Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The ScalarEvolution class is an LLVM pass which can be used to analyze and
     11 // categorize scalar expressions in loops.  It specializes in recognizing
     12 // general induction variables, representing them with the abstract and opaque
     13 // SCEV class.  Given this analysis, trip counts of loops and other important
     14 // properties can be obtained.
     15 //
     16 // This analysis is primarily useful for induction variable substitution and
     17 // strength reduction.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
     22 #define LLVM_ANALYSIS_SCALAREVOLUTION_H
     23 
     24 #include "llvm/ADT/DenseSet.h"
     25 #include "llvm/ADT/FoldingSet.h"
     26 #include "llvm/IR/ConstantRange.h"
     27 #include "llvm/IR/Function.h"
     28 #include "llvm/IR/Instructions.h"
     29 #include "llvm/IR/Operator.h"
     30 #include "llvm/IR/ValueHandle.h"
     31 #include "llvm/Pass.h"
     32 #include "llvm/Support/Allocator.h"
     33 #include "llvm/Support/DataTypes.h"
     34 #include <map>
     35 
     36 namespace llvm {
     37   class APInt;
     38   class Constant;
     39   class ConstantInt;
     40   class DominatorTree;
     41   class Type;
     42   class ScalarEvolution;
     43   class DataLayout;
     44   class TargetLibraryInfo;
     45   class LLVMContext;
     46   class Loop;
     47   class LoopInfo;
     48   class Operator;
     49   class SCEVUnknown;
     50   class SCEV;
     51   template<> struct FoldingSetTrait<SCEV>;
     52 
     53   /// SCEV - This class represents an analyzed expression in the program.  These
     54   /// are opaque objects that the client is not allowed to do much with
     55   /// directly.
     56   ///
     57   class SCEV : public FoldingSetNode {
     58     friend struct FoldingSetTrait<SCEV>;
     59 
     60     /// FastID - A reference to an Interned FoldingSetNodeID for this node.
     61     /// The ScalarEvolution's BumpPtrAllocator holds the data.
     62     FoldingSetNodeIDRef FastID;
     63 
     64     // The SCEV baseclass this node corresponds to
     65     const unsigned short SCEVType;
     66 
     67   protected:
     68     /// SubclassData - This field is initialized to zero and may be used in
     69     /// subclasses to store miscellaneous information.
     70     unsigned short SubclassData;
     71 
     72   private:
     73     SCEV(const SCEV &) LLVM_DELETED_FUNCTION;
     74     void operator=(const SCEV &) LLVM_DELETED_FUNCTION;
     75 
     76   public:
     77     /// NoWrapFlags are bitfield indices into SubclassData.
     78     ///
     79     /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
     80     /// no-signed-wrap <NSW> properties, which are derived from the IR
     81     /// operator. NSW is a misnomer that we use to mean no signed overflow or
     82     /// underflow.
     83     ///
     84     /// AddRec expression may have a no-self-wraparound <NW> property if the
     85     /// result can never reach the start value. This property is independent of
     86     /// the actual start value and step direction. Self-wraparound is defined
     87     /// purely in terms of the recurrence's loop, step size, and
     88     /// bitwidth. Formally, a recurrence with no self-wraparound satisfies:
     89     /// abs(step) * max-iteration(loop) <= unsigned-max(bitwidth).
     90     ///
     91     /// Note that NUW and NSW are also valid properties of a recurrence, and
     92     /// either implies NW. For convenience, NW will be set for a recurrence
     93     /// whenever either NUW or NSW are set.
     94     enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
     95                        FlagNW      = (1 << 0),   // No self-wrap.
     96                        FlagNUW     = (1 << 1),   // No unsigned wrap.
     97                        FlagNSW     = (1 << 2),   // No signed wrap.
     98                        NoWrapMask  = (1 << 3) -1 };
     99 
    100     explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
    101       FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
    102 
    103     unsigned getSCEVType() const { return SCEVType; }
    104 
    105     /// getType - Return the LLVM type of this SCEV expression.
    106     ///
    107     Type *getType() const;
    108 
    109     /// isZero - Return true if the expression is a constant zero.
    110     ///
    111     bool isZero() const;
    112 
    113     /// isOne - Return true if the expression is a constant one.
    114     ///
    115     bool isOne() const;
    116 
    117     /// isAllOnesValue - Return true if the expression is a constant
    118     /// all-ones value.
    119     ///
    120     bool isAllOnesValue() const;
    121 
    122     /// isNonConstantNegative - Return true if the specified scev is negated,
    123     /// but not a constant.
    124     bool isNonConstantNegative() const;
    125 
    126     /// print - Print out the internal representation of this scalar to the
    127     /// specified stream.  This should really only be used for debugging
    128     /// purposes.
