object()).is(x1));
   5443 
   5444   // Name must be in x2.
   5445   __ Mov(x2, Operand(instr->name()));
   5446   Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode());
   5447   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   5448 }
   5449 
   5450 
   5451 void LCodeGen::DoStringAdd(LStringAdd* instr) {
   5452   ASSERT(ToRegister(instr->context()).is(cp));
   5453   ASSERT(ToRegister(instr->left()).Is(x1));
   5454   ASSERT(ToRegister(instr->right()).Is(x0));
   5455   StringAddStub stub(isolate(),
   5456                      instr->hydrogen()->flags(),
   5457                      instr->hydrogen()->pretenure_flag());
   5458   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   5459 }
   5460 
   5461 
   5462 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
   5463   class DeferredStringCharCodeAt: public LDeferredCode {
   5464    public:
   5465     DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
   5466         : LDeferredCode(codegen), instr_(instr) { }
   5467     virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
   5468     virtual LInstruction* instr() { return instr_; }
   5469    private:
   5470     LStringCharCodeAt* instr_;
   5471   };
   5472 
   5473   DeferredStringCharCodeAt* deferred =
   5474       new(zone()) DeferredStringCharCodeAt(this, instr);
   5475 
   5476   StringCharLoadGenerator::Generate(masm(),
   5477                                     ToRegister(instr->string()),
   5478                                     ToRegister32(instr->index()),
   5479                                     ToRegister(instr->result()),
   5480                                     deferred->entry());
   5481   __ Bind(deferred->exit());
   5482 }
   5483 
   5484 
   5485 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
   5486   Register string = ToRegister(instr->string());
   5487   Register result = ToRegister(instr->result());
   5488 
   5489   // TODO(3095996): Get rid of this. For now, we need to make the
   5490   // result register contain a valid pointer because it is already
   5491   // contained in the register pointer map.
   5492   __ Mov(result, 0);
   5493 
   5494   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
   5495   __ Push(string);
   5496   // Push the index as a smi. This is safe because of the checks in
   5497   // DoStringCharCodeAt above.
   5498   Register index = ToRegister(instr->index());
   5499   __ SmiTagAndPush(index);
   5500 
   5501   CallRuntimeFromDeferred(Runtime::kHiddenStringCharCodeAt, 2, instr,
   5502                           instr->context());
   5503   __ AssertSmi(x0);
   5504   __ SmiUntag(x0);
   5505   __ StoreToSafepointRegisterSlot(x0, result);
   5506 }
   5507 
   5508 
   5509 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
   5510   class DeferredStringCharFromCode: public LDeferredCode {
   5511    public:
   5512     DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
   5513         : LDeferredCode(codegen), instr_(instr) { }
   5514     virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
   5515     virtual LInstruction* instr() { return instr_; }
   5516    private:
   5517     LStringCharFromCode* instr_;
   5518   };
   5519 
   5520   DeferredStringCharFromCode* deferred =
   5521       new(zone()) DeferredStringCharFromCode(this, instr);
   5522 
   5523   ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
   5524   Register char_code = ToRegister32(instr->char_code());
   5525   Register result = ToRegister(instr->result());
   5526 
   5527   __ Cmp(char_code, String::kMaxOneByteCharCode);
   5528   __ B(hi, deferred->entry());
   5529   __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
   5530   __ Add(result, result, FixedArray::kHeaderSize - kHeapObjectTag);
   5531   __ Ldr(result, MemOperand(result, char_code, SXTW, kPointerSizeLog2));
   5532   __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
   5533   __ B(eq, deferred->entry());
   5534   __ Bind(deferred->exit());
   5535 }
   5536 
   5537 
   5538 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
   5539   Register char_code = ToRegister(instr->char_code());
   5540   Register result = ToRegister(instr->result());
   5541 
   5542   // TODO(3095996): Get rid of this. For now, we need to make the
   5543   // result register contain a valid pointer because it is already
   5544   // contained in the register pointer map.