    129     void print(raw_ostream &OS) const;
    130 
    131     /// dump - This method is used for debugging.
    132     ///
    133     void dump() const;
    134   };
    135 
    136   // Specialize FoldingSetTrait for SCEV to avoid needing to compute
    137   // temporary FoldingSetNodeID values.
    138   template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
    139     static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
    140       ID = X.FastID;
    141     }
    142     static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
    143                        unsigned IDHash, FoldingSetNodeID &TempID) {
    144       return ID == X.FastID;
    145     }
    146     static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
    147       return X.FastID.ComputeHash();
    148     }
    149   };
    150 
    151   inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
    152     S.print(OS);
    153     return OS;
    154   }
    155 
    156   /// SCEVCouldNotCompute - An object of this class is returned by queries that
    157   /// could not be answered.  For example, if you ask for the number of
    158   /// iterations of a linked-list traversal loop, you will get one of these.
    159   /// None of the standard SCEV operations are valid on this class, it is just a
    160   /// marker.
    161   struct SCEVCouldNotCompute : public SCEV {
    162     SCEVCouldNotCompute();
    163 
    164     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    165     static bool classof(const SCEV *S);
    166   };
    167 
    168   /// ScalarEvolution - This class is the main scalar evolution driver.  Because
    169   /// client code (intentionally) can't do much with the SCEV objects directly,
    170   /// they must ask this class for services.
    171   ///
    172   class ScalarEvolution : public FunctionPass {
    173   public:
    174     /// LoopDisposition - An enum describing the relationship between a
    175     /// SCEV and a loop.
    176     enum LoopDisposition {
    177       LoopVariant,    ///< The SCEV is loop-variant (unknown).
    178       LoopInvariant,  ///< The SCEV is loop-invariant.
    179       LoopComputable  ///< The SCEV varies predictably with the loop.
    180     };
    181 
    182     /// BlockDisposition - An enum describing the relationship between a
    183     /// SCEV and a basic block.
    184     enum BlockDisposition {
    185       DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
    186       DominatesBlock,        ///< The SCEV dominates the block.
    187       ProperlyDominatesBlock ///< The SCEV properly dominates the block.
    188     };
    189 
    190     /// Convenient NoWrapFlags manipulation that hides enum casts and is
    191     /// visible in the ScalarEvolution name space.
    192     static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
    193     maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
    194       return (SCEV::NoWrapFlags)(Flags & Mask);
    195     }
    196     static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
    197     setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags) {
    198       return (SCEV::NoWrapFlags)(Flags | OnFlags);
    199     }
    200     static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
    201     clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
    202       return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
    203     }
    204 
    205   private:
    206     /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
    207     /// notified whenever a Value is deleted.
    208     class SCEVCallbackVH : public CallbackVH {
    209       ScalarEvolution *SE;
    210       void deleted() override;
    211       void allUsesReplacedWith(Value *New) override;
    212     public:
    213       SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
    214     };
    215 
    216     friend class SCEVCallbackVH;
    217     friend class SCEVExpander;
    218     friend class SCEVUnknown;
    219 
    220     /// F - The function we are analyzing.
    221     ///
    222     Function *F;
    223 
    224     /// LI - The loop information for the function we are currently analyzing.
    225     ///
    226     LoopInfo *LI;
    227 
    228     /// The DataLayout information for the target we are targeting.
    229     ///
    230     const DataLayout *DL;
    231 
    232     /// TLI - The target library information for the target we are targeting.
    233     ///
    234     TargetLibraryInfo *TLI;
    235 
    236     /// DT - The dominator tree.
    237     ///
    238     DominatorTree *DT;
    239 
    240     /// CouldNotCompute - This SCEV is used to represent unknown trip
    241     /// counts and things.
    242     SCEVCouldNotCompute CouldNotCompute;
    243 
    244     /// ValueExprMapType - The typedef for ValueExprMap.
    245     ///
    246     typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
    247       ValueExprMapType;
    248 
    249     /// ValueExprMap - This is a cache of the values we have analyzed so far.
    250     ///
    251     ValueExprMapType ValueExprMap;
    252 
    253     /// Mark predicate values currently being processed by isImpliedCond.
    254     DenseSet<Value*> PendingLoopPredicates;
    255 
    256     /// ExitLimit - Information about the number of loop iterations for which a
    257     /// loop exit's branch condition evaluates to the not-taken path.  This is a
    258     /// temporary pair of exact and max expressions that are eventually
    259     /// summarized in ExitNotTakenInfo and BackedgeTakenInfo.