   5545   __ Mov(result, 0);
   5546 
   5547   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
   5548   __ SmiTagAndPush(char_code);
   5549   CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
   5550   __ StoreToSafepointRegisterSlot(x0, result);
   5551 }
   5552 
   5553 
   5554 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
   5555   ASSERT(ToRegister(instr->context()).is(cp));
   5556   Token::Value op = instr->op();
   5557 
   5558   Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
   5559   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   5560   InlineSmiCheckInfo::EmitNotInlined(masm());
   5561 
   5562   Condition condition = TokenToCondition(op, false);
   5563 
   5564   EmitCompareAndBranch(instr, condition, x0, 0);
   5565 }
   5566 
   5567 
   5568 void LCodeGen::DoSubI(LSubI* instr) {
   5569   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   5570   Register result = ToRegister32(instr->result());
   5571   Register left = ToRegister32(instr->left());
   5572   Operand right = ToShiftedRightOperand32I(instr->right(), instr);
   5573 
   5574   if (can_overflow) {
   5575     __ Subs(result, left, right);
   5576     DeoptimizeIf(vs, instr->environment());
   5577   } else {
   5578     __ Sub(result, left, right);
   5579   }
   5580 }
   5581 
   5582 
   5583 void LCodeGen::DoSubS(LSubS* instr) {
   5584   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   5585   Register result = ToRegister(instr->result());
   5586   Register left = ToRegister(instr->left());
   5587   Operand right = ToOperand(instr->right());
   5588   if (can_overflow) {
   5589     __ Subs(result, left, right);
   5590     DeoptimizeIf(vs, instr->environment());
   5591   } else {
   5592     __ Sub(result, left, right);
   5593   }
   5594 }
   5595 
   5596 
   5597 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr,
   5598                                    LOperand* value,
   5599                                    LOperand* temp1,
   5600                                    LOperand* temp2) {
   5601   Register input = ToRegister(value);
   5602   Register scratch1 = ToRegister(temp1);
   5603   DoubleRegister dbl_scratch1 = double_scratch();
   5604 
   5605   Label done;
   5606 
   5607   // Load heap object map.
   5608   __ Ldr(scratch1, FieldMemOperand(input, HeapObject::kMapOffset));
   5609 
   5610   if (instr->truncating()) {
   5611     Register output = ToRegister(instr->result());
   5612     Label check_bools;
   5613 
   5614     // If it's not a heap number, jump to undefined check.
   5615     __ JumpIfNotRoot(scratch1, Heap::kHeapNumberMapRootIndex, &check_bools);
   5616 
   5617     // A heap number: load value and convert to int32 using truncating function.
   5618     __ TruncateHeapNumberToI(output, input);
   5619     __ B(&done);
   5620 
   5621     __ Bind(&check_bools);
   5622 
   5623     Register true_root = output;
   5624     Register false_root = scratch1;
   5625     __ LoadTrueFalseRoots(true_root, false_root);
   5626     __ Cmp(input, true_root);
   5627     __ Cset(output, eq);
   5628     __ Ccmp(input, false_root, ZFlag, ne);
   5629     __ B(eq, &done);
   5630 
   5631     // Output contains zero, undefined is converted to zero for truncating
   5632     // conversions.
   5633     DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex,
   5634                         instr->environment());
   5635   } else {
   5636     Register output = ToRegister32(instr->result());
   5637 
   5638     DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2);
   5639 
   5640     // Deoptimized if it's not a heap number.
   5641     DeoptimizeIfNotRoot(scratch1, Heap::kHeapNumberMapRootIndex,
   5642                         instr->environment());
   5643 
   5644     // A heap number: load value and convert to int32 using non-truncating
   5645     // function. If the result is out of range, branch to deoptimize.
   5646     __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset));
   5647     __ TryRepresentDoubleAsInt32(output, dbl_scratch1, dbl_scratch2);
   5648     DeoptimizeIf(ne, instr->environment());
   5649 
   5650     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   5651       __ Cmp(output, 0);
   5652       __ B(ne, &done);
   5653       __ Fmov(scratch1, dbl_scratch1);
   5654       DeoptimizeIfNegative(scratch1, instr->environment());
   5655     }
   5656   }
   5657   __ Bind(&done);
   5658 }
   5659 
   5660 
   5661 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
   5662   class DeferredTaggedToI: public LDeferredCode {
   5663    public:
   5664     DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
   5665         : LDeferredCode(codegen), instr_(instr) { }
   5666     virtual void Generate() {
   5667       codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(),
   5668                                      instr_->temp2());
   5669     }
   5670 
   5671     virtual LInstruction* instr() { return instr_; }
   5672    private:
   5673     LTaggedToI* instr_;
   5674   };
   5675 
   5676   Register input = ToRegister(instr->value());
   5677   Register output = ToRegister(instr->result());
   5678 
   5679   if (instr->hydrogen()->value()->representation().IsSmi()) {
   5680     __ SmiUntag(output, input);
   5681   } else {
   5682     DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
   5683 
   5684     __ JumpIfNotSmi(input, deferred->entry());
   5685     __ SmiUntag(output, input);
   5686     __ Bind(deferred->exit());
   5687   }
   5688 }
   5689 
   5690 
   5691 void LCodeGen::DoThisFunction(LThisFunction* instr) {
   5692   Register result = ToRegister(instr->result());
   5693   __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
   5694 }
   5695 
   5696 
   5697 void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
   5698   ASSERT(ToRegister(instr->value()).Is(x0));
   5699   ASSERT(ToRegister(instr->result()).Is(x0));
   5700   __ Push(x0);
   5701   CallRuntime(Runtime::kToFastProperties, 1, instr);
   5702 }
   5703 
   5704 
   5705 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
   5706   ASSERT(ToRegister(instr->context()).is(cp));
   5707   Label materialized;
   5708   // Registers will be used as follows:
   5709   // x7 = literals array.
   5710   // x1 = regexp literal.
   5711   // x0 = regexp literal clone.
   5712   // x10-x12 are used as temporaries.
   5713   int literal_offset =
   5714       FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
   5715   __ LoadObject(x7, instr->hydrogen()->literals());
   5716   __ Ldr(x1, FieldMemOperand(x7, literal_offset));
   5717   __ JumpIfNotRoot(x1, Heap::kUndefinedValueRootIndex, &materialized);
   5718 
   5719   // Create regexp literal using runtime function
   5720   // Result will be in x0.
   5721   __ Mov(x12, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
   5722   __ Mov(x11, Operand(instr->hydrogen()->pattern()));
   5723   __ Mov(x10, Operand(instr->hydrogen()->flags()));
   5724   __ Push(x7, x12, x11, x10);
   5725   CallRuntime(Runtime::kHiddenMaterializeRegExpLiteral, 4, instr);
   5726   __ Mov(x1, x0);
   5727 
   5728   __ Bind(&materialized);
   5729   int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
   5730   Label allocated, runtime_allocate;
   5731 
   5732   __ Allocate(size, x0, x10, x11, &runtime_allocate, TAG_OBJECT);
   5733   __ B(&allocated);
   5734 
   5735   __ Bind(&runtime_allocate);
   5736   __ Mov(x0, Smi::FromInt(size));
   5737   __ Push(x1, x0);
   5738   CallRuntime(Runtime::kHiddenAllocateInNewSpace, 1, instr);
   5739   __ Pop(x1);
   5740 
   5741   __ Bind(&allocated);
   5742   // Copy the content into the newly allocated memory.
   5743   __ CopyFields(x0, x1, CPURegList(x10, x11, x12), size / kPointerSize);
   5744 }
   5745 
   5746 
   5747 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
   5748   Register object = ToRegister(instr->object());
   5749 
   5750   Handle<Map> from_map = instr->original_map();
   5751   Handle<Map> to_map = instr->transitioned_map();
   5752   ElementsKind from_kind = instr->from_kind();
   5753   ElementsKind to_kind = instr->to_kind();
   5754 
   5755   Label not_applicable;
   5756 
   5757   if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
   5758     Register temp1 = ToRegister(instr->temp1());
   5759     Register new_map = ToRegister(instr->temp2());
   5760     __ CheckMap(object, temp1, from_map, &not_applicable, DONT_DO_SMI_CHECK);
   5761     __ Mov(new_map, Operand(to_map));
   5762     __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset));
   5763     // Write barrier.