    260     ///
    261     /// If MustExit is true, then the exit must be taken when the BECount
    262     /// reaches Exact (and before surpassing Max). If MustExit is false, then
    263     /// BECount may exceed Exact or Max if the loop exits via another branch. In
    264     /// either case, the loop may exit early via another branch.
    265     ///
    266     /// MustExit is true for most cases. However, an exit guarded by an
    267     /// (in)equality on a nonunit stride may be skipped.
    268     struct ExitLimit {
    269       const SCEV *Exact;
    270       const SCEV *Max;
    271       bool MustExit;
    272 
    273       /*implicit*/ ExitLimit(const SCEV *E)
    274         : Exact(E), Max(E), MustExit(true) {}
    275 
    276       ExitLimit(const SCEV *E, const SCEV *M, bool MustExit)
    277         : Exact(E), Max(M), MustExit(MustExit) {}
    278 
    279       /// hasAnyInfo - Test whether this ExitLimit contains any computed
    280       /// information, or whether it's all SCEVCouldNotCompute values.
    281       bool hasAnyInfo() const {
    282         return !isa<SCEVCouldNotCompute>(Exact) ||
    283           !isa<SCEVCouldNotCompute>(Max);
    284       }
    285     };
    286 
    287     /// ExitNotTakenInfo - Information about the number of times a particular
    288     /// loop exit may be reached before exiting the loop.
    289     struct ExitNotTakenInfo {
    290       AssertingVH<BasicBlock> ExitingBlock;
    291       const SCEV *ExactNotTaken;
    292       PointerIntPair<ExitNotTakenInfo*, 1> NextExit;
    293 
    294       ExitNotTakenInfo() : ExitingBlock(nullptr), ExactNotTaken(nullptr) {}
    295 
    296       /// isCompleteList - Return true if all loop exits are computable.
    297       bool isCompleteList() const {
    298         return NextExit.getInt() == 0;
    299       }
    300 
    301       void setIncomplete() { NextExit.setInt(1); }
    302 
    303       /// getNextExit - Return a pointer to the next exit's not-taken info.
    304       ExitNotTakenInfo *getNextExit() const {
    305         return NextExit.getPointer();
    306       }
    307 
    308       void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); }
    309     };
    310 
    311     /// BackedgeTakenInfo - Information about the backedge-taken count
    312     /// of a loop. This currently includes an exact count and a maximum count.
    313     ///
    314     class BackedgeTakenInfo {
    315       /// ExitNotTaken - A list of computable exits and their not-taken counts.
    316       /// Loops almost never have more than one computable exit.
    317       ExitNotTakenInfo ExitNotTaken;
    318 
    319       /// Max - An expression indicating the least maximum backedge-taken
    320       /// count of the loop that is known, or a SCEVCouldNotCompute.
    321       const SCEV *Max;
    322 
    323     public:
    324       BackedgeTakenInfo() : Max(nullptr) {}
    325 
    326       /// Initialize BackedgeTakenInfo from a list of exact exit counts.
    327       BackedgeTakenInfo(
    328         SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
    329         bool Complete, const SCEV *MaxCount);
    330 
    331       /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
    332       /// computed information, or whether it's all SCEVCouldNotCompute
    333       /// values.
    334       bool hasAnyInfo() const {
    335         return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
    336       }
    337 
    338       /// getExact - Return an expression indicating the exact backedge-taken
    339       /// count of the loop if it is known, or SCEVCouldNotCompute
    340       /// otherwise. This is the number of times the loop header can be
    341       /// guaranteed to execute, minus one.
    342       const SCEV *getExact(ScalarEvolution *SE) const;
    343 
    344       /// getExact - Return the number of times this loop exit may fall through
    345       /// to the back edge, or SCEVCouldNotCompute. The loop is guaranteed not
    346       /// to exit via this block before this number of iterations, but may exit
    347       /// via another block.
    348       const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
    349 
    350       /// getMax - Get the max backedge taken count for the loop.
    351       const SCEV *getMax(ScalarEvolution *SE) const;
    352 
    353       /// Return true if any backedge taken count expressions refer to the given
    354       /// subexpression.
    355       bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
    356 
    357       /// clear - Invalidate this result and free associated memory.
    358       void clear();
    359     };
    360 
    361     /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
    362     /// this function as they are computed.
    363     DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
    364 
    365     /// ConstantEvolutionLoopExitValue - This map contains entries for all of
    366     /// the PHI instructions that we attempt to compute constant evolutions for.
    367     /// This allows us to avoid potentially expensive recomputation of these
    368     /// properties.  An instruction maps to null if we are unable to compute its
    369     /// exit value.
    370     DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
    371 
    372     /// ValuesAtScopes - This map contains entries for all the expressions
    373     /// that we attempt to compute getSCEVAtScope information for, which can
    374     /// be expensive in extreme cases.