   5764     __ RecordWriteForMap(object, new_map, temp1, GetLinkRegisterState(),
   5765                          kDontSaveFPRegs);
   5766   } else {
   5767     {
   5768       UseScratchRegisterScope temps(masm());
   5769       // Use the temp register only in a restricted scope - the codegen checks
   5770       // that we do not use any register across a call.
   5771       __ CheckMap(object, temps.AcquireX(), from_map, &not_applicable,
   5772                   DONT_DO_SMI_CHECK);
   5773     }
   5774     ASSERT(object.is(x0));
   5775     ASSERT(ToRegister(instr->context()).is(cp));
   5776     PushSafepointRegistersScope scope(
   5777         this, Safepoint::kWithRegistersAndDoubles);
   5778     __ Mov(x1, Operand(to_map));
   5779     bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
   5780     TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
   5781     __ CallStub(&stub);
   5782     RecordSafepointWithRegistersAndDoubles(
   5783         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
   5784   }
   5785   __ Bind(&not_applicable);
   5786 }
   5787 
   5788 
   5789 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
   5790   Register object = ToRegister(instr->object());
   5791   Register temp1 = ToRegister(instr->temp1());
   5792   Register temp2 = ToRegister(instr->temp2());
   5793 
   5794   Label no_memento_found;
   5795   __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found);
   5796   DeoptimizeIf(eq, instr->environment());
   5797   __ Bind(&no_memento_found);
   5798 }
   5799 
   5800 
   5801 void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) {
   5802   DoubleRegister input = ToDoubleRegister(instr->value());
   5803   Register result = ToRegister(instr->result());
   5804   __ TruncateDoubleToI(result, input);
   5805   if (instr->tag_result()) {
   5806     __ SmiTag(result, result);
   5807   }
   5808 }
   5809 
   5810 
   5811 void LCodeGen::DoTypeof(LTypeof* instr) {
   5812   Register input = ToRegister(instr->value());
   5813   __ Push(input);
   5814   CallRuntime(Runtime::kTypeof, 1, instr);
   5815 }
   5816 
   5817 
   5818 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
   5819   Handle<String> type_name = instr->type_literal();
   5820   Label* true_label = instr->TrueLabel(chunk_);
   5821   Label* false_label = instr->FalseLabel(chunk_);
   5822   Register value = ToRegister(instr->value());
   5823 
   5824   Factory* factory = isolate()->factory();
   5825   if (String::Equals(type_name, factory->number_string())) {
   5826     ASSERT(instr->temp1() != NULL);
   5827     Register map = ToRegister(instr->temp1());
   5828 
   5829     __ JumpIfSmi(value, true_label);
   5830     __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
   5831     __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
   5832     EmitBranch(instr, eq);
   5833 
   5834   } else if (String::Equals(type_name, factory->string_string())) {
   5835     ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
   5836     Register map = ToRegister(instr->temp1());
   5837     Register scratch = ToRegister(instr->temp2());
   5838 
   5839     __ JumpIfSmi(value, false_label);
   5840     __ JumpIfObjectType(
   5841         value, map, scratch, FIRST_NONSTRING_TYPE, false_label, ge);
   5842     __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
   5843     EmitTestAndBranch(instr, eq, scratch, 1 << Map::kIsUndetectable);
   5844 
   5845   } else if (String::Equals(type_name, factory->symbol_string())) {
   5846     ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
   5847     Register map = ToRegister(instr->temp1());
   5848     Register scratch = ToRegister(instr->temp2());
   5849 
   5850     __ JumpIfSmi(value, false_label);
   5851     __ CompareObjectType(value, map, scratch, SYMBOL_TYPE);
   5852     EmitBranch(instr, eq);
   5853 
   5854   } else if (String::Equals(type_name, factory->boolean_string())) {
   5855     __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label);
   5856     __ CompareRoot(value, Heap::kFalseValueRootIndex);
   5857     EmitBranch(instr, eq);
   5858 
   5859   } else if (FLAG_harmony_typeof &&
   5860              String::Equals(type_name, factory->null_string())) {
   5861     __ CompareRoot(value, Heap::kNullValueRootIndex);
   5862     EmitBranch(instr, eq);
   5863 
   5864   } else if (String::Equals(type_name, factory->undefined_string())) {
   5865     ASSERT(instr->temp1() != NULL);
   5866     Register scratch = ToRegister(instr->temp1());
   5867 
   5868     __ JumpIfRoot(value, Heap::kUndefinedValueRootIndex, true_label);
   5869     __ JumpIfSmi(value, false_label);
   5870     // Check for undetectable objects and jump to the true branch in this case.