    375     DenseMap<const SCEV *,
    376              SmallVector<std::pair<const Loop *, const SCEV *>, 2> > ValuesAtScopes;
    377 
    378     /// LoopDispositions - Memoized computeLoopDisposition results.
    379     DenseMap<const SCEV *,
    380              SmallVector<std::pair<const Loop *, LoopDisposition>, 2> > LoopDispositions;
    381 
    382     /// computeLoopDisposition - Compute a LoopDisposition value.
    383     LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
    384 
    385     /// BlockDispositions - Memoized computeBlockDisposition results.
    386     DenseMap<const SCEV *,
    387              SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> > BlockDispositions;
    388 
    389     /// computeBlockDisposition - Compute a BlockDisposition value.
    390     BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
    391 
    392     /// UnsignedRanges - Memoized results from getUnsignedRange
    393     DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
    394 
    395     /// SignedRanges - Memoized results from getSignedRange
    396     DenseMap<const SCEV *, ConstantRange> SignedRanges;
    397 
    398     /// setUnsignedRange - Set the memoized unsigned range for the given SCEV.
    399     const ConstantRange &setUnsignedRange(const SCEV *S,
    400                                           const ConstantRange &CR) {
    401       std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
    402         UnsignedRanges.insert(std::make_pair(S, CR));
    403       if (!Pair.second)
    404         Pair.first->second = CR;
    405       return Pair.first->second;
    406     }
    407 
    408     /// setUnsignedRange - Set the memoized signed range for the given SCEV.
    409     const ConstantRange &setSignedRange(const SCEV *S,
    410                                         const ConstantRange &CR) {
    411       std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
    412         SignedRanges.insert(std::make_pair(S, CR));
    413       if (!Pair.second)
    414         Pair.first->second = CR;
    415       return Pair.first->second;
    416     }
    417 
    418     /// createSCEV - We know that there is no SCEV for the specified value.
    419     /// Analyze the expression.
    420     const SCEV *createSCEV(Value *V);
    421 
    422     /// createNodeForPHI - Provide the special handling we need to analyze PHI
    423     /// SCEVs.
    424     const SCEV *createNodeForPHI(PHINode *PN);
    425 
    426     /// createNodeForGEP - Provide the special handling we need to analyze GEP
    427     /// SCEVs.
    428     const SCEV *createNodeForGEP(GEPOperator *GEP);
    429 
    430     /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
    431     /// at most once for each SCEV+Loop pair.
    432     ///
    433     const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
    434 
    435     /// ForgetSymbolicValue - This looks up computed SCEV values for all
    436     /// instructions that depend on the given instruction and removes them from
    437     /// the ValueExprMap map if they reference SymName. This is used during PHI
    438     /// resolution.
    439     void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
    440 
    441     /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
    442     /// loop, lazily computing new values if the loop hasn't been analyzed
    443     /// yet.
    444     const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
    445 
    446     /// ComputeBackedgeTakenCount - Compute the number of times the specified
    447     /// loop will iterate.
    448     BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
    449 
    450     /// ComputeExitLimit - Compute the number of times the backedge of the
    451     /// specified loop will execute if it exits via the specified block.
    452     ExitLimit ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock);
    453 
    454     /// ComputeExitLimitFromCond - Compute the number of times the backedge of
    455     /// the specified loop will execute if its exit condition were a conditional
    456     /// branch of ExitCond, TBB, and FBB.
    457     ExitLimit ComputeExitLimitFromCond(const Loop *L,
    458                                        Value *ExitCond,
    459                                        BasicBlock *TBB,
    460                                        BasicBlock *FBB,
    461                                        bool IsSubExpr);
    462 
    463     /// ComputeExitLimitFromICmp - Compute the number of times the backedge of
    464     /// the specified loop will execute if its exit condition were a conditional
    465     /// branch of the ICmpInst ExitCond, TBB, and FBB.
    466     ExitLimit ComputeExitLimitFromICmp(const Loop *L,
    467                                        ICmpInst *ExitCond,
    468                                        BasicBlock *TBB,
    469                                        BasicBlock *FBB,
    470                                        bool IsSubExpr);
    471 
    472     /// ComputeExitLimitFromSingleExitSwitch - Compute the number of times the
    473     /// backedge of the specified loop will execute if its exit condition were a
    474     /// switch with a single exiting case to ExitingBB.
    475     ExitLimit
    476     ComputeExitLimitFromSingleExitSwitch(const Loop *L, SwitchInst *Switch,
    477                                BasicBlock *ExitingBB, bool IsSubExpr);
    478 
    479     /// ComputeLoadConstantCompareExitLimit - Given an exit condition
    480     /// of 'icmp op load X, cst', try to see if we can compute the
    481     /// backedge-taken count.