   5871     __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
   5872     __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
   5873     EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable);
   5874 
   5875   } else if (String::Equals(type_name, factory->function_string())) {
   5876     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
   5877     ASSERT(instr->temp1() != NULL);
   5878     Register type = ToRegister(instr->temp1());
   5879 
   5880     __ JumpIfSmi(value, false_label);
   5881     __ JumpIfObjectType(value, type, type, JS_FUNCTION_TYPE, true_label);
   5882     // HeapObject's type has been loaded into type register by JumpIfObjectType.
   5883     EmitCompareAndBranch(instr, eq, type, JS_FUNCTION_PROXY_TYPE);
   5884 
   5885   } else if (String::Equals(type_name, factory->object_string())) {
   5886     ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
   5887     Register map = ToRegister(instr->temp1());
   5888     Register scratch = ToRegister(instr->temp2());
   5889 
   5890     __ JumpIfSmi(value, false_label);
   5891     if (!FLAG_harmony_typeof) {
   5892       __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label);
   5893     }
   5894     __ JumpIfObjectType(value, map, scratch,
   5895                         FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, false_label, lt);
   5896     __ CompareInstanceType(map, scratch, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
   5897     __ B(gt, false_label);
   5898     // Check for undetectable objects => false.
   5899     __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
   5900     EmitTestAndBranch(instr, eq, scratch, 1 << Map::kIsUndetectable);
   5901 
   5902   } else {
   5903     __ B(false_label);
   5904   }
   5905 }
   5906 
   5907 
   5908 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
   5909   __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value()));
   5910 }
   5911 
   5912 
   5913 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
   5914   Register object = ToRegister(instr->value());
   5915   Register map = ToRegister(instr->map());
   5916   Register temp = ToRegister(instr->temp());
   5917   __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
   5918   __ Cmp(map, temp);
   5919   DeoptimizeIf(ne, instr->environment());
   5920 }
   5921 
   5922 
   5923 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
   5924   Register receiver = ToRegister(instr->receiver());
   5925   Register function = ToRegister(instr->function());
   5926   Register result = ToRegister(instr->result());
   5927 
   5928   // If the receiver is null or undefined, we have to pass the global object as
   5929   // a receiver to normal functions. Values have to be passed unchanged to
   5930   // builtins and strict-mode functions.
   5931   Label global_object, done, copy_receiver;
   5932 
   5933   if (!instr->hydrogen()->known_function()) {
   5934     __ Ldr(result, FieldMemOperand(function,
   5935                                    JSFunction::kSharedFunctionInfoOffset));
   5936 
   5937     // CompilerHints is an int32 field. See objects.h.
   5938     __ Ldr(result.W(),
   5939            FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset));
   5940 
   5941     // Do not transform the receiver to object for strict mode functions.
   5942     __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, &copy_receiver);
   5943 
   5944     // Do not transform the receiver to object for builtins.
   5945     __ Tbnz(result, SharedFunctionInfo::kNative, &copy_receiver);
   5946   }
   5947 
   5948   // Normal function. Replace undefined or null with global receiver.
   5949   __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object);
   5950   __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object);
   5951 
   5952   // Deoptimize if the receiver is not a JS object.