    482     ExitLimit ComputeLoadConstantCompareExitLimit(LoadInst *LI,
    483                                                   Constant *RHS,
    484                                                   const Loop *L,
    485                                                   ICmpInst::Predicate p);
    486 
    487     /// ComputeExitCountExhaustively - If the loop is known to execute a
    488     /// constant number of times (the condition evolves only from constants),
    489     /// try to evaluate a few iterations of the loop until we get the exit
    490     /// condition gets a value of ExitWhen (true or false).  If we cannot
    491     /// evaluate the exit count of the loop, return CouldNotCompute.
    492     const SCEV *ComputeExitCountExhaustively(const Loop *L,
    493                                              Value *Cond,
    494                                              bool ExitWhen);
    495 
    496     /// HowFarToZero - Return the number of times an exit condition comparing
    497     /// the specified value to zero will execute.  If not computable, return
    498     /// CouldNotCompute.
    499     ExitLimit HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr);
    500 
    501     /// HowFarToNonZero - Return the number of times an exit condition checking
    502     /// the specified value for nonzero will execute.  If not computable, return
    503     /// CouldNotCompute.
    504     ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L);
    505 
    506     /// HowManyLessThans - Return the number of times an exit condition
    507     /// containing the specified less-than comparison will execute.  If not
    508     /// computable, return CouldNotCompute. isSigned specifies whether the
    509     /// less-than is signed.
    510     ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
    511                                const Loop *L, bool isSigned, bool IsSubExpr);
    512     ExitLimit HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
    513                                   const Loop *L, bool isSigned, bool IsSubExpr);
    514 
    515     /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
    516     /// (which may not be an immediate predecessor) which has exactly one
    517     /// successor from which BB is reachable, or null if no such block is
    518     /// found.
    519     std::pair<BasicBlock *, BasicBlock *>
    520     getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
    521 
    522     /// isImpliedCond - Test whether the condition described by Pred, LHS, and
    523     /// RHS is true whenever the given FoundCondValue value evaluates to true.
    524     bool isImpliedCond(ICmpInst::Predicate Pred,
    525                        const SCEV *LHS, const SCEV *RHS,
    526                        Value *FoundCondValue,
    527                        bool Inverse);
    528 
    529     /// isImpliedCondOperands - Test whether the condition described by Pred,
    530     /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
    531     /// and FoundRHS is true.
    532     bool isImpliedCondOperands(ICmpInst::Predicate Pred,
    533                                const SCEV *LHS, const SCEV *RHS,
    534                                const SCEV *FoundLHS, const SCEV *FoundRHS);
    535 
    536     /// isImpliedCondOperandsHelper - Test whether the condition described by
    537     /// Pred, LHS, and RHS is true whenever the condition described by Pred,
    538     /// FoundLHS, and FoundRHS is true.
    539     bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
    540                                      const SCEV *LHS, const SCEV *RHS,
    541                                      const SCEV *FoundLHS,
    542                                      const SCEV *FoundRHS);
    543 
    544     /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
    545     /// in the header of its containing loop, we know the loop executes a
    546     /// constant number of times, and the PHI node is just a recurrence
    547     /// involving constants, fold it.
    548     Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
    549                                                 const Loop *L);
    550 
    551     /// isKnownPredicateWithRanges - Test if the given expression is known to
    552     /// satisfy the condition described by Pred and the known constant ranges
    553     /// of LHS and RHS.
    554     ///
    555     bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
    556                                     const SCEV *LHS, const SCEV *RHS);
    557 
    558     /// forgetMemoizedResults - Drop memoized information computed for S.
    559     void forgetMemoizedResults(const SCEV *S);
    560 
    561     /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
    562     /// pointer.
    563     bool checkValidity(const SCEV *S) const;
    564 
    565   public:
    566     static char ID; // Pass identification, replacement for typeid
    567     ScalarEvolution();
    568 
    569     LLVMContext &getContext() const { return F->getContext(); }
    570 
    571     /// isSCEVable - Test if values of the given type are analyzable within
    572     /// the SCEV framework. This primarily includes integer types, and it
    573     /// can optionally include pointer types if the ScalarEvolution class
    574     /// has access to target-specific information.
    575     bool isSCEVable(Type *Ty) const;
    576 
    577     /// getTypeSizeInBits - Return the size in bits of the specified type,
    578     /// for which isSCEVable must return true.