   5953   DeoptimizeIfSmi(receiver, instr->environment());
   5954   __ CompareObjectType(receiver, result, result, FIRST_SPEC_OBJECT_TYPE);
   5955   __ B(ge, &copy_receiver);
   5956   Deoptimize(instr->environment());
   5957 
   5958   __ Bind(&global_object);
   5959   __ Ldr(result, FieldMemOperand(function, JSFunction::kContextOffset));
   5960   __ Ldr(result, ContextMemOperand(result, Context::GLOBAL_OBJECT_INDEX));
   5961   __ Ldr(result, FieldMemOperand(result, GlobalObject::kGlobalReceiverOffset));
   5962   __ B(&done);
   5963 
   5964   __ Bind(&copy_receiver);
   5965   __ Mov(result, receiver);
   5966   __ Bind(&done);
   5967 }
   5968 
   5969 
   5970 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
   5971                                            Register result,
   5972                                            Register object,
   5973                                            Register index) {
   5974   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
   5975   __ Push(object);
   5976   __ Push(index);
   5977   __ Mov(cp, 0);
   5978   __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
   5979   RecordSafepointWithRegisters(
   5980       instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
   5981   __ StoreToSafepointRegisterSlot(x0, result);
   5982 }
   5983 
   5984 
   5985 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
   5986   class DeferredLoadMutableDouble V8_FINAL : public LDeferredCode {
   5987    public:
   5988     DeferredLoadMutableDouble(LCodeGen* codegen,
   5989                               LLoadFieldByIndex* instr,
   5990                               Register result,
   5991                               Register object,
   5992                               Register index)
   5993         : LDeferredCode(codegen),
   5994           instr_(instr),
   5995           result_(result),
   5996           object_(object),
   5997           index_(index) {
   5998     }
   5999     virtual void Generate() V8_OVERRIDE {
   6000       codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
   6001     }
   6002     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
   6003    private:
   6004     LLoadFieldByIndex* instr_;
   6005     Register result_;
   6006     Register object_;
   6007     Register index_;
   6008   };
   6009   Register object = ToRegister(instr->object());
   6010   Register index = ToRegister(instr->index());
   6011   Register result = ToRegister(instr->result());
   6012 
   6013   __ AssertSmi(index);
   6014 
   6015   DeferredLoadMutableDouble* deferred;
   6016   deferred = new(zone()) DeferredLoadMutableDouble(
   6017       this, instr, result, object, index);
   6018 
   6019   Label out_of_object, done;
   6020 
   6021   __ TestAndBranchIfAnySet(
   6022       index, reinterpret_cast<uint64_t>(Smi::FromInt(1)), deferred->entry());
   6023   __ Mov(index, Operand(index, ASR, 1));
   6024 
   6025   __ Cmp(index, Smi::FromInt(0));
   6026   __ B(lt, &out_of_object);
   6027 
   6028   STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
   6029   __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
   6030   __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize));
   6031 
   6032   __ B(&done);
   6033 
   6034   __ Bind(&out_of_object);
   6035   __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
   6036   // Index is equal to negated out of object property index plus 1.
   6037   __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
   6038   __ Ldr(result, FieldMemOperand(result,
   6039                                  FixedArray::kHeaderSize - kPointerSize));
   6040   __ Bind(deferred->exit());
   6041   __ Bind(&done);
   6042 }
   6043 
   6044 
   6045 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
   6046   Register context = ToRegister(instr->context());
   6047   __ Str(context, MemOperand(fp, StandardFrameConstants::kContextOffset));
   6048 }
   6049 
   6050 
   6051 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
   6052   Handle<ScopeInfo> scope_info = instr->scope_info();
   6053   __ Push(scope_info);
   6054   __ Push(ToRegister(instr->function()));
   6055   CallRuntime(Runtime::kHiddenPushBlockContext, 2, instr);
   6056   RecordSafepoint(Safepoint::kNoLazyDeopt);
   6057 }
   6058 
   6059 
   6060 
   6061 } }  // namespace v8::internal
   6062