    579     uint64_t getTypeSizeInBits(Type *Ty) const;
    580 
    581     /// getEffectiveSCEVType - Return a type with the same bitwidth as
    582     /// the given type and which represents how SCEV will treat the given
    583     /// type, for which isSCEVable must return true. For pointer types,
    584     /// this is the pointer-sized integer type.
    585     Type *getEffectiveSCEVType(Type *Ty) const;
    586 
    587     /// getSCEV - Return a SCEV expression for the full generality of the
    588     /// specified expression.
    589     const SCEV *getSCEV(Value *V);
    590 
    591     const SCEV *getConstant(ConstantInt *V);
    592     const SCEV *getConstant(const APInt& Val);
    593     const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
    594     const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
    595     const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
    596     const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
    597     const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
    598     const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
    599                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    600     const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
    601                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
    602       SmallVector<const SCEV *, 2> Ops;
    603       Ops.push_back(LHS);
    604       Ops.push_back(RHS);
    605       return getAddExpr(Ops, Flags);
    606     }
    607     const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
    608                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
    609       SmallVector<const SCEV *, 3> Ops;
    610       Ops.push_back(Op0);
    611       Ops.push_back(Op1);
    612       Ops.push_back(Op2);
    613       return getAddExpr(Ops, Flags);
    614     }
    615     const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
    616                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    617     const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
    618                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap)
    619     {
    620       SmallVector<const SCEV *, 2> Ops;
    621       Ops.push_back(LHS);
    622       Ops.push_back(RHS);
    623       return getMulExpr(Ops, Flags);
    624     }
    625     const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
    626                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
    627       SmallVector<const SCEV *, 3> Ops;
    628       Ops.push_back(Op0);
    629       Ops.push_back(Op1);
    630       Ops.push_back(Op2);
    631       return getMulExpr(Ops, Flags);
    632     }
    633     const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
    634     const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
    635     const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
    636                               const Loop *L, SCEV::NoWrapFlags Flags);
    637     const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
    638                               const Loop *L, SCEV::NoWrapFlags Flags);
    639     const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
    640                               const Loop *L, SCEV::NoWrapFlags Flags) {
    641       SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
    642       return getAddRecExpr(NewOp, L, Flags);
    643     }
    644     const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
    645     const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
    646     const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
    647     const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
    648     const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
    649     const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
    650     const SCEV *getUnknown(Value *V);
    651     const SCEV *getCouldNotCompute();
    652 
    653     /// getSizeOfExpr - Return an expression for sizeof AllocTy that is type
    654     /// IntTy
    655     ///
    656     const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
    657 
    658     /// getOffsetOfExpr - Return an expression for offsetof on the given field
    659     /// with type IntTy
    660     ///
    661     const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
    662 
    663     /// getNegativeSCEV - Return the SCEV object corresponding to -V.
    664     ///
    665     const SCEV *getNegativeSCEV(const SCEV *V);
    666 
    667     /// getNotSCEV - Return the SCEV object corresponding to ~V.
    668     ///
    669     const SCEV *getNotSCEV(const SCEV *V);
    670 
    671     /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
    672     const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
    673                              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    674 
    675     /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
    676     /// of the input value to the specified type.  If the type must be
    677     /// extended, it is zero extended.
    678     const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
    679 
    680     /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
    681     /// of the input value to the specified type.  If the type must be
    682     /// extended, it is sign extended.
    683     const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
    684 
    685     /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
    686     /// the input value to the specified type.  If the type must be extended,
    687     /// it is zero extended.  The conversion must not be narrowing.
    688     const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
    689 
    690     /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
    691     /// the input value to the specified type.  If the type must be extended,
    692     /// it is sign extended.  The conversion must not be narrowing.
    693     const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
    694 
    695     /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
    696     /// the input value to the specified type. If the type must be extended,
    697     /// it is extended with unspecified bits. The conversion must not be
    698     /// narrowing.
    699     const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
    700 
    701     /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
    702     /// input value to the specified type.  The conversion must not be
    703     /// widening.
    704     const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
    705 
    706     /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
    707     /// the types using zero-extension, and then perform a umax operation
    708     /// with them.
    709     const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
    710                                            const SCEV *RHS);
    711 
    712     /// getUMinFromMismatchedTypes - Promote the operands to the wider of
    713     /// the types using zero-extension, and then perform a umin operation
    714     /// with them.
    715     const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
    716                                            const SCEV *RHS);
    717 
    718     /// getPointerBase - Transitively follow the chain of pointer-type operands
    719     /// until reaching a SCEV that does not have a single pointer operand. This
    720     /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
    721     /// but corner cases do exist.
    722     const SCEV *getPointerBase(const SCEV *V);
    723 
    724     /// getSCEVAtScope - Return a SCEV expression for the specified value
    725     /// at the specified scope in the program.  The L value specifies a loop
    726     /// nest to evaluate the expression at, where null is the top-level or a
    727     /// specified loop is immediately inside of the loop.
    728     ///
    729     /// This method can be used to compute the exit value for a variable defined
    730     /// in a loop by querying what the value will hold in the parent loop.
    731     ///
    732     /// In the case that a relevant loop exit value cannot be computed, the
    733     /// original value V is returned.
    734     const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
    735 
    736     /// getSCEVAtScope - This is a convenience function which does
    737     /// getSCEVAtScope(getSCEV(V), L).
    738     const SCEV *getSCEVAtScope(Value *V, const Loop *L);
    739 
    740     /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
    741     /// by a conditional between LHS and RHS.  This is used to help avoid max
    742     /// expressions in loop trip counts, and to eliminate casts.
    743     bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
    744                                   const SCEV *LHS, const SCEV *RHS);
    745 
    746     /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
    747     /// protected by a conditional between LHS and RHS.  This is used to
    748     /// to eliminate casts.
    749     bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
    750                                      const SCEV *LHS, const SCEV *RHS);
    751 
    752     /// getSmallConstantTripCount - Returns the maximum trip count of this loop
    753     /// as a normal unsigned value. Returns 0 if the trip count is unknown or
    754     /// not constant. This "trip count" assumes that control exits via
    755     /// ExitingBlock. More precisely, it is the number of times that control may
    756     /// reach ExitingBlock before taking the branch. For loops with multiple
    757     /// exits, it may not be the number times that the loop header executes if
    758     /// the loop exits prematurely via another branch.
    759     unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);
    760 
    761     /// getSmallConstantTripMultiple - Returns the largest constant divisor of
    762     /// the trip count of this loop as a normal unsigned value, if
    763     /// possible. This means that the actual trip count is always a multiple of
    764     /// the returned value (don't forget the trip count could very well be zero
    765     /// as well!). As explained in the comments for getSmallConstantTripCount,
    766     /// this assumes that control exits the loop via ExitingBlock.
    767     unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);
    768 
    769     // getExitCount - Get the expression for the number of loop iterations for
    770     // which this loop is guaranteed not to exit via ExitingBlock. Otherwise
    771     // return SCEVCouldNotCompute.
    772     const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
    773 
    774     /// getBackedgeTakenCount - If the specified loop has a predictable
    775     /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
    776     /// object. The backedge-taken count is the number of times the loop header
    777     /// will be branched to from within the loop. This is one less than the
    778     /// trip count of the loop, since it doesn't count the first iteration,
    779     /// when the header is branched to from outside the loop.
    780     ///
    781     /// Note that it is not valid to call this method on a loop without a
    782     /// loop-invariant backedge-taken count (see
    783     /// hasLoopInvariantBackedgeTakenCount).
    784     ///
    785     const SCEV *getBackedgeTakenCount(const Loop *L);
    786 
    787     /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
    788     /// return the least SCEV value that is known never to be less than the
    789     /// actual backedge taken count.
    790     const SCEV *getMaxBackedgeTakenCount(const Loop *L);
    791 
    792     /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
    793     /// has an analyzable loop-invariant backedge-taken count.
    794     bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
    795 
    796     /// forgetLoop - This method should be called by the client when it has
    797     /// changed a loop in a way that may effect ScalarEvolution's ability to
    798     /// compute a trip count, or if the loop is deleted.
    799     void forgetLoop(const Loop *L);
    800 
    801     /// forgetValue - This method should be called by the client when it has
    802     /// changed a value in a way that may effect its value, or which may
    803     /// disconnect it from a def-use chain linking it to a loop.
    804     void forgetValue(Value *V);
    805 
    806     /// \brief Called when the client has changed the disposition of values in
    807     /// this loop.
    808     ///
    809     /// We don't have a way to invalidate per-loop dispositions. Clear and
    810     /// recompute is simpler.
    811     void forgetLoopDispositions(const Loop *L) { LoopDispositions.clear(); }
    812 
    813     /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
    814     /// is guaranteed to end in (at every loop iteration).  It is, at the same
    815     /// time, the minimum number of times S is divisible by 2.  For example,
    816     /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
    817     /// bitwidth of S.
    818     uint32_t GetMinTrailingZeros(const SCEV *S);
    819 
    820     /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
    821     ///
    822     ConstantRange getUnsignedRange(const SCEV *S);
    823 
    824     /// getSignedRange - Determine the signed range for a particular SCEV.
    825     ///
    826     ConstantRange getSignedRange(const SCEV *S);
    827 
    828     /// isKnownNegative - Test if the given expression is known to be negative.
    829     ///
    830     bool isKnownNegative(const SCEV *S);
    831 
    832     /// isKnownPositive - Test if the given expression is known to be positive.
    833     ///
    834     bool isKnownPositive(const SCEV *S);
    835 
    836     /// isKnownNonNegative - Test if the given expression is known to be
    837     /// non-negative.
    838     ///
    839     bool isKnownNonNegative(const SCEV *S);
    840 
    841     /// isKnownNonPositive - Test if the given expression is known to be
    842     /// non-positive.
    843     ///
    844     bool isKnownNonPositive(const SCEV *S);
    845 
    846     /// isKnownNonZero - Test if the given expression is known to be
    847     /// non-zero.
    848     ///
    849     bool isKnownNonZero(const SCEV *S);
    850 
    851     /// isKnownPredicate - Test if the given expression is known to satisfy
    852     /// the condition described by Pred, LHS, and RHS.
    853     ///
    854     bool isKnownPredicate(ICmpInst::Predicate Pred,
    855                           const SCEV *LHS, const SCEV *RHS);
    856 
    857     /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
    858     /// predicate Pred. Return true iff any changes were made. If the
    859     /// operands are provably equal or unequal, LHS and RHS are set to
    860     /// the same value and Pred is set to either ICMP_EQ or ICMP_NE.
    861     ///
    862     bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
    863                               const SCEV *&LHS,
    864                               const SCEV *&RHS,
    865                               unsigned Depth = 0);
    866 
    867     /// getLoopDisposition - Return the "disposition" of the given SCEV with
    868     /// respect to the given loop.
    869     LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
    870 
    871     /// isLoopInvariant - Return true if the value of the given SCEV is
    872     /// unchanging in the specified loop.
    873     bool isLoopInvariant(const SCEV *S, const Loop *L);
    874 
    875     /// hasComputableLoopEvolution - Return true if the given SCEV changes value
    876     /// in a known way in the specified loop.  This property being true implies
    877     /// that the value is variant in the loop AND that we can emit an expression
    878     /// to compute the value of the expression at any particular loop iteration.
    879     bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
    880 
    881     /// getLoopDisposition - Return the "disposition" of the given SCEV with
    882     /// respect to the given block.
    883     BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
    884 
    885     /// dominates - Return true if elements that makes up the given SCEV
    886     /// dominate the specified basic block.
    887     bool dominates(const SCEV *S, const BasicBlock *BB);
    888 
    889     /// properlyDominates - Return true if elements that makes up the given SCEV
    890     /// properly dominate the specified basic block.
    891     bool properlyDominates(const SCEV *S, const BasicBlock *BB);
    892 
    893     /// hasOperand - Test whether the given SCEV has Op as a direct or
    894     /// indirect operand.
    895     bool hasOperand(const SCEV *S, const SCEV *Op) const;
    896 
    897     /// Return the size of an element read or written by Inst.
    898     const SCEV *getElementSize(Instruction *Inst);
    899 
    900     /// Compute the array dimensions Sizes from the set of Terms extracted from
    901     /// the memory access function of this SCEVAddRecExpr.
    902     void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
    903                              SmallVectorImpl<const SCEV *> &Sizes,
    904                              const SCEV *ElementSize) const;
    905 
    906     bool runOnFunction(Function &F) override;
    907     void releaseMemory() override;
    908     void getAnalysisUsage(AnalysisUsage &AU) const override;
    909     void print(raw_ostream &OS, const Module* = nullptr) const override;
    910     void verifyAnalysis() const override;
    911 
    912   private:
    913     /// Compute the backedge taken count knowing the interval difference, the
    914     /// stride and presence of the equality in the comparison.
    915     const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
    916                                bool Equality);
    917 
    918     /// Verify if an linear IV with positive stride can overflow when in a
    919     /// less-than comparison, knowing the invariant term of the comparison,
    920     /// the stride and the knowledge of NSW/NUW flags on the recurrence.
    921     bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
    922                             bool IsSigned, bool NoWrap);
    923 
    924     /// Verify if an linear IV with negative stride can overflow when in a
    925     /// greater-than comparison, knowing the invariant term of the comparison,
    926     /// the stride and the knowledge of NSW/NUW flags on the recurrence.
    927     bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
    928                             bool IsSigned, bool NoWrap);
    929 
    930   private:
    931     FoldingSet<SCEV> UniqueSCEVs;
    932     BumpPtrAllocator SCEVAllocator;
    933 
    934     /// FirstUnknown - The head of a linked list of all SCEVUnknown
    935     /// values that have been allocated. This is used by releaseMemory
    936     /// to locate them all and call their destructors.
    937     SCEVUnknown *FirstUnknown;
    938   };
    939 }
    940 
    941 #endif
    942